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OEC-RNN: Object-Oriented Delineation of
Rooftops With Edges and Corners Using
the Recurrent Neural Network
From the Aerial Images

Wei Huang, Hong Tang

Abstract—1t is an important task to automatically and accu-
rately map rooftops from very high resolution remote sensing
images since buildings are very closely related to human activity.
Two typical technologies are often utilized to accomplish the
task, i.e., semantic segmentation and instance segmentation. The
semantic segmentation is to independently allocate a label (e.g.,
“building” or not) to each pixel, resulting in blob-like segments.
On the contrary, one might model the boundary of a rooftop as
a polygon to improve the shape of the rooftop by encouraging
vertices of polygon to adhere to the rooftop’s boundary. Following
this line of work, we present a multitask learning approach to
predict rooftop corners in a sequent way using the attention
learned from where the boundaries are in a given image region.
The approach simulates the process of manual delineation of
rooftops’ outline in a given image, which can produce accurate
boundaries of rooftops with sharp corners and straight lines
between them. Specifically, the proposed method consists of three
components, i.e., object detection, pixel-by-pixel classification of
both edges and corners, and delineation of rooftops in a sequent
manner using a convolutional recurrent neural network (RNN).
It is called as object-oriented, edges and corners (OEC)-RNN in
this article. Three image datasets of buildings are employed to
validate the performance of the OEC-RNN, which are compared
with state-of-the-art methods for instance segmentation. The
experimental results show that the OEC-RNN achieves the best
performance in terms of overlay, boundary adherence, and vertex
location between ground-truth and predicted polygons.

Index Terms—Building extraction, convolutional neural net-
work (CNN), recurrent neural network (RNN), rooftop
delineation.

I. INTRODUCTION

UTOMATIC and accurate mapping of buildings from
very high resolution (VHR) remote sensing imagery and
aerial imagery is important for a wide range of applications,
for example, cartography, urban management, quick response
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to natural disasters, and so on. Along with the successful
application of convolutional neural network (CNN) on image
classification [1], deep learning methods have been used to
extract buildings from VHR images [2]-[8], which can be
technically categorized into two groups, i.e., semantic segmen-
tation [9] and instance segmentation [10].

As for the semantic segmentation of buildings, a class
label (e.g., “building” or not) would be allocated onto each
pixel in a given image. These kinds of dense classification of
images could achieve good global performance statistics such
as overall accuracy and building area coverage estimation [11].
However, the classification results produced by these methods
are generally not well adherent to the regular geometric
shapes of buildings, since the inference of the pixels’ label is
independent of each other [12]. Semantic segmentation results
look like blob-like segments [13] since they do not reason
about the geometry of its predictions. Some post-processing
strategies, e.g., building boundary regularization [14], [15]
are often used to improve the degree of boundary adherence,
where boundary adherence is a general name of the commonly
used methods for evaluating the segmentation boundary in
image segmentation and over-segmentation tasks [16]. Bound-
ary recall and under-segmentation error are standard measures
for boundary adherence [17], [18].

Unlike semantic segmentation, instance segmentation aims
to allocate a unique label for per-object instance, e.g., indi-
vidual buildings [18]. A natural approach is to use semantic
segmentation results as a part of instance segmentation. For
instance, one might discover connected components from the
semantic segmentation as object masks, or semantic segmen-
tation of a specific image region discovered by an object
detection network, e.g., Mask region-CNN (R-CNN) [19].
However, this kind of method still originates from pixel-wise
classifications and is not apt for integrating output with shape
priors directly.

Another approach to instance segmentation is to directly
model the boundary of an object instance as an active con-
tour [12], [13], [20] or a polygon [21], [22]. Active contour
models (ACMs) have been proved to be an extremely popular
approach to instance segmentation, which was introduced by
Kass et al. [23] under the name ‘“snake.” An initial contour
would be encouraged to move toward the boundaries of an
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object by minimizing an energy function, in which some
geometric properties can be encoded as priors of the contour,
for instance, curvature and area of the contour. Previously,
a deep structured active contour (DSAC) [12] model was
employed to combine the power of deep CNNs with the classic
polygon-based ACM. A structured prediction is integrated with
the ACM by minimizing the intersection over union (IoU)
between the predicted polygon and ground-truth outline of a
building. The DSAC is furthermore extended to the situation
that the contour is represented in a polar coordination, i.e., the
deep active ray network (DARNet) [13]. This contour then
evolves to minimize its energy via gradient descent, and its
final position defines the predicted instance segmentation.
Gur et al. [20] present a simpler framework to create an
active contour from its vertices with a fully differentiable
rendering, i.e., active contours via differentiable rendering
network (ACDRNet). Recently, inspired by the snake model
and combined with deep learning, a Deep snake [24] method
was proposed. This method uses circular convolution modeling
and infers the offset of the initial contour vertex to get
more accurate contour results. To speedup manual annotation,
a recursive neural network is used to generate polygon vertices
in a sequential manner, where it allows human annotators
to correct incorrect vertices as needed to produce a precise
polygon as possible as annotators can do [21]. Furthermore,
it was extended to make use of reinforcement learning [22]
and graph convolution networks (GCNs) [25]. To enhance
the efficiency of human correction in sequent predictions,
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Components of the OEC-RNN for rooftop delineation of individual buildings.

a GCN was proposed to simultaneously predict the vertices
of a polygon or spline outlining the object.

Although contour or polygon-based methods generally out-
perform semantic segmentation in terms of instance geometric
features, it is still hard to produce a boundary of a rooftop
with sharp corners and straight lines between them. The main
reason is that only part of the vertices on the boundary of a
rooftop is occasionally chosen by prior method or sampled
during learning, which is used to represent an instance of
individual building. This motivate us to explicitly learn how to
predict corners, instead of vertices, of rooftops and delineate
the sharp outlines of rooftops by using the most possible
corners in a sequent manner under some attention, e.g., the
posterior probability of predicted edges on the boundary of a
rooftop using the richer convolutional features (RCF) for edge
recognition [26].

Specifically, a novel approach is present to accurately delin-
eate the boundaries of individual buildings from aerial images
in this article. As shown in Fig. 1, the proposed method con-
sists of three components, i.e., object detection, pixel-by-pixel
classification of both edges and corners, and delineation of
rooftops in a sequent manner using a convolutional recurrent
neural network (RNN). It is called object-oriented, edges and
corners (OEC)-RNN, in which a convolutional long short-term
memory (ConvLSTM) is used as the recurrent unit [27] and
each time step corresponds to the next predicted corner.
The maximum number of corners in this article is limited
to 71.
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Fig. 2. Framework of neural network in the OEC-RNN.

The rest of this article is organized as follows. The proposed
method is described in Section II. Experimental setting and
results are given in Section III. In Section IV, we discuss the
impact of object detection on the performance in term of quan-
titative evaluation, and the limitation of instance segmentation
using a biased assumption. Some conclusions are drawn in
Section V.

II. METHOD

The framework of neural network in the OEC-RNN is
shown in Fig. 2.

1) The Mask R-CNN is used to detect where the buildings
are located in an image.

2) Both the RCF and feature extraction with a shared CNN
backbone are employed to predict the degree of each
pixel belonging to the rooftop edge. And the first corner
is inferred from a skip feature.

3) Based on the skip feature coupled with predicted edge
attention and first corner, a OEC-RNN is utilized to
delineate the boundary of a rooftop in a sequent manner.

In Section II-A-II-C, the specific network structures of
its components are described in detail, i.e., object detection,
recognition of edges and corners, and delineation of rooftops.

A. Object Detection Using the Mask R-CNN

The Mask R-CNN is a conceptually intuitive and high-
performance framework for instance segmentation, which also
shows high precision results on bounding box detection [19].
Much of this approach has evolved from the powerful object
detection frameworks such as Faster R-CNN [28]. As shown
in Fig. 3, the intermediate convolutional layer of CNN back-
bone is used as the input of the region proposal network (RPN)
and then used as the image feature maps of region proposals
through the region of interest (Rol) align layer to generate a
fixed-size feature map to execute box regression, classification,
and mask prediction.

In this article, the class of object is buildings or not. The
boxes of buildings would be enlarged by 10% of the short side
length of detected bounding boxes to ensure that the buildings

Edge attention

Region proposals

Fixed size
feature

Image
feature

Fig. 3. Network of object detection used in this article.

are completely located in the boxes, and then cropped for
furthermore processing. The results of the mask brunch could
be used for qualitative comparisons in Section III-D.

B. Pixel-by-Pixel Prediction of Edges and Corners

After the object detection using the Mask R-CNN, each
image crop contains only one building. In order to pass it to
the next network for processing, the image crop needs to be
resized to a fixed size (i.e., 224 x 224). In this component,
Resnet-101 [29] is used as the backbone for feature extraction
of image crop, while both the last max-pooling and fully
connected layer in the original network structure were dropped
out. Based on extracted features of the Resnet-101 backbone
from an image crop including a building, the RCF and residual
network with skip connections are utilized to predict possible
pixels of edges and corners, respectively. The probability map
of edge is used as attention to guide the sequent prediction of
corners in the OEC-RNN.

The RCF exhibits excellent performance in terms of edge
detection [26], in which image features from multiple stages
are fused in a unified framework. As shown in Fig. 4,
the backbone is divided into five stages in the RCF. Each
stage is followed by a kernel size of 1 x 1 and 21-channel
convolutional filters for dimensionality reduction. Then the
21-D output of the stage is deconvoluted to restore the input
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Fig. 4. Structure of the edge recognition component.

size as stage feature map with size of 224 x 224, which is
used to calculate the cross-entropy loss. The stage feature
map of each stage is concatenated and convoluted by a kernel
size of 1 x 1 and one channel convolutional filter in the final
stage. The sigmoid is used to estimate the posterior probability
of each pixel. The output of the RCF is a probability map
which is called “edge attention” in the following.

Given the Resnet-101 backbone, both the Convl and
Conv2_x are connected to the feature maps with a size
of 28 x 28 by max-pooling of size 4 x 4 and 2 x 2,
respectively. Both the Conv3_x and Conv5_x are directly
copied and up-sampled into the feature maps, respectively.
By concatenating the above four feature maps and convoluting
the concatenated features with a kernel size of 3 x 3 and
rectified linear unit (ReLU) nonlinearity, 128 feature maps
with a size of 28 x 28 are outputted as high-level features
for corner predictions. We refer to the final feature map as
the skip feature [21]. Specifically, the skip feature is followed
by a 3 x 3 kernel with a 16-channel convolutional layer and
fully connected layer to predict the corners. The pixel with
the highest posterior would be chosen as the first corner of a
rooftop during delineation of rooftop using a ConvLSTM.

C. Delineation of Rooftops Using a ConvLSTM

The RNN component in the OEC-RNN follows the part
of Polygon-RNN [21], [22] to decode the skip feature and
model the boundary of a rooftop. The major distinction is
that the sharp corners instead of vertices on the boundary of
a rooftop would be predicted along with the edge attention
inferred by the RCF. ConvLSTM component comes from
the Polygon-RNN architecture. We add the network structure
of edge recognition, so that the building corner delineation
process focuses on the area near edges.

Fig. 5 shows the structure of RNN components in the OEC-
RNN, where edge attention has been downsampled to a size
of 28 x 28 by combining skip feature and edge attention to
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generate attention-weighted feature by the Hadamard product.
Given one-hot encodings of two previous vertices y,—j, y,—2
and the first vertex yo, the attention-weighted feature is fed to
the RNN at time step .

The detailed network structure of ConvLSTM is shown
in Fig. 6. The main structure of the RNN is made up of a
double-layer ConvLSTM with a 3 x 3 kernel with 64 and
16 channels, respectively, which can preserve spatial informa-
tion and reduce the number of parameters to learn. The output
of the ConvLSTM is the location of corner points at each time
step. Rooftop polygons can be naturally drawn by the corner
points in order. The output of the ConvLSTM is a point in the
28 x 28 plane, where each point is considered as a classified
category (i.e., 784 categories in total), and the polygon loss of
the OEC-RNN model is defined as the cross-entropy loss of
these 784 categories. Consequently, the problem of locating
the corner points is transformed into a classification task.

The total loss function is given in (1). Since the loss of both
edges and points is not in the same magnitude as the loss of
polygons, the loss value of edges and points is multiplied by
a weight to the same magnitude as the loss of polygons

Loss = polygon_loss + w; * edge_loss + w, * corner_loss
(1

where w; and w, are set to 200 in this article.

II1. EXPERIMENTAL RESULTS

In this section, we first specify the experimental setting, for
instance, image datasets of buildings, strategy of model train-
ing, and hyperparameters. Then six metrics are described for
quantitative evaluation. Experimental results under two kinds
of scenarios are given in Section III-D and III-E, respectively.
The first scenario is qualitative compassion and quantitative
evaluation between the proposed method with state-of-the-art
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Network structure of ConvLSTM: ¢_ [1], c_ [2] and h_ [1], h_ [2] are current state and hidden state of the first and second layers, respectively.

Conv_x and Conv_# are the convolution kernel of the input features and the convolution kernel of the hidden state at the previous time step, respectively. C
and & are outputs of current state and hidden state, respectively. ¢ will be passed to the next time step, while 4 will be passed to both the next time step
and the second layer at the same time step. /, f, o, and u represent the input gate, forget gate, output gate, and update information in the LSTM structure,

respectively.

methods, i.e., Mask R-CNN [19], ACDRNet [20], Polygon-
RNN [21], Deep snake [24], and Curve-GCN [25], under the
assumption that the image of individual building has been
correctly detected and cropped from original aerial images
using the given expanded ground-truth bounding box. The
second one is making ablation experiments in order to analyze
the impact of different components in the OEC-RNN on the
delineation of rooftops.

A. Datasets

1) ISPRS-Vaihingen: Vaihingen data [30] is a standard
dataset for evaluating object extraction in “semantic label-
ing contest” of the International Society for Photogramme-
try and Remote Sensing (ISPRS) Commission II Working
Group (WG) IIlI/4. This dataset consists of 33 pixel-level
annotated images with an average size of 1920 x 2650 from
Vaihingen in Germany. It is worth mentioning that each image
in this dataset is an 8-bit true orthophoto with a resolution
of 0.09 m, which includes near infrared response (NIR), and
red and green bands.

2) INRIA-Austin:  The INRIA aerial image labeling
dataset [31] is mainly used for mapping urban buildings in
aerial images for semantic segmentation tasks. In this dataset,
the region of Austin with high data quality was chosen as the
experimental data. The training set contains 36 orthorectified
color images of size 5000 x 5000 with a spatial resolution
of 0.3 m.

3) Massachusetts Buildings Dataset: There were 137 aerial
images with corresponding labels of size 1500 x 1500,
and the spatial resolution was 1 m. Compared with the
two above-mentioned datasets, the Massachusetts buildings
dataset [32] has a lower spatial resolution and covers a
wider surface. Therefore, the building objects in the data are
relatively smaller and more difficult to be detected.

B. Model Training

For each dataset, we selected 80% of the images as train-
ing and validation samples, and the remaining 20% as test
samples. For training, we trained the Mask R-CNN model
for object detection. Then a ResNet-101 is used as a shared
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backbone between the RCF and corner detection head. Finally,
a double-layer ConvLLSTM is trained to predict sequent corners
for each individual rooftop. We use Adam optimizer with a
batch size of 8 and an initial learning rate of le — 4. We decay
the learning rate by a factor of 0.1 for every ten epochs. Taking
INRIA-Austin as an example, the training phase of the model
spends about 16 h on Nvidia Tesla P40 GPU and the learned
model run at 46 s per image (size of 5000 x 5000) during the
inference phase.

C. Evaluation Metrics

As shown in Fig. 7, six metrics are utilized to quantitatively
evaluate the performance of models from three different view-
points, i.e., object, boundary, and vertex between the ground
truth and the prediction.

We defined the area of the polygon delineated by the
connected lines of the predicted building corner points as A,
and the ground truth A,. Given both predicted and ground-
truth rooftops, the IoU [33] is the ratio of their intersection to
their union, which is as follows:

Ay N A,

IoU = .
A, UA,

2
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Weighted coverage (WCov) [34] is the ratio of the area of
two polygons, where the larger area is used as the denominator.
The WCov is computed according to

Ag/Ap, Ag < A,

3)
Ap/Ag, Ag > A,

WCov = {

Boundary F-score (BoundF) [35] is the averaged F1-score

on the threshold value of 1 to k pixels (k =5, in this article)

around the ground-truth boundary of the rooftop according to
the following equation:

k

BoundF = l Z

k T=1

2Pr Ry

r_ 4
Pr + Ry @

where 7 is the threshold value around the ground-truth bound-
ary and T = {1,2,...,k}, k is the maximum threshold. Pr
and Ry are the precision and recall under threshold 7. P and
R are given by

TP
P=——0 (5)
TP + FP
TP
= TP L EN (6)
+FN

where the true positive (TP) is the number of pixels correctly
predicted as the boundary. False positive (FP) and false neg-
ative (FN) are the number of pixels with incorrect boundary
and nonboundary, respectively.

Rotation error (RE) is defined as the deflection angle
between the orientations of both ground-truth and predicted
polygon, where the magnitude of the angle is expressed in
degrees. RE is given by

RE = [0, — O,| (7

where O, and O, are orientations of ground-truth and pre-
dicted polygon. Orientation is defined as the angle between
the x-axis and the major axis of the ellipse that has the
same second moments as the polygon, ranging from —z/2 to
7 /2 counterclockwise.

The Hausdorff distance (Hd) is used to measure the
maximal-minimal distance between two sets of vertex points
from ground-truth and predicted polygons, respectively [36].
Given the two sets of vertex points from ground-truth and
predicted polygons, e.g., A = {al,a2,...}, B ={bl,b2,...},
Hd is given by

Hd(A, B) = max[h(A, B), h(B, A)] (8)

where
h(A, B) = max [g}rgg lla — bll] )
h(B, A) = rgleag[znei? ||b—a||]. (10)

The two distances h(A, B) and h(B, A) are termed as
forward and backward Hds between A and B.

Vertex number error (VNE) is to measure the difference
between the number of predicted vertices Np and the number
of ground-truth vertices N, on a rooftop polygon. VNE is
defined by the following equation:

VNE = [N, — Nyl (11)
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D. Comparison With State-of-the-Art Methods

Five state-of-the-art methods are selected to be compared
with the proposed method in terms of both quantitative and
qualitative performances.

ACDRNet is the method for representing polygons based
on active contours. Under the assumption that each image
crop contains only one building, the method is initialized by
taking the center of the input image crop as the center of the
initial circle and 16 pixels as the diameter. The number of
initialized vertices is selected to be 32 in this article, at which
the performance of the model can reach saturation quickly,
as described in [20] and [21].

Deep snake [24] is an effective improvement of the snake
method by introducing a circular convolutional structure to
process the input contour vertices and obtaining the offset
that each vertex needs to be adjusted to enclose the instances
as accurately as possible based on the learned features, and
then iterating through to obtain more accurate contour results.
The experiments show that this method can carry out instance
segmentation more rapidly and accurately.

Curve-GCN is to predict polygons using graph CNNs to
estimate the displacement at each vertex. The initialization of
this method also takes the center of the input image crop as
the center of the circle, and takes 70% of the image height as
the diameter. The number of initialized control points will be
uniformly sampled along the edge of the initial circle. In [25],
a better performance can be achieved when 40 points are used
as initial points.

Mask R-CNN is an instance segmentation framework for
object detection, classification, and semantic segmentation.
As the semantic segmentation results of the mask branch in
the Mask R-CNN presented blob-like shapes, we used the
method in [15] for regularizing comparison and quantitative
evaluation.

Polygon-RNN is a way of annotating the object con-
tour using vertices on the boundary both automatically and
interactively [21]. The OEC-RNN approach in this article
evolved from the method and its extended version polygon
RNN++ [22], and it was natural to use it as a baseline for
performance comparisons.

1) Qualitative Comparison: Two images of buildings from
each of the three datasets are selected for qualitative compar-
ison in terms of delineation of rooftop boundary. It can be
seen from Fig. 8 that the OEC-RNN consistently delineates
the rooftops with sharpened corners and straight lines between
them. The OEC-RNN has a more accurate grasp of the
building corner points and accurately depicts the roof poly-
gon without severe corner deviations. Overall, the OEC-RNN
exhibits good performance with different resolution images as
input.

As shown in the third row in Fig. 8, the bottom-left and
top-left corners are missing by the ACDRNet. As can be
seen from the fifth and sixth rows, multiple corner points
are missing and the corners are mispositioned on the edge.
This leads to the result of the ACDRNet severely changing
the original geometry of the building rooftop. Most of the
sharp corners are missing, and as for the Mask R-CNN, it has
been regularized based on its results of semantic segmentation.

5604912
TABLE I
QUANTITATIVE EVALUATION RESULTS
IoU WCov BoundF RE Hd VNE
ACDRNet 0.8709 0.8565 0.7652 0.8981 5.39 ----
Mask R-CNN  0.8791 0.8610 0.7706 0.8159 4.91 8.75
Polygon-RNN  0.8837 0.8628 0.7868 0.8214 5.09 5.37
ISPRS Deep Snake 0.8847 0.8706 0.7796 0.7854 529 -
Curve-GCN  0.8864 0.8603 0.7811 0.7668 5.12 -
Our 0.9002 0.8784 0.8075 0.7459 4.28 5.05
ACDRNet 0.7881 0.7668 0.7163 0.6301 3.26 ----
Mask R-CNN  0.7812 0.7580 0.7067 0.7397 437 7.61
Polygon-RNN ~ 0.8007 0.7719 0.7225 0.6283 3.48 3.41
INRIA peep Snake 07902 0.7598  0.7066  0.6243  3.74 -
Curve-GCN  0.7930 0.7618 0.7189 0.6140 3.37 ----
Our 0.8144 0.7776 0.7293 05653 2.72 3.12
ACDRNet 0.7404 0.7075 0.6898 0.7085 2.74 ----
Mask R-CNN  0.7403 0.7098 0.6848 0.7689 3.52 6.83
Massac Polygon-RNN 07473 07364 0.6872 0.7180 3.11 3.75
husetts peep Snake 0.7502 0.7398 0.7109 0.7742 3.04 ---
Curve-GCN  0.7569 0.7451 0.7143 0.8007 2.77 ----
Our 0.7755 0.7544 0.7212 0.6838 236 3.21

In the first and second rows, the Polygon-RNN recognized
extra isolated corner points out of the edge, which makes the
rooftop shape protrude sharply in local areas. The result of the
fifth row also has a more obvious corner recognition deviation.
Curve-GCN has poor recognition results for some concave
building corners, and the description of building polygons is
more inclined to convex polygons. The result of Deep snake
is similar to Curve-GCN wherein a fixed number of control
points are used to approximate the outline of the building,
which makes the straight building edges rough. In general,
different methods can achieve better visual consistency on
objects with relatively simple geometric shapes such as the
sixth row, while in the case of very complex boundaries, it is
still challenging to make a fine drawing of the building contour
like the fourth row in Fig. 8.

2) Quantitative Evaluation: Table 1 lists the quantitative
evaluation on the three datasets using the six metrics in
Section III-C. The OEC-RNN obtained higher precision than
other methods in terms of IoU, WCov, and BoundF. Less
mistakes are made by the OEC-RNN than the other methods
in terms of RE, Hd, and VNE.

The two metrics (IoU and WCov) show from the plane
of polygons that the better the conformity between predicted
polygons and ground truth is, the higher the value of the met-
rics would be. Similarly, BoundF represents the consistency
of the boundary of the polygons. The OEC-RNN obtained
the highest values in three datasets, which was significantly
improved compared with other methods.

RE shows the difference in the deflection angle of the
polygon. Within the same dataset, the value magnitude of
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Curve—-GCN OEC-RNN Edge attention No attention Vertex

Fig. 8.

Qualitative comparison. These building instances are selected from three datasets: the first and second rows are from ISPRS, the third and fourth

rows are from INRIA, and the fifth and sixth rows are from Massachusetts building datasets. (Left to Right) the first column shows the building ground truth.
The second to the seventh column are results of ACDRNet, Mask R-CNN, polygon-RNN, deep snake, curve-GCN, and OEC-RNN, respectively. The eighth
column is the a posteriori probability map of building edges in the OEC-RNN. The ninth column is the results without using edge attention in the OEC-RNN.
The right-most column is the results obtained by training using both some vertices on edges and corner points in the OEC-RNN.

the metric has little difference. The OEC-RNN achieved the
minimum deflection angle on all three datasets.

Hd measures the spatial deviation of two sets of points that
make up a polygon, with particular focus on the farthest point.
All the methods used in this article are able to control Hd
below a distance of ten pixels, and OEC-RNN obtains the low-
est metric values of 4.28, 2.72, and 2.36 in the three datasets,
respectively, thus demonstrating superior performance of the
method in controlling the predicted singularity.

For VNE, since ACDRNet, Curve-GCN, and Deep snake
require initialization of a fixed number of control points,
the metric for the two methods are not considered for compar-
ison in Table I. The polygon results of the Mask R-CNN are
obtained by semantic segmentation with regularization, and the
number of vertices that make up the polygon are significantly
more than the Polygon-RNN and OEC-RNN that directly
predict the building corner points. Although OEC-RNN and
Polygon-RNN do not differ significantly in the VNE metric,
the OEC-RNN shows a smaller difference in the number of
vertices.

E. Ablation Experiments

In this section, two experiments are utilized to reveal the
impact of two components on the performance of the OEC-
RNN, i.e., edge recognition and corner prediction.

1) Edge Attention or Not: As shown in Fig. 4, the posterior
probability of edge pixels learned using the RCF is used as
attention to guide the delineation of rooftops in the OEC-RNN.
The eight column of Fig. 8 shows the posterior probability map
of edge of each individual building. The ninth column shows

TABLE II
QUANTITATIVE EVALUATION FOR ABLATION EXPERIMENT

IoU WCov BoundF RE Hd VNE
No Att  0.8895 0.8613 0.7714 0.7842 496 7.24

ISPRS
Vertex  0.8712 0.8595 0.7823 0.8117 523  9.65
No Att  0.8056 0.7798 0.7049 0.6132 4.06  4.95

INRIA
Vertex  0.7956 0.7863 0.7114 0.6355 591  7.98
Massac NoAtt 07523 0.7487 0.6754 0.6972 395 3.8
husetts  verex 07497 07399 0.6962 07218 4.06 624

the results predicted using the OEC-RNN without using the
edge posterior probability as attention. It can be seen from the
subfigures in the seventh column that the corners predicted by
the OEC-RNN is located among the “buffer zone” with higher
posterior probability. Without edge attention, the method might
miss some corners of rooftops, as shown in the first and fifth
buildings in the ninth column. Some unexpected points might
be produced by the method occasionally. For example, there
exist some acute angles in the second and fourth buildings,
which obviously deviates the real boundary of buildings.

The quantitative evaluation results of the ablation experi-
ment are summarized in Table II. Compared with the OEC-
RNN, the OEC-RNN without attention behaves in a rather
worse way in terms of all of the six metrics. Specifically,
BoundF becomes a significant lower value when attention is
removed from the OEC-RNN.
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Fig. 9. Results of object detection using the Mask R-CNN. The first row shows three images from the three datasets, respectively, i.e., (a) image of ISPRS,
(b) image of INRIA, and (c) image of Massachusetts building datasets. The images coupled with localized buildings are shown in the second row, i.e., (d) object
detection results of the image in (a), (e) object detection results of the image in (b), and (f) object detection results of the image in (c).

2) Corner Versus Vertex: Buildings are surface artifacts
with special geometries, and it is natural to use the corner
points of the rooftop as the key points during manual marking.
The corner itself is a relatively special visual element in
aerial images. In order to explore the impact of corners
on delineation of rooftops from images, we conducted the
following experiments. In addition to using corners on the
roofs of each building, we added an intermediate point on
each edge as vertices for additional annotations in the training
sample.

The right-most column in Fig. 8 shows the results of the
OEC-RNN learning with more vertices on rooftop boundaries.
It can be seen from the third row in the column that many sharp
corners of building are replaced with some vertices, whereas
the polygons have more “round” corners. The results show
that it is very important to replace the corners with vertices
during the learning phase.

Table II shows the quantitative evaluation results of the
experiment. After the training of edge points is added,
the overall accuracy of rooftop extraction decreases, which
is in line with our assumption that edge points could be noise
in terms of learning the sharp corners. As shown in Table II,
the VNE becomes significantly higher that of the OEC-RNN.
It means that the OEC-RNN would miss predicting the vertices
when more vertices instead of corners are added in to training
samples. Through the ablation experiments in Section III-E,
the performance of the model can be effectively improved by
using both edge attention and training with building corner
points.

4

Fig. 10. Result of being incorrectly detected as a building object. (a) Tennis
courts. (b) Swimming pool. (c) Large van.

IV. DISCUSSION

A. Object Detection

The first step of the OEC-RNN is to localize buildings using
the Mask R-CNN from a large image. As shown with yellow
circles in Fig. 9, some buildings with small size are often
misdetected by the Mask R-CNN. In addition, there are some
ground objects that are inevitably incorrectly detected as a
building, such as tennis courts, swimming pools, and vans,
which often have uniform colors and regular geometric shapes.
The specific examples in the images are shown in Fig. 10.

Whether missed or incorrectly detected, this ultimately
has a significant impact on image-based building extraction,
which makes the object detection process important in the
overall workflow. Since the methods used for building object
detection in this article are independent of the building outline
delineation sections followed, other object detection methods
(i.e., RetinaNet [37], single shot multibox detector (SSD) [38],
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TABLE III
PERFORMANCE OF OBJECT DETECTION
Precision Recall Fl-score
ISPRS 0.9653 0.9254 0.9449
INRIA 0.9540 0.9132 0.9331
Massachusetts 0.9206 0.8854 0.9026
TABLE IV
PERFORMANCE OF THE OEC-RNN WORKFLOW
ToU WCov  BoundF RE Hd VNE
ISPRS 0.8056  0.7521  0.7026  0.7758  9.26  8.62
INRIA 0.7447  0.7155 0.6899  0.6385 7.15 520
Muass:;sh 07156 07039  0.6728 0.6492 622 495

CornerNet [39], and YOLOv4 [40]) could be replaced or
extended within the framework of the OEC-RNN.

Table III lists the evaluation metrics in terms of object
detection performance on three different datasets using Mask
R-CNN. The Fl-score value of ISPRS-Vaihingen is 0.9449,
which is higher than both INRIA-Austin and Massachusetts.
The recall in Massachusetts is 0.8854, which is poor in three
datasets. The lower resolution of the Massachusetts building
dataset causes a building of the same size to appear as smaller
in the image of Massachusetts, and thus more buildings are
lost in the object detection process. The results show that the
Mask R-CNN can obtain better results on images with higher
spatial resolution than that with a lower one.

In the practical application, the detection of building objects
and the depiction of building rooftops are a unified workflow.
The accuracy of object detection has a significant impact on
the final mapping, including missing and incorrect detection
of building objects. Table IV lists the results of performance
of the complete experimental procedure. It shows that the
performance of all metrics has declined due to the incorrect
object detection. When the object detection model leads to
the missing of buildings, the value of IoU corresponding to
the building in ground truth is 0. We only calculated the IoU
of the detected building with the ground truth.

Compared to the result of using the given ground-truth
object box to crop the image as input, there is a very significant
degradation in the performance of the result using the Mask
R-CNN object detection bounding box. The OEC-RNN uses
a staged building extraction framework in this article: object
detection is carried out first, followed by careful mapping of
building objects by sequentially predicting the corner points
of building rooftops. The phased workflow inevitably causes
errors in the different phases that are passed on to the
subsequent work.

B. Backbone Architecture

In this article, the backbone used by the OEC-RNN
to extract features is Resnet-101. In Section III, different
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TABLE V
PERFORMANCE OF THE OEC-RNN USING DIFFERENT BACKBONES

Backbone ToU WCov BoundF RE Hd VNE
VGG-16 0.8106 0.7846 0.7254 0.7685 527 5.78
Inception-v4 0.8242 0.8025 0.7458 0.7656 5.09 5.61
ISPRS
ResNet-50 0.8985 0.8711 0.8056 0.7471 433 5.16
ResNet-101  0.9002 0.8784 0.8075 0.7459 4.28 5.05
VGG-16 0.7345 0.7109 0.6613 0.6041 3.66 4.95
Inception-v4 0.7618 0.7366 0.6752 0.5988 3.59 4.72
INRIA
ResNet-50 0.8129 0.7781 0.7306 0.5628 2.66 3.07
ResNet-101  0.8144 0.7776 0.7293 0.5653 2.72 3.12
VGG-16 0.7011 0.7219 0.6852 0.7435 3.52 4.17
Massachulnception-v4 0.7243 0.7368 0.6994 0.7158 3.44 4.06
setts ResNet-50  0.7613  0.7522 0.7198 0.7014 2.67 3.94
ResNet-101  0.7755 0.7544 0.7212 0.6838 236 3.21
TABLE VI
AVG. INFERENCE TIME PER OBJECT

Time(ms) fps

Polygon-RNN 240.1 4.1

ACDRNet 116.2 8.6

Deep Snake 28.4 34.6

Curve-GCN 27.9 35.8

OEC-RNN 60.1 16.7

backbones are used in the compare methods, for example,
the backbone in the original Polygon-RNN is VGG-16, and
the Resnet-50 is adopted in both polygon RNN++ and
Curve-GCN. To investigate the impact of different backbones
on the performance, we evaluate the performance of the
OEC-RNN using one of the four backbones, ie., VGG-
16, Inception-V4 [41], ResNet-50, and ResNet-101. The
experimental results are listed in Table V.

It can be seen from Table V that the performance of the
ResNet-50 is almost the same as that of the ResNet-101, and
both of them are superior to other backbones. Therefore, it is
better to choose the ResNet as the backbone in the OEC-RNN.
However, the ResNet-101 instead of ResNet-50 is not the key
point for the OEC-RNN to achieve improved performance.

C. Inference Times

We compared the running efficiency of different
contour-based methods in the same device environment.
In the INRIA dataset, each 5000 x 5000 image contains
an average of 765 building objects. Therefore, the unit of
measurement of computational efficiency is the building
object. Timings are reported in Table VI.

In the Polygon-RNN, the vertices of the outer contour of the
object are used for training. Many noncorner points need to be
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Fig. 11.
(b) Ground truth. (c) Results of the OEC-RNN.

Failure case of Vienna in INRIA datasets. (a) Aerial image.

predicted during inference. And the number of corner points
of buildings is less for general buildings, thus OEC-RNN
can infer faster when predicting corner points. Contour-based
methods, like Curve-GCN and Deep Snake, need to be given
a fixed initial condition: the number of control points that
define the contour and that control points are much more than
the corner points of the buildings, which causes the building
contour to show a blob-like shape.

The average time used by the OEC-RNN to infer a single
building is 60.1 ms, which is slower than the 27.9 ms of
Curve-GCN and the 28.4 ms of Deep Snake. However, the
frames per second can still reach 16, which is acceptable for
real-time applications.

D. Limitation Due to the Biased Assumption

In addition to requiring regular edges for rooftops, another
important assumption in the current instance segmentation by
modeling the outline of a building as a polygon is that the
rooftop is assumed to be a hole-free polygon. Fig. 11 shows the
aerial image, ground truth, and polygon drawing results. Under
the condition of accurate object detection, the OEC-RNN can-
not correctly delineate the rooftop polygon with multiple holes.
These methods are inclined to delineate the outer contours of
the rooftop and neglect the inner geometric characteristics of
the polygons.

V. CONCLUSION

In this article, we present a multitask learning approach
to predict rooftop corners in a sequent way using the edge
attention learned from where the boundaries are in a given
image region. Experimental results show that the OEC-RNN
achieved the best results in polygon delineation compared
with stat-of-the-art methods in terms of both qualitative and
quantitative evaluation methods. This article demonstrates that
building rooftops can be more accurately represented by
geometric elements such as points, lines, and polygons.

There are some limitations to the existing approach, such as
the difficulty in depicting complex shaped rooftop and no end-
to-end learning styles, which can be improved in the future.
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