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Abstract— We propose an unsupervised method for iceberg
detection over sea ice-free waters. The algorithm is based on
the segmentation and nonparametric constant false alarm rate
(SnP-CFAR) approach. Unlike in parametric CFAR detection,
in our method, there is no need to define target, guard,
and background areas explicitly. Instead, we apply the CFAR
detection to the pixels within each detected segment and the
background is formed of the nearby pixels not included in the
target segment. By using nonparametric background probability
density function (PDF) estimates, we also eliminate the need of
assuming a specific type of a background PDF. We compared
the detection results with the operational Danish Meteorological
Institute (DMI) Gamma-CFAR algorithm results. The results
were evaluated against icebergs manually identified by the
Finnish Meteorological Institute (FMI) Ice analysts. Our method
also exhibits a reduced number of false alarms. We present
results of iceberg detection based on the SAR channel-cross-
correlation (CCC). CCC was able to distinguish many of the
true targets with a low number of false alarms. However, CCC
seems to miss some of the true targets and its main use would
be in confirming iceberg observations.

Index Terms— C-band, constant false alarm rate (CFAR), dual-
polarized, iceberg detection, SAR, segmentation and nonparamet-
ric constant false alarm rate (SnP-CFAR).

I. INTRODUCTION

URING summer, ice-covered seas in the Arctic region

are gradually opening, freeing trapped Icebergs, and
ice floes into the open sea. New icebergs are calved from
active glaciers. For example, Greenland glaciers reach up
to 30000 calvings per year [1]. Icebergs pose a significant
risk to navigation and off-shore activities, if not detected in
time. Especially, small icebergs, which can easily be neglected
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by radar in rough sea surface conditions, can be dangerous.
Reliable iceberg monitoring is, therefore, necessary for safe
navigation and other marine operations in the areas where
icebergs occur.

Targets in open water, including icebergs, typically appear
as brighter blocks or dots with respect to their background
in SAR imagery, and the most popular method for iceberg
detection is thresholding of the SAR backscattering coefficient,
9, e.g., in [2]. Some methods also use SAR texture features
or other derived quantities to enhance the contrast between
the targets and their background. For iceberg detection in open
water, similar approaches as for ship detection, e.g., in [3] can
be used. In the following, we also provide a short overview
of target detection in SAR imagery.

Typical constant false alarm rate (CFAR) methods have
some disadvantages. First, they use a fixed pattern for the
division to the target area and background area. The target area
is the area representing the target (iceberg in this case), and the
background area is the area used for estimating the background
probability density distribution (PDF) used to define the CFAR
threshold. Another typical assumption in CFAR is to use a
certain fixed type of parametric PDF, such as the Gamma
PDF or the Gaussian PDF. This model may not correspond
to the actual local PDF of the SAR data. The third problem
is that to detect as much true targets as possible also the
number of false alarms may increase to a too high level.
To address these shortcomings, we apply SAR segmentation,
nonparametric PDF, and channel-cross-correlation (CCC). The
segmentation is applied before the CFAR to extract segments
that represent either candidate targets or background. This
approach makes it possible to use the division of the segments
into these two classes, i.e., to define the target and background
areas individually for each target candidate. The target candi-
date pixels are not included in the background area. In the
fixed target and background area setup, nearby target pixels
could be included in the background. The nonparametric PDF
estimation directly uses the background area data to produce
the PDF estimate instead of trying to estimate parameters
of a certain predefined PDF model. We also studied the use
of CCC instead of SAR backscattering in CFAR to reduce
the number of false alarms in the iceberg detection. In addi-
tion, we have studied the capability of features computed
for the targets to distinguish between the true and false
targets.
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A. Overview of CFAR Methods for Iceberg Detection

CFAR methods for target detection typically assume
a certain parameterized distribution, which can be,
e.g., the Gaussian, Gamma, Weibull, or K-distribution.
The K-distribution approach is based on the assumption that
the backscattering coefficient is Gamma-distributed and that
speckle and radar intensity show variations in different scales
and can thus be treated separately [4]. K-distribution has
been assumed, e.g., in [5] for iceberg detection and in [6]—[8]
for ship detection. A theoretical tutorial on the K -distribution
in CFAR can be found in [7]. Target detection based on
CFAR, K-distribution, and postprocessing by morphological
operations was proposed in [9]. The K-distribution and
Gamma distribution used for CFAR ship detection were
applied in [10]. The distribution model was selected based
on the best statistical fit of the distribution to each case.
Icebergs within sea ice can also in most cases be detected
using a CFAR algorithm. This has been evaluated for C-band
single-channel (HH) SAR data in [11].

Iceberg detection based on segmentation has been already
demonstrated. In a recent publication [12], segmentation and
thresholding with a slightly different approach than the method
proposed here have been used in iceberg detection from
ENVISAT ASAR wide swath mode (WSM) imagery. Seg-
mentation and thresholding to detect icebergs was also used
in [13]. Watershed segmentation and segment features (¢° and
three shape features) were used for iceberg detection in [14].
A CFAR approach can also be applied after segmentation [15],
which will yield more reliable estimates for the background
PDF if the estimates are computed within segments and
not over segment boundaries. Superpixel oversegmentation
technique [16] for ship target detection has been applied
in [17] and [18]. This corresponds to our idea of utilizing
segmentation to distinguish between the target and CFAR
background area automatically for each target candidate with-
out any parameters for target, guard, and background areas.
Oversegmentation does not typically split the small target
segments but only the background becomes oversegmented,
making the oversegmentation approach well suitable for target
detection, including iceberg detection.

Gamma distribution CFAR algorithm for iceberg detection
has been applied in [19]. This was updated in [20] to become
the Danish Meteorological Institute (DMI) operational algo-
rithm, which is part of the Copernicus Marine Environment
Monitoring Service (CMEMS) providing open access to Earth
observation (EO) and modeled products for registered users.
The Gamma distribution CFAR target detection was also
studied in [21]. Target (ship) detection using the (generalized)
Gamma distribution CFAR was studied in [22]. In [11],
a Gaussian distribution was assumed, and the Weibull distrib-
ution CFAR ship detection was studied, e.g., in [23] and [24].
Here, we propose to use a nonparametric PDF estimate instead
of a parametric distribution. The parametric distribution model
would require an assumption of the distribution type, such as
the Gaussian or Gamma distribution.

Polarimetric parameters of fully polarimetric SAR data
have been studied for iceberg detection and classification,
e.g., in [25] and [26]. The 2-D convolution between different
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polarization channels of polarimetric SAR data improves the
contrast between background and ships. This property for
ship detection has been utilized in [27]. The possibilities of
polarimetry for iceberg detection were studied in [28]. One of
the conclusions of [28] was that the cross-polarization ratio is
expected to be higher for icebergs than for the background of
thin ice or open water and this ratio can be utilized for iceberg
detection using dual-polarized SAR imagery. An improved
method to increase the contrast between icebergs and the
surrounding sea ice or open water for dual-polarized SAR
data was proposed in [29]. Their method is called the intensity
dual-polarization ratio anomaly detector (iDPolRAD). iDPol-
RAD has been applied for small iceberg detection in fast ice
in [30]. In addition, blob detection was applied to test for the
potential CFAR candidates. SAR texture features can also be
applied to iceberg detection, e.g., in [32] power-to-mean ratio
for iceberg detection has been applied.

Recently, a study [31] used a similar methodology to that
we propose here. In their study, segmentation and fully polari-
metric SAR data and shape features were used for iceberg
detection. Nonsurprisingly polarimetric data gave better results
than single- or dual-polarization data. Unfortunately, fully
polarimetric data are not yet available in a WSM suitable for
large-scale operational monitoring.

Ship detection based on a wavelet transform, the product
of the wavelet subbands (to reduce speckle), and a significant
factor (a parameter describing the contrast between ships and
background) was studied in [33]. The significant factors for the
ships in the wavelet subband product grid were significantly
higher for the transformed image than for the original image,
enabling more reliable thresholding. The assumption behind
this was that the statistics of ship response differ from the
speckle statistics.

An Alpha-stable distribution CFAR for ship detection
was applied by Wang et al. [34]. Alpha-stable distribu-
tions are derived from the generalized central limit the-
orem, and, e.g., the Gaussian distribution is a special
case of an Alpha-stable distribution. An Alpha-stable dis-
tribution is dependent on four parameters. Suitable fil-
tering of the classification result or SAR data can also
improve the recognition results. This has been demonstrated,
e.g., in [5] and [35].

It is very likely that ships will be recognized as icebergs.
In some cases, moving ships can be distinguished based
on their wake visible in SAR [36]. For identifying large
ships and excluding them from iceberg detection, automatic
identification system (AIS) ship identification information [37]
can be used.

During recent years, convolutional neural networks
(CNNs) [38] have gained popularity in image processing,
also in target detection and iceberg, and ship classification.
Examples of published ship detection and classification using
CNN’s are [39]-[41]. Especially, the Statoil/C-CORE Iceberg
Classifier Challenge held on Kaggle in 2018 has inspired to
search for novel solutions utilizing CNN’s in ship and iceberg
detection and classification, such as presented in [42]-[45].
CNNs seem to be a very promising approach and will, in the
near future, be a considerable alternative to the classical CFAR
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algorithms in operational target detection, including iceberg
detection.

Above-surface icebergs form a shadow in the range direction
and the length of this shadow in SAR range direction is
dependent on the incidence angle € and the above-water height
of the iceberg. Assuming a rectangular shape and height
h, the shadow size s = tan(@)h would be approximately
s = 0.364 h for an incidence angle of 20° (a typical near
range incidence angle value for a ScanSAR SAR image) and
s = 1.192 h for an incidence angle of 50° (a typical far range
incidence angle value). Thus, the shadow sizes are typically
too small to be utilized in iceberg detection or classification
for ScanSAR medium-resolution imagery. However, shadows
may be visible and useful for target detection and classification
in high-resolution SAR imagery at the expense narrower swath
widths (image size).

During the melt period, many icebergs exhibit a significant
decrease in volume scattering due to the wet snow/water
layer on top of them [46]. In consequence, the intensity
contrast between the target and the background will be very
low, and icebergs will not appear as bright targets as dur-
ing winter. Moreover, if sea clutter, i.e., strong backscatter
due to wind-induced sea ice surface roughness (waves), is
present, the backscattered radar signal contrast between the
targets and background is decreased even more. Naturally,
targets in such conditions will most likely be wrongly iden-
tified, or not identified at all, by both the automatic and
the manual detection. To overcome this problem, we also
propose an alternative detection method, which aims to find
the targets distinguishable in both the polarization channels,
even with a low contrast. For this purpose, we apply the
SAR CCC.

B. Practical Implementation of CFAR Algorithms

A CFAR algorithm without segmentation requires definition
of the parameters for a sliding window within which the CFAR
is performed. The parameters define the radius of the target
area, i.e., the area within which the whole target is supposed to
be located, and then, typically, a so-called guard area around
the target area is used to avoid mixing of the target area
with the background area. The sizes of the target, guard, and
background areas need to be defined. These areas are shown
in Fig. 1 and their sizes are typically defined by the radius
Ry for the target area, Rs for the guard area, and Rp for
the background area; these values also represent distances
from the window center. Their shape typically is a square
(corresponding to city block distance) or a circle (Euclidean
distance).

From the background distribution, the theoretical threshold
corresponding to a given false alarm ratio (FAR) can then be
defined. The FAR for a threshold T is

FAR=p(x>T) = /OO P(x)dx =1— F(x) (1)
T

where P(x) is the PDF of the background. The cumulative
distribution function F(x) is

LB, x/a)

T
F(x):[ P(x)dx = T

)
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Background area
Guard area

Target area

Fig. 1. Schematic of the target, guard, and background areas used in the
traditional CFAR approach. Rp, R, and Ry are the radiuses of the areas.

where f is the shape parameter, o is the scale parameter of
the Gamma function I'(f), and I'(f, x/a) is the incomplete
gamma function. Based on the above relationship, 7 can
numerically be defined for a CFAR. A typical approach is to
define the distribution and 7' locally because the background
varies depending on the incidence angle and wave characteris-
tics (wave spectrum). For example, for the Gamma distribution
and threshold value T

(L, T)
FAR= —~
T'(L)

where L is the number of (equivalent) looks, if the distribution
parameters have been estimated in a background window of X
pixels (depending on Rg and Rg), then L = X L., where L, is
either the computed number of looks or number of looks given
by the products metadata. I'(L, T') is the incomplete gamma
function (with integration starting from 7' instead of zero).
From this, T for a given CFAR can be solved numerically.
Here, we propose an algorithm, called segmentation
and nonparametric constant false alarm rate (SnP-CFAR),
for detecting medium to large (length > 60 m) ice-
bergs in sea ice-free water areas based on the SnP-CFAR
approach. We concentrate on iceberg detection in open water.
However, a similar algorithm could also be adapted for iceberg
detection within sea ice. Major advantages of SnP-CFAR are
the absence of definition of the typical CFAR parameters:
target, guard, and background areas, and the type or family
of PDF’s used in the CFAR. For a nonparametric distribution
used here, the threshold is defined based on the estimated
cumulative PDF directly for each target candidate segment
background and no explicit formula for it can be given.

3)

II. DATA

To test our SnP-CFAR algorithm, we selected a set
of 14 Sentinel-1A SAR Extra Wide swath (EW) Ground
Range Detected Medium (GRDM) Resolution mode images
over waters west and northwest off Greenland acquired in
July 2015. Based on visual inspection, these images contained
a large number of icebergs.

The wind conditions during our study period varied from
calm to windy corresponding to smooth and rough sea surface
with different wave spectra producing a wide range of different
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Fig. 2. Sentinel-1A SAR frames (with black boundaries) and data windows
(small numbered gray blocks) used in the study drawn over the map of the
area. The numbers also refer to the image numbers in Table I. There was one
data window corresponding to each SAR image.

TABLE I

SENTINEL-1A SAR DATA SET AND THEIR CORRESPONDING
LATITUDE-LONGITUDE CENTER COORDINATES

Image # Acq. date and time lat lon pass  orbit #
1 2015-07-09 10:56:46  71.07  56.58 A 006733
2 2015-07-09 20:39:09  70.90  52.61 A 006739
3 2015-07-11 10:40:15  72.79  59.57 D 006762
4 2015-07-11 12:17:05  77.71  72.49 A 006763
5 2015-07-11 12:18:05  75.52  78.13 A 006763
6 2015-07-16 10:47:30 7491  62.58 D 006835
7 2015-07-16 10:48:30  71.02  58.91 D 006835
8 2015-07-17 11:28:21  75.61  72.09 A 006850
9 2015-07-18 10:32:01 7049  57.04 D 006864
10 2015-07-20 10:15:38  69.15  52.17 D 006893
11 2015-07-26 11:03:56  75.74  64.35 D 006981
12 2015-07-27 10:07:30  71.01  54.92 D 006995
13 2015-07-27 11:44:38  75.86  67.96 A 006996
14 2015-07-28 10:47:30  74.74  59.96 D 007010

SAR backscatters from the sea surface. The data set can be
considered representative with respect to weather conditions in
Greenland waters. Sea ice was also present in several images.
The dual-polarized SAR data (with HH and HV polarization
combinations) were resampled to a pixel size of 50 m.

Due to the large spatial coverage of EW mode SAR images
(swath width >= 400 km) and our limited resources avail-
able for the manual identification of targets for validation,
the images were subsetted into smaller regions corresponding
to interesting sea ice-free and low sea ice concentration (SIC)
areas where the targets could more reliably be distinguished
by the ice analysts. Fig. 2 shows the locations of the SAR
frames and selected subregions (data windows) used in this
study.

Table I contains a list of the used SAR frames with date,
time, and central latitude/longitude, including the satellite pass
direction (A = Ascending or D = Descending orbit) and the
orbit number.
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Fig. 3.  Example of SentinellA SAR EW GRDM mode image window
in (a) HH polarization and (b) HV polarization. Targets can be seen as
bright spots in open-water (black) or sea ice areas (gray). This corresponds
to the SAR window number 3 in Fig. 2, cropped from the July 11, 2015
10:40:15 UTC image.

To exclude the high SIC areas from the iceberg detection,
we have used the daily ARTIST Sea Ice (ASI) algorithm SIC
data based on microwave radiometer provided by the Univer-
sity of Hamburg [46] in a 3.125-km grid resolution. We applied
the iceberg detection only in the areas of low SIC values with
SIC less than 30%. This, however, did not guarantee low SIC.
During summer, due to the sensitivity of the AMSR2 passive
microwave-based SIC estimation algorithm to surface melt,
the amount of sea ice in areas estimated to be <30% by the
ASI algorithm can still be significant. Consequently, regions
in SAR covered by sea ice or with sea clutter will increase
the difficulty of iceberg detection.

Fig. 3 shows an example of an SAR data window used in
this study, corresponding to the area number three in Fig. 2
where some sea ice and also sea clutter are present. The
gray areas in the right parts of the figure represent both sea
ice and sea clutter. Sea clutter and sea ice may be difficult
to distinguish if the sea ice consists of small particles. The
more compact gray entities in the upper right parts of the
figure are ice floes. In the figure, both HH and HV polarization
channels are shown. Targets (bright spots) are much easier
to find against the dark background than against the brighter
sea ice or clutter. There is significantly less clutter and
sea ice features visible in the HV than in HH polarization
channel.

For performance evaluation purposes, Finnish Meteorologi-
cal Institute (FMI) Ice Service (FIS) ice analysts were tasked
to identify icebergs within our study region and within a time
frame defined by the time difference between SAR and optical
(i.e., MODIS and Landsat-8) imagery. If a spatial overlap
between SAR and optical imagery was found and the temporal
difference was no more than two days, optical images were
also analyzed. The areas for manual detection were selected
so that they included interesting targets and SIC was less than
30%. A total of 2059 manually detected icebergs were used for
validating our CFAR method. The recognized icebergs were
often close to the shore.
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Fig. 4. Block diagram of the iceberg detection algorithm.

Usually, the HH-channel SAR image was clear enough
to detect the icebergs but often also HV polarization data
provided complementary information for the analysis. Com-
posite images combining SAR HH and HV channels into a
single image were successfully used in visual detection. In the
composite imagery, the benefits of both HH and HV could be
seen at the same time without switching between the images.
In most cases, the icebergs recognized in the optical images
could also easily be detected in the SAR imagery. Only in few
cases, icebergs were detected in the SAR imagery alone.

III. METHODOLOGY

A schematic flow diagram of the SnP-CFAR method is
presented in Fig. 4. The algorithm is explained in detail in
the following sections.

A. SAR Data Processing

For each SAR frame, the backscattering coefficient o
has been radiometrically calibrated based on the Sentinel-1
Product Specification [47], using the o( calibration lookup
table (LUT) values provided with the original Level-1 SAR
product. After calibration, an incidence angle correction was
applied (for details, see [48]). After the incidence angle correc-
tion, the images were Geo-rectified into Polar Stereographic
coordinate system using the polar stereographic projection
with the following parameters: WGS84 datum, reference lati-
tude of 90°, true scale latitude of 70°, and reference longitude
of —45°. The data were resampled into pixel spacing of
50 x 50 m, which approximately corresponds to the original
SAR pixel spacing. We also scaled and quantified the cali-
brated SAR backscattering coefficients to eight bits per pixel.
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The quantization is even such that —30 dB corresponds to
a pixel value of one and 0 dB to the pixel value of 255,
and values less than —30 dB are mapped to one and values
above 0 dB are mapped to 255. The pixel value zero is
reserved for the background, i.e., for the no-data or land
pixels. This is the FMI standard SAR processing for the Arctic
waters. The spatial resolution of the Sentinel-1 EW GRDM
mode SAR images in azimuth direction is 90.1 m, and in
range direction, it varies from 90.9 to 95.1 m, the actual
pixel spacing being half of the resolution. Our 50-m pixel
spacing (size) approximately corresponds to the original pixel
spacing, with only very slight undersampling. On the other
hand, oversampling does not have any significant effect on
the object detection, whereas interpolation effects may even
cause undesired smoothing along the target boundaries.

B. SAR Segmentation

We tested two different segmentation approaches
for the iceberg SAR imagery: the iterative conditional
modes (ICMs) [50] algorithm and Markov random fields
(MRFs) [51]-[53]. Both methods have been successfully
used in producing different SAR-derived sea ice products at
FMI, but they have not earlier been tested in the context of
iceberg detection. For iceberg detection, both the methods
gave similar results and neither of the methods clearly
outperformed the other, based on visual judgment. We chose
the ICM segmentation to be used in this study because it is
already in use in the operational FMI SAR processing chain
of the Baltic Sea ice service and in CMEMS Baltic Sea sea
ice products.

Before segmentation, an initial labeling of the SAR image
pixels is performed. Assuming that each whole SAR image
o data has a Gaussian mixture distribution, we perform an
initial labeling that uses a maximum number of 30 possible
different categories based on a Gaussian decomposition of
the distribution of the ¢® values. The number 30 repre-
sents a large enough number of categories to capture all
the present ice and open water classes, including possible
icebergs. In the beginning, the number of categories is set
to a given minimum number of categories (here 20) and the
Gaussian decomposition is extracted using the expectation—
maximization (EM) algorithm [54]. If the derived Gaussian
decomposition corresponds to the normalized image histogram
well enough, the number of categories (N, ) is retained and the
N, labels are assigned to the SAR pixels. If the correspondence
between the SAR histogram and the decomposition is not good
enough, the number of categories is increased iteratively until
the correspondence becomes good enough or the maximum
number of 30 allowed categories has been reached. After
stopping the iteration, the initial categories are assigned to
SAR pixels, i.e., labels from one to N.. Here, the coefficient
of determination (R?) has been used as a measure of the simi-
larity between the normalized ¢ histogram and the Gaussian
mixture defined by the N, Gaussians corresponding to the
pixel categories. A threshold of 0.95 for R? was applied here,
i.e., the stopping conditions for the iteration were R> > 0.95
or N, >= 30. After the decomposition, each pixel was
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TABLE 1I
DETECTION PARAMETERS USED BY GAMMA-CFAR (IN PIXELS EXCEPT FOR THE CFAR THRESHOLD)

kernel size  background area

guard area

target area  CFAR threshold

37x37 144 35x35 (1224) 1 10—7
TABLE III
DETECTION PARAMETERS USED BY SnP-CFAR
Rt Rg R T WSZ Nimin Nmaz Ts Te p Ry
1 5 1 10 21 20 30 150 5 0.01 11

initially labeled to belong to the most likely Gaussian of the
Gaussian decomposition (i.e., the Bayesian approach). After
this initialization, the ICM segmentation algorithm was applied
until convergence.

C. Iceberg Detection Algorithm

The first step of the SnP-CFAR algorithm is to locate
all the segments that have a higher average ¢ than their
background added by a small threshold value 7,. As the SAR
pixels representing the SAR backscattering are scaled into the
range 1-255, T, would also take a numeric value between
1 and 255. Here, we have used the value of 7. = 5. The
most important criterion for selecting 7, is to select a small
enough value to include all the potential iceberg segments. The
selected value could be smaller (> 1), and then, only more
iceberg candidates will be included in the CFAR detection.
Experimentally, the value of five, corresponding to 0.59 dB,
was found suitable to keep the amount of iceberg candidates
reasonable (to exclude most of the obvious speckle-induced
small bright spots). To reduce the computation time, an upper
bound of segment size Ty was applied to exclude the segments
larger than 150 pixels from the computation. Such large targets
are too large to be of interest for our algorithm. We did not
set a lower bound to the target size.

After the candidate segments have been identified, a non-
parametric CFAR is applied to each segment to define whether
it is a possible iceberg or not. First, the PDF is estimated
from the neighboring pixels of the candidate segment, using
a Gaussian kernel, within a fixed radius R, = 11 pixels
from the segment boundary. The iceberg candidate segment
pixels are excluded from the PDF estimation to ensure the
inclusion of only background pixels. This ensures that the PDF
is considering the local statistics, which can vary considerably
between backgrounds of different targets. The algorithm is not
especially sensitive to the selection of R, it just needs to be
large enough to guarantee enough background samples to be
able to reliably estimate the background PDF, and according
to our experience, values of R, < 5 may lead to unreliable
background PDF estimation in some cases.

The last step is to perform the CFAR thresholding to
define whether the target segment will be classified as an
iceberg or not. The CFAR threshold used here was defined
experimentally based on two data windows that were not
included in the test set.

The obvious advantage of the nonparametric CFAR is
that we do not need any assumptions of the background

distribution, such as the Gaussian, Gamma, or K -distribution,
and neither need to define the target and background com-
putation windows for CFAR computations, we only define a
large enough computation radius for the background and the
pixel included in the target, and the background area is then
selected automatically based on the preclassification made by
the initial iceberg candidate segment selection.

In the case of the DMI Gamma-CFAR, used as a reference
method here, the entire CFAR kernel is a 37 x 37 window
centered on the target or pixel of interest (Rr), with the
outer single-pixel edge (144 pixels) of the kernel serving as
the background band Rp (144 pixels in total) and the inner
35 x 35 window serving as the guard band Rg (1224 pixels
in total). This corresponds to a square-shaped window model
with Ry = 0.5, Rg 17, and R, = 1 (see Fig. 1). The
parameters used in SnP-CFAR and Gamma-CFAR detection
are listed in Tables II and III, respectively.

D. Utilization of Dual-Polarized Data

Dual-polarimetric data were utilized in this study in two
ways. The first approach was to perform the iceberg detection
for both channels separately. The channelwise binary detection
results were then combined by applying the logical OR oper-
ator. The second approach to utilize dual-polarized data was
first to compute HH and HV CCC, to which the SnP-CFAR
algorithm was then applied. This experiment demonstrates
the usefulness of the SAR CCC in target detection and its
confirmation.

The cross correlation C, between the two SAR polarization
channels (HH and HV) windows, here denoted by ¥ (HH) and
Z (HV), is

C.(k,l)=
&, 1 Noyo,
x D (ki + ) =) ZUk+id+ )= p) @)
i,jeY,Z

where k and [ refer to the row and column coordinates of the
image pixel, respectively, o, and u, are the mean and standard
deviation, respectively, of the window in Y, and o, and p, are
the mean and standard deviation, respectively, of the window
in Y. N is the number of pixels within the window. Spherical
windows with a radius of five pixels (R = 5) were used here
in the computation of C.. C, is also quantized to eight bits
per pixel such that the value C, = 0.0 corresponds to pixel
value of one and the value C, = 1.0 to the value 255. The pixel
value of zero is again reserved for the background. The iceberg
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detection using the CCC approach is also based on SnP-CFAR.
We used the ICM segmentation with the same parameters
as in our standard SAR segmentation in the detection based
on CCC.

E. Performance Measures

To evaluate the performance of the SnP-CFAR algorithm
against the operational DMI algorithm (D), we computed the
precision P,, also known as detection rate, which indicates
that the proportion of true targets detected out of all detected.
P,, is computed as
Py=t= TP )

Np  Tp+ Fp
where Tp or true positives is the number of targets detected
by the automated methods that are also manually defined
as icebergs, Fp or false positives is the number of detected
targets that are not manually defined as icebergs, and Np is
the total number of detected targets (i.e., Np = Tp + Fp).
Similarly, sensitivity, or recall, performance measure R,
is calculated as

T T
== ©)
Ngp  Tp+ Fy

where Ny is the number of icebergs according to the reference
data (i.e., here a number of targets manually detected) and Fy
is the number of false negatives or targets that are not detected
by the automated methods but are manually recognized to be
icebergs.

A measure describing the overall performance of an algo-
rithm, denoted by G, can then be computed as product between
P, and R,

Ry

G = PyRy. @)

To see how well SnP-CFAR compares with other CFAR
target detectors (ships or icebergs), we computed a quality
factor FOM as defined in [55]

B TP
" FP+TP+FN’

FOM considers both the detection rate and false alarm rate.
A higher value of FOM in general indicates a better detection
method.

FOM )

IV. EXPERIMENTAL RESULTS AND COMPARISON TO
MANUAL ICEBERG DETECTION

Here, we provide examples of the iceberg detection and
compare the performance of SnP-CFAR and the operational
DMI Gamma-CFAR applied to our test data set based on
the performance metrics presented in Section III-E. For each
detection method, we computed Tp, Fp, and Fy by intersect-
ing all of the detected targets with the true targets N from
the reference data of manually identified icebergs by FIS ice
analysts. These results are based on independent detection of
the HH and HV polarization channels that were then combined
using the logical OR operator.

Table IV shows the total number of 7p, Fy, and Fp for the
three detection methods, with the manually detected icebergs
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TABLE IV
ICEBERG DETECTION RESULTS

Method Ng TP FP FN
Gamma-CFAR 1805 750 254
SnP-CFAR 2059 1739 444 320
SnP-CFAR (CCC) 1361 668 698

Nr as a reference for the whole SAR data set. The number
of Tp targets is in agreement between the Gamma-CFAR and
SnP-CFAR, with a total of 1805 and 1739, correctly detected
targets. These numbers also follow the human recognition
results. The SnP-CFAR (CCC), however, correctly detected
only 1361 targets out of 2059, having missed more than a
quarter of the true number of targets. At the same time,
SnP-CFAR (CCC) shows a lower number of false alarms
(i.e., 668) than the Gamma-CFAR (i.e., 750), which means
that the method should still be considered as a candidate.
In contrast, SnP-CFAR seems to produce a reduced number
of false alarms, reduced almost to half when compared with
the other two methods.

On the other hand, Fp targets are not as uniformly distrib-
uted between the methods in different images as the Tp targets,
showing strong differences for some images (e.g., in image 5,
FPGamma-crar 1S the highest and FPg,p.cpar is the lowest; in
image 10, FPGamma-cear 1S the lowest and FPSnP—CFAR(CCC) is
the highest.

There are cases when the number of false alarms is up to
two or three times the number of the true targets (e.g., image
window 10). Some of these targets counted as false alarms can
in reality be true targets having a low contrast with respect to
the background and could not be recognized visually by the ice
analysts. It is possible that if a target is detected in both polar-
ization channels by CCC, then in reality, the target is likely to
be a true one. Unfortunately, without additional ground-truth
data, we cannot confirm this. Nonetheless, the reader is
reminded that visual inspection does not recognize all of the
icebergs in the area.

In Fig. 5, we show an example of icebergs detected within
an SAR window, in HH and HV polarization channels and the
corresponding CFAR detection results by the three methods
discussed previously. For the SnP-CFAR, we also show an
intermediate step, by highlighting the candidate segments
selected for detection. Interestingly, the number of candidate
segments is much higher than the actual number of targets
detected by SnP-CFAR. This can be explained by the low
segment mean value threshold (7;) applied, which has been
applied to guarantee the inclusion of all the potential iceberg
candidates.

For evaluation, the manually defined targets, which were
initially marked with one vector point each, were enlarged
by the morphological dilation operation with a 5 x 5 pixels
kernel, to ensure that at least one-pixel point would overlap
with the CFAR detected target. For larger targets, a larger
dilation window might be needed for the manually detected
targets that could otherwise be included in the false alarms
count, especially if the target has multiple intensity maxima
or it has broken ice floes in its vicinity.
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Gamma-CFAR

SnP-CFAR (CC)

®

Fig. 5. Example of icebergs seen in an SAR subimage covering both cluttered and clear background. This figure corresponds to the SAR image and window
number 10 in Fig. 2 and Table I. (a) Original HH polarization channel SAR image. (b) Original HV polarization channel SAR image. (¢) Gamma-CFAR
detection results by DMI. (d) Segments mean and the highlighted candidates for detection with CM. (e) SnP-CFAR detection results (TP, FN, and FP) based

on (d) SnP-CFAR. (f) SnP-CFAR detection results for the CCC data.

TABLE V
AVERAGE PER IMAGE DETECTION RESULTS

Method Nr TP FP FN | FOM
Gamma-CFAR 129 54 18 0.65
SnP-CFAR 147 124 32 23 0.72
SnP-CFAR (CCC) 97 48 50 0.52

Looking at the detection results computed as an average per
SAR image (see Table V), we notice that all three detection
methods yield similar results. The highest performance with
an FOM value of 0.72 is achieved by SnP-CFAR, followed
by Gamma-CFAR with FOM of 0.65 and SnP-CFAR (CCC)
with FOM of 0.52. This indicates that SnP-CFAR using
SAR segmentation as a first step in identifying the possible
iceberg candidates and applying the nonparametric CFAR is an
improvement over the Gamma-CFAR operational algorithm.

In contrast to FOM, the overall performance results rep-
resented by G, which considers the detection precision P,
and its recall R,,, are shown in Fig. 6. The chart shows P,,
R, and G for each image with respect to the reference data
number of icebergs (Ng).

The best overall score, G, was obtained by CCC SnP-CFAR
with 67% detection performance, while the lowest scores
of 49% and 50% were obtained by SnP-CFAR and Gamma-
CFAR, respectively. The SnP-CFAR again obtained the highest
detection rate of 82%, whereas the other two methods scored
a detection rate of 72%. The significant difference in perfor-
mance between the three detection methods is shown by the
recall values, with SnP-CFAR (CCC) reaching as high score

Detection performance (average per image)
1.00
0.90
0.80

0.70

Pm
X ERm
0.50 G
0.40

0.60

0.30
0.20
0.10

0.00

Gamma-CFAR SnP-CFAR SnP-CFAR (CC)

Fig. 6. Iceberg detection performance (average per image) for Gamma-CFAR
(DMI), SnP-CFAR based on individual polarization channels, and SnP
CFAR (CCC) based on CCC.

as 92%, followed by Gamma-CFAR with 65% and finally
SnP-CFAR with only 53%.

However, if we look at the P,, and R, scores independently,
the best P,, score was obtained by SnP-CFAR, reaching 82%,
followed by Gamma-CFAR and CCC, both with a score
of 72%.

The best R,, score was obtained by Gamma-CFAR, reach-
ing 91%, and the lowest R,, score was again obtained by
SnP-CFAR (CCC), with 70%, while SnP-CFAR scores were
just two percentage points lower than Gamma-CFAR.

These scores demonstrate the usability of the proposed
SnP-CFAR detection with SAR segmentation as a preprocess-
ing step. Moreover, the proposed method seems to have at least
a comparable performance with the operational Gamma-CFAR
algorithm.
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TABLE VI
SEGMENTWISE FEATURES

N | Feature Symbol Definition

1 Target area T Number of pixels belonging to the target.

2 Target length T, The diameter of the target bounding box.

3 Aspect ratio AR Ap=TL/W = Tf /T4, where W is the (estimated) width (W = A/L) of the target.

4 | HH contrast HH. 09, (target) - 0%, ; (background), where o is the average of the pixel values (i.e. scaled dB values).

5 | HV contrast HV, 0% (target) - 0%, (background), where o° is the average of the pixel values (i.e. scaled dB values).

6 Compactness-A Ca Indicates how many percents of the target pixels are within radius R from the center (of mass) of the
target. R is defined as a radius of a circle with a similar area as the target i.e. R = 1/ A/7.

7 Compactness-B Cp Indicates how many percents of the target pixels are within radius 2 * R from the center (of mass) of
the target. R is defined as a radius of a circle with a similar area as the target i.e. R = 1/ A/m.

8 Edge ratio Er The ratio of number of edge pixels in the target (i.e. number of pixels in whose 8-neighborhood exist
pixels belonging to other segments) and the object (segment) area. The value has been scaled (multiplied
by 100, i.e. is a percentage): ER = 100 x Ne/A.

9 Distance ratio Dgr The ratio of the maximum distance from the target center (of mass) within the target and R (R defined
as in 6 and 7). This ratio has been scaled (multiplied) by 100.

10 | SAR  polarization | HHHV, HV/HH

ratio

V. DISCUSSION

After the SnP-CFAR target identification, we have located
the likely iceberg candidates. For these segments, we com-
puted several SAR features describing their contrast with
respect to the background and their size and shape. All the
computed features are listed in Table VI.

The possibility to further improve the detection based on
segment properties was visually evaluated by plotting one fea-
ture against another. Of all the computed and studied features,
only the contrast and polarization ratio showed discrimination
capability between the correctly detected TP, missed FN,
and falsely detected FP targets. Other computed features can
possibly be used for classification of the targets (e.g., iceberg
type, discriminating ships, and icebergs). Fig. 7 shows the
scatter plot of the contrast in HH versus polarization ratio for
the TP, FN, and FP targets by the SnP-CFAR, for the whole
iceberg detection data set. Fig. 7 supports our assumptions
regarding the interpretation of the detection results. Most of
the false targets seem to have a contrast below 40, while their
polarization ratios can be as high as 60. This would indicate
that these targets are more difficult to recognize visually
and marked as true targets, due to their low contrast values.
Furthermore, most of the FN targets are concentrated in the
low contrast (< 30) and low polarization ratio (< 20) values
range. This result is more difficult to explain, but it is likely
that the human expertise and the complementary data used in
manual recognition (e.g., optical data) could make a difference
compared to the automatic detection algorithms.

Actually, also CCC magnitude for each segment could be
considered as a segment feature and used to confirm iceberg
detection. It can be used either independently as a detector of
its own or as a feature of the segments produced by segmenting
the SAR backscatter imagery. The optimal utilization of CCC
will still require further studying.

If we compare the SnP-CFAR detection performance with
the ship detection performance tested in [55], we observe a
significant difference between the two results. The FOM score
for this ship detection method has a value of 0.91 that is
higher than the corresponding SnP-CFAR iceberg detection
FOM score. However, the differences in FOM could be due to

contrast HH vs. pol. ratio - SnP-CFAR
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m{ « EN
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Fig. 7. Contrast (target/background) versus polarization ratio (HH/HV) for
the TP, FP, and FN targets detected with SnP-CFAR for the whole data set.

the different data set, likely acquired in different weather con-
ditions, and also due to the large amount of targets (i.e., 2059)
in our data set and the very small amount of targets (62) used
in the ship detection experiment. We conclude that it is very
difficult to fairly compare different detection methods based
on the performance statistics for different data sets.

VI. CONCLUSION

In this study, we demonstrated the potential of detecting
icebergs in single- or dual-polarized C-band SAR imagery over
low SIC or sea ice-free Greenland waters using the SnP-CFAR
approach. The performance of our method is comparable
with the operational DMI Gamma-CFAR algorithm. In many
cases, our method even outperforms the current operational
algorithm. Depending on the input data, the segmentation and
CFAR threshold parameters may still need fine-tuning for
actual operational use.

The SnP-CFAR algorithm uses the ICM image segmentation
as a first step in defining the pixel regions with a higher likeli-
hood to contain valid targets based on an experimentally spec-
ified segment average ¢ threshold value. The target detection
is then applied to segments using the nonparametric CFAR
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approach. This approach can be used for single-polarization
channel (HH or HV) or dual polarization by means of SAR
CCC, which combines the two channels data into one before
applying CFAR. The latter method will only indicate the
targets that appear to be highly correlated between the two
polarization channels. All of these targets will not neces-
sarily be recognized separately in the HH or HV channels.
However, this approach also reduces the likelihood of false
alarms. The proposed method showed the best detection FOM
score of 72% outperforming the operational Gamma-CFAR
algorithm by 7% points.

We believe that our results can be further improved by
either improving the quality of the input data by improved
preprocessing, such as noise floor correction, scalloping noise
removal, and speckle filtering, or fine-tuning our standard seg-
mentation by adjusting its parameters. Parameters could even
possibly be adjusted automatically in a data-driven manner.
Also, new additional heuristic rules based on intensive data
analysis (e.g., different segment mean threshold values for dif-
ferent types of segments) could be developed The SnP-CFAR
method could also be further improved, e.g., by utilizing
additional information regarding the background statistics of
the targets, such as using an adaptive probability threshold
value that changes for each target based on the nature of
the background distribution. However, such additional devel-
opment of the algorithm would require a vast data set of
SAR data with manually detected icebergs and preferably also
spatially and temporally coregistered auxiliary satellite data in
high resolution.

One of the advantages of our SnP-CFAR method is also that
it is not necessary to define any size restriction to iceberg size:
the segments can be small or large assuming that an iceberg
is captured as one segment. Naturally, there is a lower limit
of a detectable iceberg size due to the used SAR resolution or
resampling rate, in this study 50 m. An upper size limit for a
target was set here to 150 pixels. It can be set larger if needed.
Typically, the icebergs in the Greenland waters are smaller than
this threshold. However, for example, in the Antarctic waters,
also much larger icebergs can exist.

The DMI Gamma-CFAR algorithm, used as a reference
here, has been applied to the original uncalibrated SAR data.
These data have a slightly higher resolution than the data
produced by the FMI standard processing and may thus
improve detection of smaller icebergs in a few cases, but in
general, the difference between the original SAR resolution
and resolution of our resampled SAR data is not significant
for the target detection.

This study was performed using Sentinel-1 SAR data over
the Greenland water, but the method can be adapted to any
SAR or other EO data over any area where icebergs appear,
as the method does not make any assumptions on the signal
statistics, more specifically the shape of the PDF.

We also propose a more detailed evaluation of the detection
results based on the SAR content for future research. For
example, better definition of icebergs is needed in terms
of size and SAR backscattering coefficient. Also, the effect
of different SAR imagery preprocessing techniques, such as
speckle filtering and remapping of the gray tones of the
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quantized images, could be studied further, even though the
use of contextual segmentation already reduces the effect of
speckle significantly.

The method at a general level can also be applied to detect
icebergs within sea ice using either the SAR backscatter or
features derived from the SAR backscatter, e.g., as CCC or
backscatter with a contrast enhancement applied. The CFAR
threshold naturally needs to be adjusted accordingly. Applying
a (CFAR) thresholding to SAR backscattering does not provide
good enough iceberg detection results and additional research
will be required for developing a reliable operational SAR
algorithm to detect icebergs within sea ice.
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