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Abstract— This study develops a deep learning (DL) model
to extract the ship size from Sentinel-1 synthetic aperture
radar (SAR) images, named SSENet. We employ a single
shot multibox detector (SSD)-based model to generate a rotat-
able bounding box (RBB) for the ship. We design a deep-
neural-network (DNN)-based regression model to estimate the
accurate ship size. The hybrid inputs to the DNN-based model
include the initial ship size and orientation angle obtained from
the RBB and the abstracted features extracted from the input
SAR image. We design a custom loss function named mean scaled
square error (MSSE) to optimize the DNN-based model. The
DNN-based model is concatenated with the SSD-based model to
form the integrated SSENet. We employ a subset of the Open-
SARShip, a data set dedicated to Sentinel-1 ship interpretation,
to train and test SSENet. The training/testing data set includes
1500/390 ship samples. Experiments show that SSENet is capable
of extracting the ship size from SAR images end to end. The
mean absolute errors (MAEs) are under 0.8 pixels, and their
length and width are 7.88 and 2.23 m, respectively. The hybrid
input significantly improves the model performance. The MSSE
reduces the MAE of length by nearly 1 m and increases the MAE
of width by 0.03m compared to the mean square error (MSE) loss
function. Compared with the well-performed gradient boosting
regression (GBR) model, SSENet reduces the MAE of length
by nearly 2 m (18.68%) and that of width by 0.06 m (2.51%).
SSENet shows robustness on different training/testing sets.

Index Terms— Custom loss function, deep learning (DL), deep
neural network (DNN) regression, ship size extraction, synthetic
aperture radar (SAR) image.

I. INTRODUCTION

SHIP detection is of great significance to marine activ-
ities, such as marine transportation, fishery manage-

ment, and maritime safety [1]. Spaceborne Synthetic Aperture
Radar (SAR) can monitor targets under all-day and all-weather

Manuscript received October 2, 2020; revised November 30, 2020 and
January 14, 2021; accepted February 26, 2021. Date of publication March 17,
2021; date of current version December 9, 2021. This work was supported
in part by the Strategic Priority Research Program of the Chinese Acad-
emy of Sciences under Grant XDA19060101, Grant XDB42040401, and
Grant XDA19090103; in part by the Key Research and Development Project
of Shandong Province under Grant 2019JZZY010102; in part by the Key
Deployment Project of Center for Ocean Mega-Science; in part by the
Chinese Academy of Sciences (CAS) under Grant COMS2019R02; in part
by the CAS Program under Grant Y9KY04101L; and in part by the China
Postdoctoral Science Foundation under Grant 2019M662452. (Corresponding
author: Xiaofeng Li.)

Yibin Ren and Xiaofeng Li are with the Key Laboratory of Ocean
Circulation and Waves, Institute of Oceanology, Chinese Academy of Sci-
ences, Qingdao 266071, China, and also with the Center for Ocean Mega-
Science, Chinese Academy of Sciences, Qingdao 266071, China (e-mail:
yibinren@qdio.ac.cn; xiaofeng.li@ieee.org).

Huan Xu is with the School of Geomatics and Marine Informa-
tion, Jiangsu Ocean University, Lianyungang 222005, China (e-mail:
2018224050@jou.edu.cn).

Digital Object Identifier 10.1109/TGRS.2021.3063216

conditions, making it one of the most critical marine sur-
veillance tools [2]. Ship detection from SAR images has
always been a hotspot in marine applications [3]–[6]. With the
advent of a new generation of satellites and fast-growing image
analysis technology, it is feasible to extract more detailed ship
information from SAR images in addition to its detection [7].
The ship’s length and width provide essential information for
ship classification and marine surveillance [8]. In most cases,
it is difficult to identify the ship’s type directly from the
SAR image, and the size information can provide useful help.
In addition, the elaborate geometric parameter estimation is
also meaningful to SAR imagery interpretation. With the rapid
increase in SAR data volume, an efficient and accurate ship
size extraction method will bring a new idea for SAR image
interpretation.

Generally, as metallic objects, ships can reflect the electro-
magnetic waves of SAR sensors much more strongly than the
surrounding water. Therefore, one can perceive most ships on
SAR images as bright backscattering intensity targets, charac-
terized by the highly normalized radar cross section (NRCS)
values. The geometric feature of the ship’s NRCS, such as
the length and width of the minimum bounding rectangle
(MBR), provides an initial size for estimating a ship’s ground
size. Meanwhile, the ship’s superstructure, the environment,
the sea–ship interaction, and the imaging system can influence
the NRCS from the ship [8]. These factors lead to a huge
gap between the initial size and the ground size. Therefore,
it is challenging to extract the ship size from SAR images
accurately.

In the literature, all SAR ship size detection algorithms
include three steps: 1) binarization, 2) initial size extraction,
and 3) accurate size estimation. The first procedure processes
the SAR image and divides the pixels into ship signatures and
nonship signatures. The second procedure extracts the initial
ship size based on the binary results, such as the MBR of the
ship signature. The third step estimates the accurate size based
on the initial ship size and other relevant factors. Stasolla and
Greidanus [9] employed the constant false alarm rate (CFAR)
to do the first step. The CFAR family is [10]–[12] widely used
in ship detection on SAR images to separate ship signature and
background. Furthermore, for the second step, they employed
the mathematical morphology method to refine the signature
to extract the MBR of the ship. They did not develop the
third step and adopted the MBR’s length and width as the
vessel’s estimated length and width. The method was tested
with 127 available ship samples from Sentinel-1 SAR images.
The mean absolute error (MAE) of length measurement is
30 m (relative error: 16%), and the MAE of width is 11 m
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(relative error: 37%). To further reduce the estimation error,
researchers took the initial ship size of the second step as the
initial information and performed the third step by statisti-
cal/machine learning (ML) methods, such as multiple linear
regression [13], the kernel-based method [7], and nonlinear
regression [8]. Among them, the nonlinear regression model is
a typical representation. In 2018, Li et al. [8] used OpenSAR-
Ship [14], a large-volume data set dedicated to Sentinel-1 ship
interpretation, to extract the ship’s length and width. First, they
performed the binarization step by a threshold-based method
and obtained the ship signature. Second, they refined the ship
signature by an image segmentation operation and obtained
the initial ship size. Third, they fused the dual-polarization
information and considered the initial ship size, the envi-
ronment information, sensor information, etc. to construct
a nonlinear regression model based on the gradient boost-
ing. The gradient boosting is an ensemble learning method,
allowing for the optimization of arbitrary differentiable loss
functions [15]. The nonlinear regression model established
an accurate mapping between the input factors and the ship
length and width. They validated their results against ships
longer than 80 m. Experiments showed that the MAEs of
length and width are 8.80 m (relative error: 4.66%) and 2.17 m
(relative error: 7.01%), respectively. As the pixel spacing of
the Sentinel-1 images in their database is 10 m, the model
made noticeable progress and pushed the error under one-pixel
spacing.

Overall, the accuracy of the extracted size is improved
continuously. With the rapid increase in satellite data, the
traditional three-step procedure shows an obvious limitation:
it is extremely complex. Each step’s error may accumulate
to the final extracted size. In most cases, the first two steps,
binarization and initial size extraction, need sophisticated
image operations to meet the following estimation step [8].
For the third step, selecting influence factors to construct
conventional ML-based regression models requires high-level
prior expert knowledge and manual engineering [16], which
is also a big challenge. The errors generated in each step will
be accumulated and ultimately affect the final size extraction
accuracy. Therefore, in the era of big data, it is feasible to
develop new methods to improve ship size extraction accuracy
and efficiency.

ML has gradually evolved into deep learning (DL) that
brings new ideas for addressing the above challenge [17].
A typical DL model consists of deep neural networks (DNNs),
accepts input data in a raw format, and automatically learns the
required features to achieve classification or prediction [18].
This process is known as end-to-end learning. Compared with
ML, DL significantly simplifies feature engineering and is suit-
able for modeling big data and complex relationships. In recent
years, DL has been successfully applied in oceanography,
geography, and remote sensing, which has helped people
gain further process understanding of Earth system science
problems [19]–[25].

A deep convolution neural network (CNN) is a particular
type of DNN composed of CNN layers. A CNN layer connects
to the previous layer’s local patches through convolution
kernels to extract local spatial features [26]. Since deep

CNN models have achieved great success in image clas-
sification [27], researchers proposed various ship detection
models based on typical deep CNN frameworks. Represen-
tations include a faster region-based convolutional network
(Faster-RCNN) [28], [29], a single shot multibox detector
(SSD) [30], [31], you only look once (YOLO) [32], and other
integrated detection frameworks [33], [34]. These DL-based
models achieved good performance in detecting ships from
SAR images, with an average precision (AP) over 80%, which
is an obvious improvement than the classical models. To fur-
ther improve the performance, researchers introduced a rotat-
able bounding box (RBB) to replace the traditional nonrotating
RBB in the DL detection frameworks. Liu et al. optimized
the traditional SSD [35] by rotating the prior box [36] and
developed DRBox. Compared with the Faster-RCNN and the
traditional SSD, DRBox improves the AP by 11.77% and
11.17% in detecting densely arranged ships, respectively. Fur-
thermore, DRBox-v2 [37] optimized DRBox by integrating the
feature pyramid network (FPN) [38] and focal loss (FL) [39].
Validation experiment based on the SAR ship detection data
set (SSDD) showed that the AP of DRBox-v2 is 9.36% and
6.4% higher than the rotation dense feature pyramid networks
(R-DFPNs) [40] and the DRBox, reaching 92.81%.

DL has become a mainstream solution for a typical ship
detection task. Compared with conventional models, DL-based
models significantly simplify feature engineering and achieve
end-to-end detections with higher accuracy and better robust-
ness. Inspired by this, we construct an end-to-end DL model
to replace the traditional three-step procedure for ship size
extraction from SAR images. There are two contributions to
our study. First, we develop an end-to-end DL-based model,
SSENet, to extract the ship size from SAR images. SSENet
employs DRBox-v2 to generate the ship’s RBB from the
SAR image and constructs a DNN-based regression model to
estimate the accurate ship size. To the best of our knowledge,
SSENet is the first end-to-end model for the ship size extrac-
tion of satellite images. Second, we design a hybrid input and a
loss function named mean scaled square error (MSSE) for the
DNN-based regression model, which significantly improves
ship size estimation accuracy.

The rest of this article is organized as follows. Section II
describes the data. Section III presents SSENet in detail.
In Section IV, experiments are conducted to evaluate the
effectiveness of SSENet. Section V discusses the performances
of different regression models. The factors that influence the
model performances are also discussed. Finally, Section VI
concludes this article.

II. DATA

A. OpenSARShip Database

The experimental data is a subset of the OpenSARShip. The
OpenSARShip (http://opensar.sjtu.edu.cn/) is a data set dedi-
cated to Sentinel-1 ship interpretation, providing 11 346 SAR
ship chips integrated with the automatic identification sys-
tem (AIS) messages. The Sentinel-1 images are the ground
range detected (GRD) products of an IW mode. The spatial
resolution is about 20 m, and the pixel spacing is 10 m.
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The preprocessing procedures, such as radiometric calibration
and terrain correction, are carried out by SNAP 3.0. Each
SAR chip contains one ship and is stored in a matrix,
which indicates the amplitude values of pixels for VH (ver-
tical emitting and horizontal receiving) and VV (vertical
emitting and vertical receiving) polarizations. Here, we use
1890 samples in the VV mode as the experimental data
set. Fig. 1(a), (d), (g), and (j) shows four types (cargo, tanker,
tug, and fishing) of ships as examples. The AIS messages
provide the ground size for each ship, which has been inte-
grated into the OpenSARShip and can be obtained directly.
Fig. 1(c), (f), (i), and (l) are the ground size corresponding
to Fig. 1(a), (d), (g), and (j). Fig. 1(m) and (n) shows the
distributions of length and width. The minimum and maxi-
mum values of length are 28 and 399 m, respectively. For
width, the minimum and maximum values are 6 and 65 m,
respectively. To match the requirement for the input size of
DRBox-v2, we expand the size of each ship chip to 300 ×
300 pixels. The SAR image values are scaled to [0, 255].

B. Labeling

The ground truths for training and testing SSENet include
two parts. The first one is the ground ship size, which can
be obtained directly from the OpenSARShip. The other one is
the ground RBB for each ship. An RBB is a rotated bounding
box surrounding the ship’s signature on the SAR image.
The DRBox-v2 is the first part of SSENet, which generates
the RBB of each ship. The ground RBB is used to train the
DRBox-v2 to generate an accurate RBB. As the OpenSARShip
has no RBB, we manually label the RBB for each ship by a
MATLAB tool shared in DRBox-v2 [37]. The rule for labeling
an RBB is to surround the ship’s signature on the SAR image
as precisely as possible. Fig. 1(b), (e), (h), and (k) shows the
labeled RBB of each ship. The angle range of labeled RBBs
is (0◦, 180◦). It is worth noting that there is an apparent gap
between the size of the labeled RBB and the ship’s ground
size [Fig. 1(b)/(c), (e)/(f), (h), and (k)]. Therefore, as stated
earlier, based on ship detection, ship size extraction still needs
a lot of challenging efforts.

III. METHOD

The general structure of SSENet includes three steps (see
Fig. 2): 1) generating RBBs, 2) estimating the ship size based
on a DNN-based regression model, and 3) calculating MSSE
loss and optimizing SSENet. The first step takes the SAR
chip as input and automatically detects the ship’s RBBs by
a deep CNN model, DRBox-V2. Then, the RBB with the
highest confidence is selected as the initial RBB. The second
step estimates the ship size by a DNN model. We construct a
hybrid input for the DNN model. The hybrid input consists
of two parts: 1) the initial ship parameters (the ship size
and orientation angle) obtained from the initial RBB and
2) the feature map extracted in the first step. The DNN model
then predicted width and length of the ship. The third step
calculates the MSSE loss of the estimated size. The MSSE
loss is summed with confidence, and the location losses are
calculated in the first step to form the final loss. All trainable

Fig. 1. Examples of SAR image chips of typical ships (cargo, tanker,
tug, and fishing) and their corresponding labeled RBB and ground size:
(a), (d), (g), and (j) SAR chips; (b), (e), (h), and (k) labeled RBBs and
their sizes; (c), (f), (i), and (l) ground sizes of the ships. (m) The length
distribution of the 1890 experimental samples. (n) The width distribution of
the 1890 experimental samples.

parameters of SSENet are optimized by minimizing the final
loss.

Overall, the idea of SSENet is consistent with the traditional
three-step ship size extraction method: obtaining the initial
ship size first (first two steps) and then estimating the accurate
ship size (the third step). Since the CNN has advantages
in image target detection and the DNN has advantages in
nonlinear regression, SSENet combines the two to achieve the
size extraction in an end-to-end way.

A. Generating RBBs

Generating RBBs for the ship is based on DRBox-v2 [37].
DRBox-v2 is a ship detection model based on the SSD.
It optimizes the traditional SSD by integrating the angle of
ship orientation into the SSD. It outputs the RBBs of ships.
The input is a 300 × 300 pixel SAR image. We employed
VGG16, which consists of five feature extraction modules,
to extract feature maps from the input image. The first feature
extraction module comprises two CNN layers, and the others
are composed of a max-pooling layer and two CNN layers.
Five feature maps named F1, F2, . . . . . . , F5 are generated.
The number of channels in the F1–F5 feature maps is 64, 128,
256, 512, and 512. As the kernel of four max-pooling layers
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Fig. 2. Detailed structure of SSENet. (a) Input SAR image. (b) Generating RBBs. (c) Estimating ship size based on a DNN model. (d) MSSE loss function.

is 2 × 2, the spatial size of F1–F5 feature maps is 300 × 300,
150 × 150, 75 × 75, 38 × 38, and 19 × 19 pixels, respectively.
The output modules perform convolution on feature maps and
generate output maps O f [Fig. 2(b)]. Softmax and sigmoid
functions [41] activate O f to create the confidence to be a
ship and the location offsets of each prior RBB. We use three
feature maps (F2–F4) to generate O f . FPN is employed to
fuse feature maps at different levels. The cross-entropy loss
and the smooth L1 loss [35] are used as the confidence loss
and location loss for DRBox-v2.

After the first step, a series of candidate RBBs with confi-
dence are obtained for a ship, which provides initial references
for the subsequent accurate size estimation.

B. Estimating Ship Size Based on a DNN Model

First, we construct a hybrid input for the DNN model.
The first part of the hybrid input is the initial ship size
and orientation angle obtained from the best RBB, which
provides primary and direct information for accurate ship
size regression. In Fig. 2(c), we select the RBB with the
highest confidence value from the candidate RBBs as the best
RBB. The length and width of the best RBB are employed
as the initial ship size. The orientation angle of the best
RBB is employed to calculate the ship orientation angle. The
orientation angle measures the ship orientation to the azimuth
direction, as shown in Fig. 3. It affects the ship signature on
the SAR image [8], [14]. It does not distinguish between the
bow and the stern of one ship, and its range is (−90◦, 90◦).

The other part of the hybrid input is the feature map
extracted from the input SAR image. The SAR image contains
the ship’s signature and the sea clutter under typical environ-
mental conditions, which provides potential information for
ship size estimation. The ship’s signature on the SAR image
reflects the ship’s state, moving or stationary. The moving
target point is often located in more than one resolution

Fig. 3. Illustration of the ship orientation. (a) Coordinate system.
(b) Example of a ship chip.

cell during the SAR integration time. The dispersion of the
backscattered energy causes the smearing and the degradation
of brightness in the SAR image. In addition, the signature of a
moving ship shows an azimuth displacement. The SAR system
receives the Doppler signal from the scatter in the azimuth
direction. The azimuth position of a stationary ship is consis-
tent with the azimuth position of the SAR platform. However,
there is an additional component to the Doppler shift for a
moving ship, resulting in an azimuthal displacement in the
ship signature. The environmental conditions during satellite
imaging, such as wind fronts, ocean waves, and rain cells,
affect the ship’s signature on the SAR image. Under the typical
conditions, the sea–ship interaction brings out a complex ship
motion in the real world and relatively different polarimetric
scattering mechanisms in the SAR signature. Several studies
analyzed the impacts of complex environmental conditions on
the ship’s signature [42]–[44]. The correlation between the
ship’s state, the environmental conditions, and the ship’s size
has been confirmed in reference [8]. The abstracted feature
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Fig. 4. Obtaining the initial ship size and orientation angle. (a) Five
parameters of the best RBB. (b) Decoded RBB. (c) Initial ship size and
orientation angle.

map extracted from the input SAR image contains the above
factors. Therefore, we transform the high-level feature map F5

in Fig. 2(b) as the other part of the hybrid input.
Second, we construct a DNN model to regress the accurate

ship size. The DNN model is composed of several fully
connected neural network (NN) layers. The hybrid input is
fed into the DNN model. After layer-by-layer transformation,
the DNN model output the ship’s accurate length and width.
In the following, we will detail the hybrid input and the DNN
regression model.

1) Constructing a Hybrid Input for the DNN Model: Con-
structing a hybrid input includes two procedures: 1) obtaining
the initial ship size and orientation angle and 2) transforming
feature map F5 as inputs.

1) Obtaining the initial ship size and orientation angle.
A series of candidate RBBs is generated by the
DRBox-v2. The RBB with the largest confidence
value is selected as the best RBB for the ship. The
best RBB output by the location regression of the
DRBox-v2 (SSD) is an encoded RBB, not a stan-
dard RBB [35], [37]. A standard RBB consists of
five parameters: center coordinates (x , y), length (l),
width (w), and orientation angle (θ). An encoded
RBB consists of the offsets of these five parameters:
�x , �y, �l, �w, and �θ [Fig. 4(a)]. To obtain the
standard ship size and orientation angle, we decode
the encoded RBB to a standard one by the decoding
transformation [37] [Fig. 4(b)]. The length (X L) and
width (XW ) of the decoded RBB will be input to the
DNN regression model. As the range of the RBB angle
is (0◦, 180◦), we add −90◦ to the angle to obtain
the initial ship orientation (θ− 90◦) [Fig. 4(c)]. Since
the effect of orientation is symmetric to the azimuth,
we input the cosine transformation of the ship orienta-
tion cos (θ− 90◦) into the DNN regression model, X O A

in Fig. 2(c).
2) Transforming feature map F5 as inputs. We transform

F5 as inputs for the DNN regression model. As stated
in Section iii-A, F5 contains 512 channels with a spatial
size of 19 × 19 pixels. If we flatten F5 into a 1-D
input vector and directly input this vector into the DNN
regression model, the input layer of the DNN model
contains 184 832 (512 × 19 × 19) elements. So, many
input elements will increase the complexity and training
difficulty of the fully connected DNN regression model.

Fig. 5. Transforming feature map F5 as inputs. (a) Compressing F5 in the
channel dimension. (b) Compressing F5 in the spatial dimension.

To reduce the dimension of the DNN’s input vector,
we compress F5 in the channel and spatial dimensions.
First, we transform F5 by a CNN layer whose convo-
lutional kernel size is 1 × 1, and the filter number is
N , obtaining F5S. The channel number of F5 is reduced
from 512 to N [Fig. 5(a)]. Second, we perform an S
size max-pooling operation on the new F5S and obtain
a new feature map F6 [Fig. 5(b)]. The spatial size of
F6 is �19/S�. We will discuss the N and S values in
the experimental section. Finally, we flatten F6 as a
1-D feature vector, concatenated with the initial width,
length, and orientation to form the DNN regression
model’s hybrid input.

2) Regressing Accurate Ship Size Based on a DNN Model:
The feature vector of F6 is concatenated with the size vector
to form the hybrid input for the DNN model [Fig. 2(c)]. Here,
the DNN model has three hidden NN layers, each containing
256 neurons. The number of hidden NN layers and the number
of neurons are obtained by the parameter-tuning experiment,
which will be detailed in Section IV-F. The activation function
of each layer is the rectified linear unit (ReLU). An output
layer includes two neurons stacked on the last hidden layer.
As we scaled the ship size values to 0-1, we employ a sigmoid
function to activate the output layer. Finally, the predicted
width Wp and the estimated length L p are obtained [Fig. 2(c)].

C. Calculating MSSE Loss and Optimizing SSENet

We design a new loss function, MSSE, as the loss function
of the DNN-based ship size regression model. For regression
tasks, mean square error (MSE) is a widely adopted loss
function. In (1), yi represents the ground truth, y �

i represents
the prediction value, and N means the number of values to be
predicted. It is easy to see that there is no correlation between
the loss value calculated by MSE and the ground truth value.
For example, a ship’s true length and width are 100 and 50 m,
respectively. The corresponding predicted length and width are
80 and 30 m. The MSE values for length and width are the
same, both at 400. They contribute equally to optimize the
model parameters. However, the length of a ship is usually
longer than its width and, therefore, draws more concerns than
width. To improve length estimation accuracy, we hope that
the length loss contributes more to optimize the model weights
than the width loss.

We propose the MSSE loss function. Unlike MSE, MSSE
integrates the ground truth values of ship length and width
into the classical MSE. The ground truth is used as a dynamic
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parameter to scale the square error. The definition of MSSE is
shown in (2); yi , y �

i , and N are the same as the definitions in
MSE. For the example mentioned in the previous paragraph,
the MSSE loss of length and width are 40 000 and 20 000,
respectively. The length loss is much greater than the width
loss, and the penalty on the model will be increased in
the training process. Therefore, the optimization procedure is
promoted,

MSE = 1

N

N∑
i=1

(
yi − y �

i

)2
(1)

MSSE = 1

N

N∑
i=1

yi · (
yi − y �

i

)2
(2)

Lsize = MSSEL + MSSEW. (3)

Replacing yi and y �
i in (2) by the ground length and the

predicted length of the ith ship sample, we calculate the loss
of length MSSEL. Similarly, replacing yi and y �

i by the ground
width and the predicted width, we calculate the loss of width
MSSEW. The size loss (Lsize) is the summation of MSSEL and
MSSEW (3).

In addition to Lsize, the confidence loss (Lconf) and the loca-
tion loss (L loca) are another two losses calculated in the first
step of detecting the ship’s RBB, Fig. 2(b). Lconf is the
cross-entropy loss, and L loca is the smooth L1 loss [37], [45].
These two losses are defined are as follows:

Lconf =
N∑

i=1

ci log c�
i + (1 − ci) log

(
1 − c�

i

)
(4)

L loca = 1

N

N∑
i

smoothL1(xi) =
{

0.5x2
i , if |x | < 1

|x | − 0.5, otherwise
(5)

where N is the number of predicted targets, ci is the ground
confidence of a sample, c�

i is the predicted confidence of a
sample, and xi is the element-wise difference between the
ground RBB and the predicted RBB. In the training procedure,
the three losses, Lsize, Lconf , and L loca, are added to form the
final loss that optimizes SSENet integrally.

IV. EXPERIMENTS

A. Experimental Setting

The experimental data is a subset of the OpenSARShip.
We randomly selected 1890 SAR chips from the OpenSAR-
Ship. Each SAR chip has one ship. We manually label the RBB
of each ship, as described in Section II. The corresponding
ground length and width of each ship are collected from the
AIS information in the OpenSARShip. The values of length
and width are scaled to 0-1. We randomly choose 1500 SAR
chips as the training set. The remaining 390 chips are the
testing set. The chip size is 300 × 300 pixels.

The model runs on a workstation with one GeForce RTX
2070 8 GB GPU. The model is coded in Python 3.6 with
the TensorFlow as the DL packages. The training batch size
is 6. The initial learning rate is 0.0002. During the training
process, the learning rate decreases by half every 5000 training
epochs. When Lsize < 0.001, then L loca < 0.005, and the
composite loss < 0.01, the training procedure stops. The

memory limitation of the GPU determines the batch size. Six
is the maximum value for the 8 GB GPU memory. The initial
learning rate and the training stop condition are set based on
experience and fine-tuned according to the training set’s loss
curve.

B. Evaluation Metrics

We employ the typical absolute and relative error metrics
to evaluate the model performance: MAE and mean absolute
percentage error (MAPE). Assuming yi is the ground truth,
y �

i is the prediction value, and N is the number of values to be
predicted, the definitions of MAE and MAPE are as follows:

MAE = 1

N

N∑
i=1

∣∣yi − y �
i

∣∣ (6)

MAPE(%) = 100

N

N∑
i=1

∣∣∣∣ yi − y �
i

yi

∣∣∣∣. (7)

C. Model Performance Test

As parameter tuning is an essential part of the DL mod-
els, we tune the hyperparameters of SSENet and pick up a
well-trained model. We will discuss the tuning procedure in
Section IV-F. We use the testing set to evaluate the perfor-
mance of the well-trained SSENet. SSENet outputs the scaled
lengths and widths of all 390 testing ships. We rescale the
outputs to normal values and calculate the metrics.

The results of SSENet are shown in Fig. 6(a) and (c). The
MAE of length is 7.88 m and that of width is 2.23 m. As the
pixel spacing is 10 m, the MAEs of the estimated length and
width are less than 0.8-pixel spacing. The MAPEs of estimated
length and width are 5.53% and 8.93%, respectively. As shown
in Fig. 6(a) and (c), the R2 score values of the estimated
length and width are 0.9773 and 0.9093, respectively. These
high values demonstrate that the estimated ship length/width
is highly consistent with the ground length/width. The R2

score of width being smaller than that of length showing
that the performance of width estimation is worse than that
of length. There are two reasons; first, the ship’s width is
much smaller than its length. The ship’s signature on the SAR
image is more ambiguous in width than in length [8]. This
phenomenon causes random errors in the width of the labeled
RBB, affecting the accuracy of the initial width obtained from
the first step of SSENet. Second, the MSSE loss function
drives the model to pay more attention to length than to width
during model training, making the model fit width less than
length.

To demonstrate the necessity of the DNN-based regression
model, we draw the relationship between the generated RBB’s
size and the ship’s ground size and the relationship between
the labeled RBB’s size and the ship’s ground size, as shown
in Fig. 6(b)/(e) and (c)/(f). The generated RBB is automatically
detected from the SAR images in the first stage of SSENet.
The labeled RBB is manually labeled for each ship based
on the principle presented in Section II-B. As shown in
Fig. 6(b)/(e) and (c)/(f), the MAE of length is nearly 40 m and
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Fig. 6. Relationships between the ground size and the estimated size of SSENet, the generated RBB’s size, and the labeled RBB’s size. (a)–(c) Relationships
between the ground length and SSENet’s length, the generated RBB’s length, and the labeled RBB’s length. (d)–(f) Relationships between the ground width
and SSENet’s width, the generated RBB’s width, and the labeled RBB’s width.

TABLE I

MODEL PERFORMANCE WITH DIFFERENT INPUTS

that of width is more than 50 m. The gap between the RBB’s
size (whether generated or manually labeled) and the ship’s
ground size is huge. By adding the DNN-based regression
model, the MAEs are pushed below 8 m, which demonstrated
that the DNN-based model as the second stage of SSENet is
necessary and effective.

In summary, SSENet can extract the ship size from SAR
images end to end and control the absolute error (AE) under
0.8-pixel spacing.

D. Effectiveness of the Hybrid Input

To test the effectiveness of the hybrid input for the
DNN-based regression model, we design an experiment to
test the performance of SSENet in different inputs (Table I).
SSENet1 uses the initial ship length and width as the input
without any feature map F6. SSENet2 uses the initial ship

length, ship width, and feature map as the input. SSENet3
uses the initial ship length, ship width, feature map, and
initial orientation as the hybrid input. The other settings are
unchanged.

The results are shown in Table I and Fig. 7. The MAE
and MAPE of SSENet1 are the largest ones among the three
models. By adding a feature map, SSENet2 obtains much
better results than SSENet1: reducing the MAE of length
by nearly 2 m. As shown in Fig. 7(a) and (b), the R2 of
SSENet2 is larger than that of SSENet1. The estimated lengths
of SSENet2 are more consistent with the true values than those
of SSENet1. This fact demonstrates that the input SAR image’s
feature map is an essential factor for ship size estimation.
As stated in Section III-B, the input SAR image contains the
ship’s signature and the sea clutter under typical environmen-
tal conditions. The ship’s signature reflects the ship’s state,
moving or stationary. The environmental conditions such as
wind fronts, ocean waves, and rain cells affect the sea-ship
interaction. All these factors are related to the ship’s size
and are encoded into the extracted feature map. Therefore,
using the feature map as an input improves the accuracy of
size estimation. Finally, by explicitly adding the ship’s initial
orientation as another input, the model performance is further
enhanced: the MAE of length is under 8 m, which is less
than 0.8-pixel spacing. Therefore, the proposed hybrid input
effectively contributes to an accurate estimation.
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Fig. 7. Model performances with different inputs. (a)–(c) Estimated lengths and their corresponding ground truths of SSENet1, SSENet2, and SSENet3.
(d)–(f) Estimated widths and their corresponding ground truths of SSENet1, SSENet2, and SSENet3.

TABLE II

MODEL PERFORMANCE WITH DIFFERENT LOSS FUNCTIONS

E. Effectiveness of MSSE Loss Function

We integrate the ground truths of the ship length and width
into the classical MSE to form the MSSE loss function. To test
the effectiveness of MSSE, we compare our model with the
model using MSE as the loss function. The model with MSE
as the loss function is named SSENetMSE. SSENetMSSE is the
proposed model that uses MSSE as the loss function. The
structure of the two models is the same except for the loss
function. The other experimental settings are unchanged.

The results are shown in Table II. For length, the MAE
and MAPE of SSENetMSSE show apparent advantages over
those of SSENetMSE. The length MAE of SSENetMSSE is
nearly 1 m less than that of SSENetMSE, an increase by 11%.
Since MSSE magnifies the loss of considerable value and
drives the model to focus more on length than on width
during training, SSENetMSSE performs slightly worse than
SSENetMSE. However, this drawback does not obscure the
advantages of MSSE. First, the difference between the two
widths is a negligible few centimeters. Second, length is a

more direct parameter to reflect the ship information compared
with width. The MSSE loss improves length estimation. Thus,
our MSSE loss is useful, especially for estimating the ship’s
length.

F. DL Model Tuning Hyperparameters

Since tuning hyperparameters is an essential procedure for
the DL model, we detail this process of four key parameters,
including the neuron and layer numbers of hidden NN layers,
the channel numbers (N), and the max-pooling size (S) of F6

in Section III-B.
1) Number of Neurons in the Hidden Layers: For the DNN

regression part, the number of neurons in each hidden NN
layer influences the model performance. We keep the depth
of DNN as five (three hidden NN layers, one input layer, and
one output layer) and change the neuron numbers of hidden
NN layers to 64, 128, 256, and 512. The other settings are
unchanged. The experimental result is shown in Fig. 8(a).
For both length and width, MAEs and MAPEs decrease first
and then increase as the number of neurons increases and
reach the minimum when the number of neurons is 256. This
result is consistent with typical NN models’ characteristics:
a small number of neurons do not fit the data adequately,
and too many neurons lead to overfitting. The width of the
MAPE fluctuates slightly and is minimal at 128 neurons. For
most ship sizes, width is much smaller than length, which
will magnify the MAPE and easily cause some fluctuations.
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Fig. 8. Model performances of tuning hyperparameters. (a) Number of neurons in hidden layers. (b) Number of hidden layers. (c) Channel numbers of F6
(N). (d) Pooling size of F6 (S).

Therefore, the appropriate number of neurons for the DNN
model is 256.

2) Number of Hidden Layers: This section tries to find the
best setting for the number of hidden layers in the DNN regres-
sion part. We fix the number of neurons in all hidden layers as
256 and set the number of hidden layers as one to four in step
one. The MAEs and MAPEs are shown in Fig. 8(b). When
there are three hidden layers, the MAE of length, MAPE of
length, and MAE of width obtain the minimum values: 7.88 m,
5.53%, and 2.23 m. When the number of layers is fewer than 3,
the model performs slightly worse. This phenomenon may
be due to the insufficient fitting ability of the shallow NN
models. Fewer hidden layers mean fewer parameters and fewer
nonlinear transformations (activation function).

For example, the one-hidden-layer model parameters are
about 130 000 (256 × 256 × 2) less than those of the
three-hidden-layer model. The nonlinear transformations of
the one-hidden-layer model are two times less than those
of the three-hidden-layer model. Therefore, the fitting ability
of one-hidden-layer-model is weaker than that of the three-
hidden-layer mode, and the same is true for the two-hidden-
layer-model. When the number of layers is 4, the performance

of the model is low. This low performance may due to the
gradient vanishing in a deeper model. The core idea of DL is to
increase the nonlinear transformation capability of a model by
employing hidden NN layers as many as possible, the so-called
a more in-depth model. However, too many hidden NN layers
lead to a gradient vanishing problem, making the model
difficult to be trained and reducing the model’s performance.
Therefore, the hidden layers of a DNN model cannot be
increased indefinitely.

3) Channel Numbers of F6 (N): In Section III-B, we com-
press F5 in channel dimension by a CNN layer with N 1 ×
1 filters. This experiment explores the effects of different N
values on the performance of the size estimation. We set the
max-pooling layer’s kernel size, defined as S in Section III-B,
to 4. Then, the spatial dimension of F6 is 5 × 5. The other
settings are unchanged. The results are shown in Fig. 8(c). For
length estimation, the model does not perform very well when
N is 1 because the MAE is 9.21 m. When N has other values,
the estimation errors do not differ much, reaching a minimum
of 7.88 m when N is 3. For width estimation, different N
values show little impact on MAEs. Therefore, we set the
value of N to 3 in our proposed model.
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TABLE III

APPROPRIATE VALUES OF FOUR HYPERPARAMETERS

4) Pooling Size of F6 (S): In Section III-B, we compress F5

in spatial dimension by a max-pooling layer with S × S filters.
This experiment explores the effects of different S values on
the performance of the size estimation. We fix the channel
numbers (N) to 3 and change S from 1 to 5 in step 1. As the
spatial size of F5 is 19 × 19, the spatial dimension of F6

can be calculated by �19/S�. Therefore, the spatial dimension
of F6 corresponding to filters with sizes 1, 2, 3, 4, and 5 is
19 × 19, 10 × 10, 7 × 7, 5 × 5, and 4 × 4. The results are
shown in Fig. 8(d). For length estimation, the MAE of length
fluctuates slightly with different values of S and is minimum
when S is 4, which is 7.88 m. The MAE of width changes very
little. Therefore, we set the value of S as 4 in our proposed
model.

Finally, the appropriate values of four hyperparameters are
shown in Table III.

V. DISCUSSIONS

A. ML Versus DL in Practical Ship Size Estimation?

The accurate ship size regression part in the proposed model
is a DNN model. We chose three typical ML models—gradient
boosting regression (GBR) [46], support vector regression
(SVR) [47], and linear regression (LR) [48]—and discuss their
performances on our experimental data. GBR and SVR are
two typical nonlinear models that are adopted by existing ship
size extraction models in references [8] and [7]. LR is a basic
linear model used in reference [13]. Because these three ML
models cannot be integrated with the SSD to form an end-
to-end model, we manually labeled the RBB of each ship as
the initial ship length, width, and ship orientation and inputted
them into three ML models. The training set and testing are
unchanged. We tune the parameters of GBR, SVR, and LR and
record their results with minimum MAEs. The DNN model is
the one integrated into the proposed DL model.

The results are shown in Table IV, with our DL model
results in the last row for reference. For length estimation,
GBR obtains the minimum MAE, that is, 9.69 m. For width
estimation, GBR also performs the best. LR, SVR, and DNN
perform worse than GBR.

The GBR works the best. GBR is a typical ensemble
learning model that achieves better results than a single learner
by training and combining multiple learners. GBR has been
proved to be the right choice in the three-stage ship size
estimation procedure [8]. However, since GBR is an ML model
based on decision trees, it cannot automatically extract features
from input SAR images and integrally perform the traditional
three steps. It is also not possible to integrate GBR with
a DL-based ship detection model, such as DRBox-v2. The
premise of using GBR is that we need to accurately extract

TABLE IV

MAE AND MAPE ± CONFIDENCE INTERVAL (CI) OF DIFFERENT MODELS

the RBB of the ship by binarization and image operation,
which is a great challenge, especially in the era of big data.
Practically, GBR is unable to achieve an end-to-end size
extraction: inputting the SAR image and outputting the ship
size.

Table IV shows that the DNN model does not perform well.
However, the advantage is that we can integrate a DNN model
with any DL-based ship detection model based on CNN or
NN to achieve an end-to-end size extraction from the SAR
image. Compared with the traditional three-stage method, all
trainable parameters in the DL model are globally optimized.
The feature maps automatically extracted by the DL detection
model can be input into the DNN regression model to further
improve ship size’s extraction accuracy. As shown in Table IV,
compared with the GBR model, our SSENet reduces the MAE
of length by nearly 2 m, that is, by about 18.68%. Therefore,
we design a DNN model for accurate ship size regression.

B. Sources of the Errors?

This section analyzes the estimation errors in detail and
tries to find out what causes large errors. Based on existing
studies [8], [14], we mainly analyze the relationship between
MAE error and ship orientation and travel speed.

1) Ship Orientation: In Fig. 9, we display the trend of
errors with respect to the orientation angle. The orientation
angles are ground values obtained from AIS. Fig. 9(a) and
(c) is the results of the model without orientation as an input
parameter (SSENet2 in Table I). Fig. 9(b) and (d) is the
results of the model with orientation as an input parameter
(SSENet3 in Table I). For both models, the error varies with
the ship orientation variation. The errors are higher when the
orientation angles are closer to 0◦ (azimuth direction) in the
range of (−45◦, 45◦). This phenomenon is mainly caused
by the ship motion and the unequal resolution after image
formation (5 m × 20 m for range and azimuth directions,
respectively; the lower resolution enlarges the errors in the
azimuth direction) [8]. If the ship moves in a direction
consistent with the azimuthal direction, the azimuth direction’s
speed component is large. The large speed component leads to
greater smearing of ship signature in the SAR image, which
increases the estimation error.

By comparing Fig. 9(a) and (b) with Fig. 9(c) and (d),
we find that when we add the initial orientation angle (cos θ)
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Fig. 9. Trend of errors with respect to the orientation angle. (a) Length error of the model without cos θ . (b) Length error of the model width cos θ system.
(c) Width error of the model without cos θ . (d) Width error of the model without cos θ .

into the DNN model as an input, although the overall trend
does not change, the error in most angle intervals is reduced.
This result further verifies the validity of adding the initial
orientation angle as an input in the DNN regression model.

2) Ship Speed: Fig. 10 shows the trend of errors in the ship’s
speed. As the SAR images of the OpenSARShip are mainly
from ports, about 83% of the ships are still. Fig. 10(a) and (b)
shows that the MAEs of length and width in the range of
(0, 1) knot (1852 km/h) are small. The error fluctuates as
the ship speed increases. When the speed is greater than
15 kn (27 780 km/h), the MAEs of length and width increase
significantly, which are 19.04 and 4.71 m, respectively, far
greater than the errors of other speed intervals. Thus, when
the ship’s speed is greater than 15 kn (27 780 km/h), the AE
in size estimation significantly increases. However, unlike the
ship’s initial length, width, and orientation, we cannot obtain
the reliable ship speed from its signature on the SAR image.
One may get ship speed from its wake features in the SAR
image [49]. However, systematically obtaining ship speed from

SAR images under different environmental conditions still
needs further research.

3) Ship Size: Fig. 11 shows the absolute and relative errors
of each predicted size to the ground ship size. The AE of a
predicted size is calculated by setting N in MAE as 1. The
relative error is the percentage error (PE), which is obtained by
setting N in MAPE as 1. As shown in Fig. 11(a) and (c), there
are no apparent dependencies between the AE of the predicted
size and the ground size. The PE goes down with the increase
in the ground size see [Fig. 11(b) and (d)]. This phenomenon
is easy to understand because an increase in the ground value
leads to an increase in the PE denominator, resulting in a
decrease in the PE. Therefore, the ship size is not a source of
errors.

C. Robustness

To explore the robustness of SSENet, we test SSENet by the
leave-one-out strategy. There are 1890 samples. We construct
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Fig. 10. Trend of errors with respect to the travel velocity. (a) Trend of
length error. (b) Trend of width error.

TABLE V

PERFORMANCES ON DIFFERENT TESTING SETS

four testing sets named Data1, Data2, Data3, and Data4. Each
testing set contains 390 samples, and the samples between
different test sets do not overlap. Each time, we selected
one of the four testing sets as the testing samples and the
remaining 1500 samples as the training set. Data1 is the testing
set we used to evaluate the model performance and discuss the
model’s errors in Sections IV and V-A and V-B. The testing
results are shown in Table V. For length, the MAEs of the
three testing sets (Data1, Data3, and Data4) are less than 8 m

Fig. 11. Distribution of absolute and relative errors with respect to the ship
size. (a) Absolute errors of length (b) Relative errors (percentage error) of
length. (c) Absolute errors of width. (d) Relative errors (percentage error) of
width.

(0.8-pixel), and the mean MAE of four testing sets is 7.96 m.
For width, the MAEs of all testing sets are under 2.30 m, and
the mean MAE is 2.10 m. Therefore, SSENet shows robustness
on different training/testing sets.

VI. CONCLUSION

This study proposes an end-to-end DL model, SSENet,
to extract the ship size from SAR images. We employ
an SSD-based model, DRBox-v2, to extract high-level fea-
tures and generate an RBB of the ship from the input
SAR image. Based on the extracted features, we design a
DNN-based regression model to estimate the accurate ship
size. The DNN-based regression model is concatenated with
the SSD-based model to form SSENet. We construct a hybrid
input for the DNN-based regression model. The hybrid input
includes the initial ship size and orientation angle obtained
from the RBB and the high-level features extracted from the
input SAR image. To characterize length and width of a
ship accurately, we design a custom loss function MSSE to
optimize the DNN model. SSENet is trained and validated
by the OpenSARShip, a data set dedicated to Sentinel-1 ship
interpretation. Experiments show that: 1) SSENet is capable of
extracting ship size from SAR images end to end and pushes
the estimation error MAE under 0.8-pixel, 7.88 m in length and
2.23 m in width; 2) compared with the single input, the hybrid
input significantly reduces the estimation errors, about 2 m in
length and 0.4 m in width; 3) the MSSE reduces the MAE of
length by nearly 1 m and increases the MAE of width 0.03 m
compared to the classical MSE loss function; 4) compared with
the typical traditional ML model GBR, SSENet simplifies the
extraction procedure and reduces the MAE of length by nearly
2 m (18.68%) and the MAE of width by 0.06 m (2.51%),
showing advantages of the end-to-end learning; and 5) SSENet
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shows robustness on four different training/testing sets, with
a mean MAE of length 7.96 m and a mean MAE of width
2.10 m.

As the ship orientation and travel speed are two main
factors impacting the accuracy of size estimation, in the future,
we will explore how to optimize the model to eliminate the
influence of these two factors. Based on the extracted size,
we will also attempt to develop a DL model to identify ship
types end to end from SAR images. To test the model’s
adaptability to different SAR sensors, we will try to build more
SAR ship data sets and make some quantitative evaluations.
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