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Abstract— Deep learning-based coastline detection algorithms
have begun to outshine traditional statistical methods in recent
years. However, they are usually trained only as single-purpose
models to either segment land and water or delineate the
coastline. In contrast to this, a human annotator will usually
keep a mental map of both segmentation and delineation when
performing manual coastline detection. To take into account this
task duality, we, therefore, devise a new model to unite these
two approaches in a deep learning model. By taking inspiration
from the main building blocks of a semantic segmentation
framework (UNet) and an edge detection framework (HED),
both tasks are combined in a natural way. Training is made
efficient by employing deep supervision on side predictions at
multiple resolutions. Finally, a hierarchical attention mechanism
is introduced to adaptively merge these multiscale predictions
into the final model output. The advantages of this approach over
other traditional and deep learning-based methods for coastline
detection are demonstrated on a data set of Sentinel-1 imagery
covering parts of the Antarctic coast, where coastline detection
is notoriously difficult. An implementation of our method is
available at https://github.com/khdlr/HED-UNet.

Index Terms— Antarctica, edge detection, glacier front, seman-
tic segmentation.

I. INTRODUCTION

CONTRARY to many other landmasses, Antarctica’s
coastline is fringed by the dynamic glacier and ice shelf

fronts continuously changing the coastline location by iceberg
calving, which is influenced by both seasonal variations and
global climate change. Tracking the advance and retreat of
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glacier and ice shelf fronts is an important factor for a better
understanding of glaciological processes. Furthermore, it is
essential to monitor the calving front retreat as it enhances
the sea-level contribution of the Antarctic ice sheet due to
decreased buttressing effects.

Overall, the length of the Antarctic coastline amounts to
around 40 000 km [1], which renders manual delineation
infeasible. Especially when observing the developments over
multiple time steps for continuous tracking, an automated
coastline extraction technique is needed. The recent advances
in algorithms and sensing platforms open up new possibili-
ties for the analysis of satellite imagery over large regions,
which can be observed in fields as diverse as land
cover mapping [2]–[4], bathymetry [5]–[7], urban applica-
tions [8]–[12], change detection [13]–[17], and cryosphere
research [18]–[22].

This kind of fine-grained analysis is possible because of the
availability of satellite imagery with revisit times in the order
of days. Regarding data sources, both optical and synthetic
aperture radar (SAR) sensors produce imagery suitable for the
delineation of the Antarctic coastline [23]. The use of optical
imagery in the Antarctic comes with some major drawbacks.
Apart from the usual problems with cloud cover, vision is
further impeded by polar night and sensor saturation due
to the high albedo of ice. To create continuous and gapless
observations, data from the Sentinel-1 mission was chosen as
the main imagery source. SAR data have often been found to
be helpful with the analysis of the cryosphere [24]–[33]. In our
case, it allows for near-real-time analysis at a high temporal
resolution.

Using SAR data for the task of coastline extraction also
imposes some challenges. The speckle present in SAR images
makes it harder to pinpoint the exact boundary between
land and sea. Furthermore, the backscatter characteristics
of glacial ice vary throughout the year, making it hard to
distinguish between, e.g. open sea and the higher ice sheet.
Therefore, a good model needs to pay additional attention
to contextual clues and cannot rely on local information
only.

Existing studies for delineating coastlines in general, as well
as the Antarctic one, often focus their predictions on either the
area of land and sea (sea–land segmentation) or the coastline
itself (coastline detection). However, to the human eye, the two
concepts of “area” and “edge” are closely intertwined, making
it hard to imagine one without the other. When conducting
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Fig. 1. In coastline detection, the vision tasks of segmentation and edge
detection are inseparable.

manual coastline delineation, a human annotator will, there-
fore, mentally segment the scene into sea and land while
searching for the edge between the two at the same time, as
shown in Fig. 1.

We hypothesize that taking into account this duality is
essential in closing the performance gap between human
annotators and automated approaches. In an attempt to more
closely model this process, we, thus, introduce a new solution
for coastline detection that draws upon the advantages of
both segmentation and edge detection approaches. Instead of
focusing a predictor on just one of these tasks, our network is
trained to jointly perform both tasks at the same time. Inspired
by neural architectures for semantic segmentation and edge
detection, the model uses an encoder–decoder architecture
with skip connections in order to predict segmentation masks
and edges at multiple resolutions.

Another observation that we make about coastline detec-
tion conducted by humans is the fact that not all areas
of a given scene need the same amount of attention to
detail. While it is of paramount importance that the coastal
regions are precisely mapped, areas further away from the
coastline do not receive much attention from a human anno-
tator. By introducing a merging scheme based on hierarchi-
cal attention, our model can work in the same way. The
intermediate multiresolution predictions are merged using this
mechanism to obtain a final output that combines fine-grained
low-level outputs with coarser high-level outputs in an efficient
way.

Overall, this work’s contributions are threefold.

1) Coastline detection is recognized as a dual task. To solve
this, a unified theory of segmentation and edge detection
is presented. From this, an architecture that imple-
ments both semantic segmentation and edge detection
is devised.

2) Apart from the narrow coastal strip, there are large
regions that require less detailed analysis. This is taken
into account by allowing the model to output predictions
at different resolution levels. Adding deep supervision
for these side outputs improves the training efficiency
and generalization performance of the model.

3) In order to dynamically blend between coarse and
high-resolution predictions, a hierarchical attention
mechanism is used, which takes into account the infor-
mation available at all levels.

The remainder of this article is organized as follows.
Section II gives a brief overview of current methods for coast-
line detection with a focus on polar regions, as well as existing

approaches for combining segmentation and edge detection.
Section III presents our proposed HED-UNet architecture.
In Section IV, the used data set is introduced. Furthermore,
the conducted experiments are explained. Finally, Section V
presents numerical results comparing our model to other
approaches and ablation studies that analyze the proposed
model’s elements in detail. Finally, it also includes a discussion
of the observed model performance.

II. RELATED WORK

This section will explore the state of the art for coastline
detection with a focus on Antarctica. Compared to the general
case, the detection of coastlines in the Antarctic requires
additional care, as many methods are easily distracted by
dynamic sea ice, such as icebergs or ice mélange. Locally,
these confounding features can look almost identical to land
ice and can, therefore, only be excluded by the additional use
of spatial context information.

There are numerous existing approaches for detecting coast-
lines from satellite imagery. For the biggest part, they can be
divided into the aforementioned two classes, differing in the
output of interest.

A. Sea–Land Segmentation

In the field of computer vision, semantic segmentation is a
central topic. Each pixel is assigned a class, which is to be
predicted by the model. This technique is frequently used in
remote sensing for various tasks. When the area of either sea
or land is of importance, semantic segmentation models are
used to distinguish between sea pixels and land pixels.

1) Statistical Methods: In quite a few studies, this has been
done by means of statistical analysis. For the Antarctic, the use
of a bimodal Gaussian mixture model was proposed, for which
parameters are estimated in order to derive an adaptive thresh-
olding scheme. This approach can be applied to both SAR and
optical imagery [1]. Similar dynamic thresholding schemes
have been applied to different sensors [34]. While easy to
implement and fast to evaluate, these methods completely
discard the spatial relationships of the pixels, which renders
them unfit to deal with the aforementioned issues.

Another localized way of segmenting images that have been
applied to sea–land segmentation is given by the watershed
algorithm [35]. It treats the pixel intensities as height values
and then simulates the resulting surface being flooded with
water. Finally, unsupervised clustering methods are helpful in
the analysis of complex coastlines [36]. These methods have
the benefit of being unsupervised, i.e., requiring no training
prior to the evaluation, but the lack of supervision also means
that the models cannot be taught to, e.g., ignore icebergs.

2) Deep Learning Methods: With the rise of deep learning
in remote sensing [37], convolutional neural networks (CNNs)
have been shown to provide superior performance for
many tasks, including the one of sea–land segmentation
[38]–[40]. Deep convolutional architectures, such as Seg-
Net [41] or UNet [42], leverage contextual information through
their encoder–decoder architectures. Thus, as they have more
context to base their decisions on, they have the potential



HEIDLER et al.: HED-UNet: COMBINED SEGMENTATION AND EDGE DETECTION FOR MONITORING THE ANTARCTIC COASTLINE 4300514

to produce more accurate results than pixelwise or shallow
texture-based classifiers. This is of great interest to Antarctic
coastline detection due to the aforementioned issues. Current
developments in computer vision show a trend toward more
complex models for semantic segmentation, which incorpo-
rates global information [43] or shape information [44].

Generally, these models require large amounts of labeled
data and take quite some time to train. However, they can
outperform the previously mentioned methods.

B. Coastline Detection

A closely related task is approached in coastline detection.
Instead of segmenting a scene into sea and land, the coastline
itself is of primary interest.

1) Edge Tracing: One class of edge detection methods
marks the boundaries in the image step by step. After some
filtering to highlight the edges, which can be done, e.g., using
the Roberts operator [45] or the Sobel operator [46], pixels that
are likely to lie on the edge are connected to form the entire
boundary. Regarding coastline detection, this approach has
been shown to work for SAR data when applying preprocess-
ing steps to account for the nature of the imagery [47]. They
can also be connected using a shortest-path algorithm [29]
or ridge tracing [48]. Yet, another approach comes from
exploiting detection duality. By the nature of the relationship
between sea, land, and the coastline, the coastline can be
derived from a sea–land segmentation by tracing the transitions
between the sea and land classes [49].

While relatively simple, these methods often have some
issues regarding robustness. When the tracing procedure takes
a wrong turn, it is hard for the algorithm to return to the true
boundary.

2) Contour Methods: Active contours, sometimes, also
called Snakes [50], are quite similar to the edge tracing
approach. Instead of the pixel-by-pixel approach, this class
of methods uses an initial curve that is iteratively deformed
to minimize an energy function. By choosing the right energy
function, this framework can be used to delineate coastlines.
For SAR imagery, active contours are able to find coastlines
when given a good initialization [51], [52]. These models are
sensitive to the provided initialization, meaning that they can
converge to local minima that do not represent the desired
edge.

3) Level Set Methods: Instead of working with an explicit
parameterization of the curve, these methods work with an
implicit representation given by a scalar field, in which the
zero set represents the boundary [53], [54]. Adaptations of
this method for SAR coastline detection use multiple level
set iterations to go from coarse to fine delineations [55] or
sophisticated preprocessing steps [56] to make the method
work for this particular type of imagery.

4) Deep Learning Methods: Only recently, approaches
based on deep learning have begun to outperform handcrafted
edge detection algorithms. Specialized architectures leverage
the framework of CNNs to derive features that predict the pres-
ence of edges [57]–[59]. Notably, the previously mentioned
Roberts and Sobel operators can be viewed as shallow CNNs
with just one layer and a convolutional filter size of 2 and 3,

respectively. Therefore, it is only natural that deeper CNNs
with more layers are able to outperform these hardcoded edge
detection operators.

C. Combining Semantic Segmentation and Edge Detection

A common problem with semantic segmentation models is
the blurriness near class boundaries. This likely stems from
the fact that the edges make up a minority of the pixels and
are, therefore, not well enough represented by the standard
pixelwise cross-entropy loss. Thus, the idea of augmenting
semantic segmentation approaches with edge information is
not a new one.

One way of making a segmentation model aware of edges in
the image is by adding an auxiliary loss term that encourages
the prediction of crisp edges. This has been shown to work
for sea–land segmentation [60].

Surprisingly, simply adding the edge detection task as
an auxiliary output for a segmentation model can improve
the segmentation results in quite a bit, even without further
changes to the model [61]. This approach can also improve
sea–land segmentation results in harbor areas [62].

To further improve blurry segmentations, edge masks can
be used as the basis for a spatial propagation of class labels.
In [63], a segmentation map is initialized using a segmentation
network, and at the same time, edges are predicted. These edge
masks are then used as the basis for recursive multidirectional
label propagation.

For aerial scene classification, the use of an edge detection
subnetwork before doing the segmentation has been shown
to be beneficial. The detected edge masks are then used as
additional input features for the segmentation model. This
approach improves the shape accuracy of the resulting seg-
mentation [64].

Contrary to these approaches, we develop a unified theory
of segmentation and edge detection. We then identify the
components that successful neural networks use to solve either
one of these tasks and, finally, devise a model that incorporates
the tools necessary to solve both tasks at the same time. The
underlying assumption is that both segmentation and edge
detection are of equivalent importance for detecting coastlines
in satellite imagery.

III. PROPOSED METHOD

Implementing the sea–land segmentation task via a UNet
segmentation model [42] has become a popular approach for
the automatic delineation of coastlines [38]–[40]. Also, in our
data set, this method yields good results on the majority of
the evaluated scenes [31]. However, oftentimes, the predictions
become inaccurate and blurry in areas close to the coastline.
As the precise location of the coastline is the central object of
our study.

On the other hand, edge detection models excel at delin-
eating the edges in the given images. However, an edge
delineation has no concept of “inside” and “outside” by itself,
so this output alone is insufficient for labeling sea and land.
Furthermore, edge detection models are easily fooled by inland
structures of similar appearance to the coastline, as well as
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icebergs near the coast. This implies the need for extensive
postprocessing and manual corrections.

To put our aforementioned hypotheses into practice, we now
introduce a hybrid model for simultaneous prediction of the
sea–land segmentation and edge detection of the coastline.
Following our observation that humans will usually take into
account both the edge information and the textural shape
information, we, therefore, propose a combined framework
that draws upon the advantages of both these approaches.
It takes inspiration from both UNet [42] and HED [57], as well
as related architectures by combining key ideas in a very
natural way. Therefore, we call our model HED-UNet.

A. Unifying Segmentation and Edge Detection

Regarding the deep learning formulation of the tasks, both
segmentation and edge detection are in their nature dense
prediction tasks, i.e., for each input pixel, an output label
needs to be predicted. In the case of segmentation, this is the
class label, such as “sea” or “land.” For edge detection, it is
a classification into the two classes “edge” and “no edge.”

This means that, in principle, a segmentation model can
be trained to perform edge detection, and vice versa. How-
ever, these models were designed for their respective tasks
only, meaning that the performance will be degraded when
applying them to a different task. In order to construct a
model that works well for both tasks, we will, therefore,
identify the components of successful architectures for both
tasks and find a way to incorporate them into a single multitask
model.

1) Segmentation Building Blocks: Some successful seman-
tic segmentation architectures employ the combination of an
encoder and a decoder [41], [42]. The encoder conducts a
series of downsampling steps to allow for the aggregation
of contextual information at a lower resolution. In turn,
the decoder then distributes this information to the individual
pixels through a series of upsampling steps.

In a more recent branch of semantic segmentation
approaches, the network architecture is divided into a back-
bone network, which calculates feature maps, and one or mul-
tiple prediction heads, which conduct the final classification
based on these feature maps [43], [44], [65].

The contextual aggregation capabilities of an
encoder–decoder framework are needed for this task,
as some regions can only be classified correctly by the use
of contextual clues. At the same time, the backbone-head
approach makes it easy to build models that tackle multiple
tasks. These considerations lead to the idea of implementing a
backbone network that follows the encoder–decoder structure.
This has been pioneered for the task of object detection
in the framework of feature pyramid networks [66]. For
our network, we will employ two task-specific prediction
heads after calculating a feature pyramid through an
encoder–decoder approach.

2) Edge Detection Building Blocks: On the other hand,
edge detection frameworks are optimized to provide sharp
edge delineations while, at the same time, keeping down
the number of false positives. This means that they need

Fig. 2. High-level structure of the proposed framework. First, the encoder
and the decoder calculate a pyramid of feature maps. Then, the task-specific
merging heads combine this information using the hierarchical attention
mechanism.

to combine the crisp edges predicted at a high resolution
with more robust, lower resolution features to reject false
positives from the former. Edge detection methods, therefore,
often try to strike a balance between predictions or feature
maps at different resolutions, which can be done with an
architecture that employs an encoder followed by a merging
block [57]–[59]. The encoder part is similar to the encoders
used in semantic segmentation models; it aggregates contex-
tual information by downsampling. The merging part, how-
ever, is a new block that combines the information from differ-
ent resolution levels after they have been upsampled to the full
resolution.

Looking back at the proposed feature pyramid backbone,
such a merging part fulfills the function of a prediction head.
This observation leads to the high-level network architecture,
as shown in Fig. 2. It is structured in such a way that it contains
the components for both segmentation and an edge detection
network. After this general structure of the network has been
fixed, the detailed layout for each one of these blocks will be
outlined in Section III-B.

3) Loss Function: In edge detection, the classes “edge” and
“no edge” are highly imbalanced. Therefore, we use an adap-
tively balancing modification of the binary cross-entropy loss,
as proposed in [57]. For a single image with a ground-truth
partition into positive pixels Y+ and negative pixels Y− and a
prediction p̂, it is given as

L( p̂)=−|Y−| ∑ j∈Y+ log p̂ j

|Y+ ∪ Y−| − |Y+| ∑ j∈Y− log(1 − p̂ j)

|Y+ ∪ Y−| . (1)

This loss function gives equal weight to the positive and
negative classes, no matter the ratio between the two class
sizes. Due to this property, it is fit not only for edge detection
but also for semantic segmentation as well. Therefore, it is
used as the loss function for both tasks.

B. Architecture Details

Regarding the model details, we start with the
encoder–decoder backbone. Conjecturing that the model
needs a large spatial context window to base its decisions
on, we use a feature pyramid with six resolution levels,
corresponding to five downsampling and upsampling steps.
In this pyramid, the finest feature map is at the full image
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Fig. 3. Architectural details of the proposed network. The full model contains two task-specific merging heads; for clarity, only the segmentation head is
shown here. The edge detection head follows the same structure.

resolution, and the coarsest one is at 1/32 resolution. The
number 6 was chosen to cover large enough receptive fields
needed for the task. Deepening the network even further
would lead to receptive fields that exceed the image tiles’
extents and did not bring further improvements in our
experiments. In the decoder part, the data flows are merged
by elementwise addition.

Inspired by the hierarchical nature of the HED architec-
ture [57], we adopt the scheme of predicting coarse repre-
sentations of the output from within deeper layers. A side
output for both segmentation and edge detection is added for
each feature map, for a total of six outputs. These multiscale
outputs are used in two different ways.

1) Deep Supervision: When building a deep feature pyra-
mid like here, there might not be much motivation for the
model to encode meaningful and informative features to the
deep, lowest resolution feature maps. In order to explicitly
provide this motivation, we train the model to be able to
predict the ground truth from each single feature map in the
pyramid.

This so-called deep supervision [67] is known to improve
the learning effectiveness of a neural network, as well as
its generalization capabilities. This is achieved by training
intermediate network outputs on the ground-truth data to
provide additional and more direct training feedback to the
earlier layers. In our case, an accordingly downsampled ver-
sion of the ground-truth segmentation is created for each
one of the multiresolution predictions, and the corresponding
edges are calculated. Then, these multiscale ground truths
are compared with the predictions to provide additional loss
terms. The resulting deep supervision encourages the network
to better capture larger structures and make use of the available
receptive field by encoding meaningful features in the deep
layers.

2) Multiscale Fusion: In the next step, these side outputs
become part of the merging heads that combine the inter-
mediate outputs into one full-resolution prediction. This is a
central point in the original HED architecture [57], so we also
implement it in the combined HED-UNet model. In this way,
the model has a way of combining fine-grained delineations

near the edges with the more robust high-level predictions
further away from the edge. The way of merging used in
HED is to combine the intermediate predictions using learned
weights. However, to further improve the merging perfor-
mance, we propose the following attention-based merging
mechanism.

C. Hierarchical Attention Merging Heads

The final element of the network architecture is the merg-
ing heads. In the edge detection frameworks introduced ear-
lier [57]–[59], this is done by featurewise concatenation,
followed by a 1×1 convolution to merge the information from
different levels. However, in different areas, different fusion
behaviors might be needed. In coastal areas, the model might
want to use predictions of the highest possible resolution in
order to accurately delineate the coastline. However, farther
away from the coast, the lower resolution levels can provide a
more general assessment of the scene and, thus, lead to better
classifications in these areas.

To allow for this adaptive fusion of the multiscale pre-
dictions that take into account the confidence at the dif-
ferent granularities, we, therefore, introduce a new fusion
procedure based on attention. This technique was ini-
tially explored in natural language processing as sequen-
tial attention among words and tokens [68] and later also
applied in computer vision as spatial attention within an
image [69].

Inspired by these works, we apply attention to merging mul-
tiscale predictions. Here, this mechanism allows the network
to focus on the features that it deems most useful for each
pixel of the current scene, instead of having fixed weights for
feature fusion. Thus, instead of sequential or spatial attention,
our attention block allows the model to attend to different
resolution levels. It works as follows.

For each prediction level, a weight map is created. The
weight maps are then upsampled to match the output resolution
and turned into a categorical probability map by applying
the softmax function over the concatenated resolution levels.
To obtain the final prediction, the dot product between the
predictions and the attention mask is calculated. This process
is visualized in Fig. 3.
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For a pyramid of feature maps Fk , the final prediction p̂ is,
thus, calculated as

p̂ =
∑

k

u
(

fk(Fk)
) · softmaxk

(
u
(
gk(Fk)

))
(2)

where u(·) denotes bilinear upsampling to the full output
resolution. The functions fk and gk denote the multilevel
prediction layers and the attention layers, respectively; both
are implemented as simple 1 × 1 convolutional layers.

This approach can be interpreted probabilistically as fol-
lows. The intermediate predictions fk(Fk) can be considered
to be maps of Bernoulli probabilities for the output classifica-
tion at different resolutions. Through the prediction process,
these probabilities are conditioned on the input imagery. The
original merging procedure with fixed weights corresponds
to a mixture model of these Bernoulli maps where the
mixture coefficients wk are learned and fixed. For an input
scene X , the predicted probabilities Y are, thus, approximated
as

P(Yi j | X) ≈
∑

k

wk P(Yi j | X, resolution = k). (3)

Contrary to that, the attention merging corresponds to a
mixture model where the mixture coefficients wki j are learned
to dynamically depend on the input as well, resulting in the
slightly different approximation

P(Yi j | X) ≈
∑

k

wki j (X) P(Yi j | X, resolution = k). (4)

Notationwise, this might seem like a small change. How-
ever, it leads to more flexibility in the resulting probabilistic
model, which implies the potential for better classifications.

From the probabilistic perspective, the model training cor-
responds to a simultaneous maximization of both the side
outputs’ likelihood and the likelihood of the full mixture under
the observed data.

IV. DATA SET AND EXPERIMENTAL SETUP

In order to validate the effectiveness of the suggested
improvements, we trained and validated several competing
methods and the proposed model on a data set of the Antarctic
coast.

A. Data Set

Our data set consists of 16 cropped Sentinel-1 GRD scenes
of Antarctica’s coastline taken between June 2017 and Decem-
ber 2018 in the sensor’s Extra Wide Swath acquisition mode.
The spatial distribution of these tiles can be seen in Fig. 4.
The data have a resolution of 40 m and dual polarization
with HH and HV channels. The cropped scenes have an
average size of 7870 × 6572 pixels (315 km × 263 km)
and a combined area of around 730 000 km2. All imageries
are processed in the Antarctic Polar Stereographic projection
(EPSG:3031) and converted to a decibel. On these scenes,
the coastline was manually annotated by experts in order to
provide a ground-truth sea–land segmentation and coastline
delineation.

Fig. 4. Spatial distribution of the scenes in the data set. Scenes marked
in green were used for model training; scenes marked in red were used for
validation purposes. The red area in the top left is the “Antarctic Peninsula”
validation site, while the bottom right red area is the “Wilkes Land” validation
site. For most locations, data from 2 or 3 different sensing dates were used to
allow for an assessment of each model’s temporal stability. Marked in yellow
is the footprint of the visualization tile in Fig. 7.

The scenes within the data set are clustered in five areas, out
of which two were selected as validation areas and completely
left them out of the training procedure. This leads to a split
of 11 training scenes and five validation scenes. The scenes
were all tiled into sections of 768 × 768 pixels with 50%
overlap between adjacent tiles to form the training and valida-
tion data sets, respectively. In order to improve generalization
performance, we employed eightfold data augmentation on the
training set. This augmentation technique processes a single
tile into the eight different versions that can be obtained
by horizontal or vertical mirroring, as well as rotating by
multiples of 90◦.

B. Evaluated Models

As competitors to our model, we evaluate the following
models to provide a baseline.

1) Traditional Methods:
a) Gaussian mixture: The sea–land segmentation method

presented in [1] applies dynamic thresholding based on a
bimodal mixture of Gaussians.

b) K-medians clustering: An unsupervised sea–land seg-
mentation method presented in [36] employs k-medians clus-
tering of the pixels in a scene on multiple scales.

c) Sobel edges: The coastline detection method presented
in [47] applies the Sobel filter, a spatial dilution process, and
then a Roberts edge filter.

d) Active contours: Active contours approach for coast-
line detection based on the Chan-Vese model [54].

2) Deep Learning:
a) HED: The edge detection model from [57].
b) UNet: The segmentation model presented in [42] is

known to work well for coastline detection [31].
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TABLE I

NUMERICAL RESULTS FOR THE EVALUATED MODELS

c) DeepUNet: A modification of the previous method
was developed for sea–land segmentation, as proposed in [39].

d) RDUNet: Another modification of UNet developed for
sea–land segmentation, which was proposed in [38].

e) HRNet + OCR: One of the current state-of-the-art
models for semantic segmentation in general computer
vision [43].

f) Gated-SCNN: It is another recent model for semantic
segmentation in general computer vision [44]. This one is
particularly interesting, as it also combines segmentation with
edge detection.

C. Training Details

The deep learning models were trained on the training
data set of Antarctic coastline scenes for 15 epochs on an
Nvidia V100 card with 32 GB of video memory. The model
weights were optimized by an Adam optimizer using the
hyperparameters suggested in [70], namely, a learning rate of
0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. Due to the large
size of the used tiles, the batch size was set to the low number
of four samples per batch.

V. RESULTS AND DISCUSSION

The improved performance from our method is quantified
using the withheld validation data set. To get informative
insights on the actual coastline detection performance, the met-
rics are calculated only for pixels within 2 km of the true
coastline. This way, a distortion of the metrics from noncoastal
areas can be avoided.

The two validation areas (Antarctic Peninsula and Wilkes
Land; see Fig. 4) are evaluated separately. While the Wilkes
Land area can be considered of average difficulty, the Antarctic
Peninsula seems to be a very tough location for all of the
evaluated models.

For the segmentation approaches, we evaluate the pixelwise
accuracy and the mean intersection-over-union metric for the
classes of water and land. For edge detection, we calculate
the edge F1 scores at optimal image scale (OIS) and optimal
data set scale (ODS). Finally, we calculate an approximate
deviation by averaging the distance to the ground-truth coast-
line over all predicted coastline pixels (“Deviation”). Table I
shows the numerical results obtained. The average distance

metric can be considered the most important one for this
task, as it estimates the overall error between the actual
coastline and the predicted coastline. Regarding segmentation
performance, the mIoU metric can be considered the primary
metric. In order to get a visual impression of some of the
models’ performance, Fig. 5 shows predictions for a selection
of validation tiles. The shown examples are ordered from what
we consider easy to hard samples for the models and showcase
some of the difficulties with the data set, such as sea ice and
confounding backscatter on the higher ice sheet.

A. Model Comparison

First, it is easy to see that the traditional models are not
really competitive on this data set. We ascribe this to the
repeatedly stated phenomena of icebergs and ice sheet regions
with difficult backscatter characteristics. As these models are
unsupervised, they simply do not have a way of learning how
to deal with such impediments.

Overall, the heterogeneity of the Antarctic coastline is
astounding. While the coastline is found pretty well by most
models in Wilkes Land, all models have trouble with the
scenes from the Antarctic Peninsula.

Among the deep learning-based models, UNet [42] imposes
a respectable baseline and even outperforms the more recent
models, such as HRNet+OCR [43] and Gated-SCNN [44],
in some of the evaluated metrics. Even though the latter also
has a side output for edge detection, we find that its edge
detection results fall short in comparison to HED [57] and
HED-UNet. A reason for this might be the lack of a pretrained
backbone network for Sentinel-1 data, which forced us to
randomly initialize the backbone and train it alongside the
rest of the network. Furthermore, this model was optimized
for the segmentation of scenes with many different classes and
small objects, which is needed for tasks, such as autonomous
driving. In our use case, however, there are only two classes
that are nearly equal in area, imposing a very different data
distribution.

The ultimate goal of this study is to delineate the coast-
line as accurately as possible. In the corresponding average
deviation metric, the proposed HED-UNet model outshines
the alternative approaches, especially in the Antarctic Penin-
sula validation area. This confirms our assumptions that,
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Fig. 5. Qualitative results comparing the evaluated models on unseen validation tiles. In order to provide an informative visualization, the visualized tiles
were selected to represent the full spectrum of (Top) easy to (Bottom) hard scenes within the validation set.
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TABLE II

NUMERICAL RESULTS FOR THE ABLATIONS

for this specific task, our considerations lead to increased
performance.

B. Network Depth and Deep Supervision

As a means of quantifying the improvements made to the
architecture, we evaluate versions of our model with only some
of the improvements applied. The results of this ablation study
are displayed in Table II.

For a fair comparison with UNet-based models, we eval-
uate the performance when only five resolution levels are
used instead of six, corresponding to four downsampling and
upsampling steps instead of five. While this setup performs
slightly worse than the full HED-UNet, it still outperforms
the baseline methods.

Regarding deep supervision, we can see that it is of para-
mount importance for edge detection performance. Without
it, the model is barely able to predict the presence of edges.
What is more, the coastline is often missed completely due
to this poor edge detection performance. On the other hand,
deep supervision does not seem to alter the performance of
the semantic segmentation task much. This is in line with the
original models that we took inspiration from. While the seg-
mentation model UNet [42] does not employ deep supervision,
the edge detection model HED [57] makes heavy use of it.

C. Merging Strategies

After adding the deep supervision, we evaluate different
merging strategies.

a) None: First, we evaluate a configuration where just the
last layer of the decoder is used for the predictions (denoted
“None”). This corresponds to the workings of a UNet [42]
model with two final prediction layers: one for each task.

b) Learned: Second, we evaluate the performance of the
learned merging strategy, as originally proposed in [57]. Here,
a prediction is computed for each resolution level in the
feature pyramid. These predictions are then upsampled to full
resolution and concatenated. After this, a 1 × 1 convolutional
layer with learned weights computes the final prediction from
the concatenated prediction stack.

c) Attention: The last strategy is the hierarchical attention
merging introduced in Section III-C, which does not rely on
fixed weights, such as the previous strategy, but computes the
merging weights dynamically for each pixel within each scene.

From our results, learned merging does not improve much
over no merging for segmentation and even performs a bit

worse for edge detection. The average deviation improves
quite a bit in Wilkes Land but worsens a bit on the Antarctic
Peninsula in return. We ascribe this to the large differences in
the validation areas. As the merging coefficients are fixed for
the “Learned” approach, this might hint at the fact that the
model learns coefficients that work well for Wilkes Land, but
less so for the Antarctic Peninsula.

This issue is overcome by our newly proposed attention
merging strategy, which can adapt to the different scenes.
It can learn to find good sets of merging coefficients for
both Wilkes Land and the Antarctic Peninsula even though
the optimal values for each one might be different.

Fig. 6 shows that the model indeed directs its attention
in an adaptive fashion as we conjectured. Overall, a mix
of all resolution levels is used to compute the final output.
On tiles that are completely covered by one of the two classes,
the attention shifts a bit toward the lower resolution levels,
as they tend to provide more robust predictions. For pixels on
the edge, the model heavily focuses on the highest available
resolution level, in order to arrive at accurate delineations in
these regions.

D. DEM Experiments

Furthermore, we look into including digital elevation data
from the TanDEM-X elevation model [71]. We conjecture that
this secondary data source can help the model better deject
misclassifications from icebergs or dry-snow facies of the
higher ice sheet, which have confounding SAR backscatter.

To discourage the model from directly reproducing the
coastline implied by the elevation model, we decided to
downsample the DEM’s resolution to 640 m. This resolu-
tion is coarse enough to not make a segmentation based
on the DEM alone competitive to the non-DEM models,
which has an average deviation of less than 300 m. Fur-
thermore, it allows for easy feature fusion, as it corre-
sponds to the resolution of the feature map at 1/16 of
the full resolution. Therefore, it is simply concatenated to
the feature map after the fourth downsampling step in the
encoder.

The results when including the DEM are displayed as the
last ablation in Table II. On the very hard scenes of the
Arctic Peninsula, this additional information helps the model
by a large margin, boosting the average deviation from 345 to
210 m. However, the story is different for Wilkes Land. Here,
the deviation worsens slightly, and the edge detection metrics
go down considerably.



4300514 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 6. Amount of attention spent on the different resolution levels. Each plot analyzes a specific class of pixels in the validation data set—from left to right:
Average over all pixels, average over pixels from edge-less tiles, and average over all edge pixels.

Fig. 7. Section of George V Coast with Cape Hudson in the bottom left, imagery mosaiced from Sentinel-1 takes in early 2019. This scene is both temporally
and spatially separated from the training and validation sets used. Overlaid in red is the coastline predicted by the HED-UNet model.

This is a strong indicator that the model is, indeed, overfit-
ting on the DEM to some extent. For example, in some highly
dynamic coastal regions, the model will be confused when the
DEM and SAR imagery are contradictory.

Thus, all in all, the inclusion of DEM data can be beneficial
but needs to be done very carefully to prevent the model from
overfitting to the DEM alone.

E. Limitations

Even though the newly proposed model outperforms the
baselines on nearly all validation scenes, there are still cases
where the results are not perfect. Most misclassifications can
be attributed to one of two failure modes, which we will now

briefly discuss. Visual examples for these failure modes can
be seen in Fig. 8.

1) Sea Ice: The large receptive field and multitask training
help alleviate the issue of wrongly classified sea ice. However,
very large icebergs and areas of ice mélange can still throw off
the proposed model. The first failure example displays such
an area where large clusters of sea ice confuse the model.

2) Missing Context: For areas close to the border of a
tile, the model sometimes does not have enough contextual
information to correctly classify them. This can be observed
in the second failure visualization, where a patch of sea ice
directly next to the tile border is wrongly classified as land.
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Fig. 8. Failure modes of the proposed model. (Top) Confusion from a very
large cluster of sea ice. (Bottom) Confusion due to missing context at the
border of the tile.

Overall, these failures do not occur often throughout the
data set and apply not only to the HED-UNet models but to
the other compared models as well. Especially, the first one
requires much human interpretation in a large spatial context,
which is difficult for a neural network to achieve without
general reasoning capabilities.

F. Effective Receptive Fields

Deep CNNs, such as the ones used in our experiments,
have very large theoretical receptive fields. It is conjectured
that, while long-range connections are theoretically possible
in these networks, networks will often ignore them in favor of
short-range connections.

To assess how much of the spatial context is actually used
by a CNN, its so-called effective receptive field (ERF) can be
estimated [72]. This is done by analyzing the expected gradient
magnitude of each input pixel with respect to a central output
pixel. For a CNN f and a sequence of input images Ik , one,
therefore, looks at the values of

E = 1

n

n∑
k=1

∣∣∇Ik f (Ik)i, j

∣∣ (5)

for a central output pixel (i, j). If, for an input pixel (x, y),
the value Ex,y is nonnegligible, then this pixel will influence
the output predictions at position (i, j). The spatial distribution
of these relevant pixels is then called the ERF.

As the gradient magnitude gives insight on how much
the prediction changes in response to a change in the input,
the ERF allows for a measurement of the spatial context used
by the model. A model with a larger ERF bases its decisions
on a larger spatial context than one with a small ERF.

We conjectured that, for the task of Antarctic coast-
line detection, a model needs to take a large context win-
dow into account. Indeed, there seems to be a correlation
between a larger ERF and better validation scores for this
task.

It can be observed that the UNet model is limited by its
theoretical receptive field. Its ERF is forced into an almost
quadratic shape because of this. The ERF of the Gated-SCNN

Fig. 9. ERFs of some tested models for the prediction of a central pixel,
visualized in image space. Theoretical receptive fields are outlined in green.
Note that the theoretical receptive fields of Gated-SCNN and HRNet+OCR
are larger than the used patch size of 768 × 768.

model is particularly interesting with its fractal-like shape.
We conjecture that this is due to the Atrous Spatial Pyramid
Pooling block used in the network architecture, which makes
heavy use of dilated convolutions.

Finally, the HRNet+OCR and HED-UNet models employ
a very large ERF, which, once more, supports our assumption
that a large receptive field is needed for coastline detection in
Antarctica.

VI. CONCLUSION

In this article, we introduced a model for simultaneous
segmentation and edge detection. The proposed HED-UNet
learns to exploit the synergies between the two tasks and,
thereby, manages to surpass both edge detection and seman-
tic segmentation baselines. By the use of deep supervision,
we encourage the model to encode meaningful features in
its deep layers, which allows for more general predictions.
Finally, the proposed attention merging heads allow for better
learning performance and more robust classifications.

Compared to approaching the task with a regular UNet,
the presented network architecture only requires a little addi-
tional computational cost. Most of the performance gains stem
from the adapted training procedure and a few additional
layers, which do not require many computational resources
compared to the layers already present.

While it is not a general-purpose model, we show that our
proposed improvements to the model are, indeed, beneficial
for the task of coastline detection. Visual and numerical
inspections of the results confirm our assumption that the
combination of the two tasks helps the model better grasp
the concept of a coastline.
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Our model can be applied to coastline detection tasks not
only in polar regions but to coastal regions worldwide. Further-
more, we are convinced that the approach taken by HED-UNet
will greatly benefit other tasks requiring an edge detection
approach in combination with semantic segmentation. Possible
applications include the mapping of building footprints, roads,
and bodies of water, such as lakes or rivers.
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