
8288 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 10, OCTOBER 2021

Disaster Intensity-Based Selection of Training
Samples for Remote Sensing Building

Damage Classification
Luis Moya , Christian Geiß , Member, IEEE, Masakazu Hashimoto, Erick Mas ,

Shunichi Koshimura , and Günter Strunz

Abstract— Previous applications of machine learning in remote
sensing for the identification of damaged buildings in the after-
math of a large-scale disaster have been successful. However,
standard methods do not consider the complexity and costs of
compiling a training data set after a large-scale disaster. In this
article, we study disaster events in which the intensity can be
modeled via numerical simulation and/or instrumentation. For
such cases, two fully automatic procedures for the detection of
severely damaged buildings are introduced. The fundamental
assumption is that samples that are located in areas with
low disaster intensity mainly represent nondamaged buildings.
Furthermore, areas with moderate to strong disaster intensities
likely contain damaged and nondamaged buildings. Under this
assumption, a procedure that is based on the automatic selection
of training samples for learning and calibrating the standard sup-
port vector machine classifier is utilized. The second procedure
is based on the use of two regularization parameters to define the
support vectors. These frameworks avoid the collection of labeled
building samples via field surveys and/or visual inspection of
optical images, which requires a significant amount of time. The
performance of the proposed method is evaluated via application
to three real cases: the 2011 Tohoku-Oki earthquake–tsunami,
the 2016 Kumamoto earthquake, and the 2018 Okayama floods.
The resulted accuracy ranges between 0.85 and 0.89, and thus,
it shows that the result can be used for the rapid allocation of
affected buildings.
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I. INTRODUCTION

MACHINE learning has become a dominant data process-
ing paradigm for the extraction of information from

remote sensing data. The underlying strategy is to establish
a model from limited but properly encoded prior knowl-
edge (i.e., training samples) to assign a thematic label (e.g.,
a damage state in the application context of this article) to
an instance under analysis (e.g., a building). Such methods
are especially useful if explicit modeling based on, e.g.,
mechanical models, is too complex. At the same time, such
approaches require both a sufficient amount of prior knowl-
edge and viable descriptors to characterize the instances under
analysis in order to achieve high predictive accuracy. However,
many applications suffer from the unavailability of a sufficient
number of training samples. In numerous cases, gathering
training samples can become immensely expensive and time-
consuming. Under these circumstances, various approaches
have been proposed for alleviating the scarceness of training
samples. For instance, multiobjective-based sparse represen-
tation classifiers [1], generation of virtual samples [2], and
active learning methods [3]–[5] have been adopted in previous
studies. Other approaches aim at compiling a training set
in a fully automated manner from specified input data. The
use of top-of-atmosphere reflectance to identify samples of
forest areas [6] and fusion of multisource geodata [7] are such
examples.

In the explicit application context of this work, studies that
aim to extract natural hazard-induced damage levels of the
built environment have extensively deployed machine learn-
ing algorithms in recent years. Supervised machine learning
classifiers have shown high performance in terms of accuracy
in disaster events, such as the 2010 Haiti earthquake [8]–[10],
the 2011 Tohoku-Oki earthquake–tsunami [11]–[14], the 2016
Kumamoto earthquake [15], and the 2018 Sulawesi, Indonesia
earthquake–tsunami [16], [17]. However, a careful reader may
realize that the training data were provided after more than
a month for the 2010 event [18], after four months for the
2011 event [19], after two months for the 2016 event [20],
and after one week for the 2018 event [21]. Note that the
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last event’s training data were sooner than others because it
was based on visual interpretation of high-resolution optical
imagery. However, it was later confirmed it contained several
misclassifications [17], [22].

The necessary logistics for conducting a field survey directly
after a major natural disaster and the subsequent digitization
of the data are expensive and time-consuming. Furthermore,
in most cases, avoidance of human exposure to hazardous
areas is recommended. In the context of disaster mitigation,
damage mapping is a race against the clock. The faster a
satisfactory estimate is provided, the faster the first aid can be
sent and the higher the chances that people who are trapped
in collapsed buildings will survive [23]. As described earlier,
a critical issue of the application of machine learning for
damage mapping using remote sensing data is the lack of
training data. Among the potential solutions is the develop-
ment of a global network by building upon crowdsourcing
for rapid damage assessment [24]. Another potential solution
is to transfer training data that have been collected from
one disaster event to another disaster event. To realize this
objective, the database must be sufficiently large to consider
various sensors, seasonal variations, various building types
and infrastructural typologies, and heterogeneous types of
disasters. Furthermore, not all disasters are recorded by remote
sensing data, and training data are available for even fewer
events. There are, however, recent studies for a specific type
of disaster [25], [26].

There is another alternative for exploiting the experience
that has been gathered from previous disasters. For decades,
researchers have been collecting data to correlate the amount
of damage with a metric of the disaster intensity, namely,
the demand parameter at a specified location [27]–[32]. Inten-
sity denotes the level of severity produced by a disaster
in a particular location. The demand parameter refers to a
quantitative measure of the intensity to which an asset is
subjected. For the case of earthquakes, the peak ground accel-
eration (PGA), the peak ground velocity (PGV), the Modified
Mercalli Intensity, and the spectral response are often used as
demand parameters [28], [33], [34]. For tsunamis or floods,
the inundation depth has commonly been used as a demand
parameter because it can be measured from postdisaster field
surveys [22], [31], [32], [35]. However, other demand parame-
ters have been proposed [30], [36]. A fragility function, often
idealized by a sigmoid function, is defined as the relationship
between the probability that an asset reaches or exceeds a dam-
aged state and the demand it experiences [28], [30], [36], [37].
Fragility functions, together with instrumentation and numer-
ical simulations of the demand parameter, is often used to
approximate, in real time, the number of assets that have been
damaged within a specified area [38]–[42]. Recently, whether
this aggregated damage information can replace training sam-
ples for the establishment of a damage map with a higher
spatial resolution (building units instead of uniform spatial
grids) from remote sensing data was investigated. A simple
experiment from the 2011 Tohoku-Oki earthquake–tsunami
is reported in [43], from which a linear discriminant func-
tion is calibrated over a bidimensional feature space via
exhaustive search. The calibration implied to find a linear

discriminant function that yields a damage scenario that is
consistent with the aggregates that are computed from the
demand parameter and the fragility function. The accuracy
of the results was on the same level as those of previous
studies in which standard supervised machine learning was
applied. Following the referenced study, a modification of the
supervised logistic regression method was proposed in [44].
Here, the training data are replaced with probabilistic infor-
mation that is computed from demand parameters and fragility
functions. This enabled the use of an n-dimensional feature
space and optimization methods to calibrate the discriminant
function.

There is, however, a substantial pitfall in relying on fragility
functions: fragility functions are available only for limited
types of disasters, such as earthquakes and tsunamis. There
is also a controversy regarding the transferability of fragility
functions that have been constructed from empirical data, for
instance, whether fragility functions for wooden buildings that
were constructed in Japan can be used in other countries. To
establish a solution that is independent of the availability of
fragility functions, we uniquely deploy the estimated demand
parameter directly after a hazardous event for automatic
rule-based training sample selection. The spatial distribution
of the affected buildings is expected to be consistent with
the spatial distribution of the demand parameter. Namely,
areas that are assigned a low demand parameter should con-
tain mainly nondamaged buildings. In contrast, areas with a
medium and large demand parameter likely include buildings
with different damage levels. Using these assumptions, our
objective is to learn a model that can solve a dichotomous
classification problem and distinguish between two thematic
classes: “severely damaged buildings” and “nonseverely dam-
aged buildings.” The most common approach, termed change
detection, aims to identify changes between a pair of images
recorded before and after a disaster, from which changed
samples are associated with severely damaged buildings and
nonchanged samples are associated with nonseverely damaged
buildings. It is assumed that, given that the images’ recording
time is close, the changes between the images are associated
with the effects of the disaster. We provide two novel methods
for calibrating a support-vector-machine-based discriminant
function. As feature space, we use hand-engineered features
computed from remote sensing data. The demand parameter is
used to collect the training data automatically. Using automatic
sample selection for change detection is not a new idea. Previ-
ous studies have first used unsupervised classification to collect
reliable samples of changed and nonchanged samples and then
improve the classifier using supervised/semisupervised classi-
fication algorithms [45], [46]. Unfortunately, such approaches
to collect training samples do not provide a complete rep-
resentation of the classes in the feature space. Furthermore,
to the best of our knowledge, unsupervised techniques perform
poorly when the disaster-affected area is much smaller than the
area covered by the remote sensing data. Our contributions can
be highlighted as follows.

1) The demand parameter allows reducing the search for
changes to solely areas with medium/large demand
parameters.
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2) We use a threshold on the demand parameter to collect
nonchanged samples. The demand parameter has a clear
physical meaning, and thus, the selection of the demand
threshold is very intuitive and does not require pre-
liminary processing, such as unsupervised classification
algorithms.

3) Because the demand parameter information is indepen-
dent of remote sensing data, the collected nonchanged
samples provide a better representation of the class
nonchanged in the feature space.

4) We integrate information from in-place sensors (i.e.,
ground motion sensor, tidal gauges), numerical simu-
lation of a natural phenomenon, and remote sensing.

The remainder of this article is organized as follows.
Section II introduces the proposed approaches to calibrate
a classifier model. Empirical evaluations are conducted in
Section III. Additional comments regarding the proposed
methods and the studied cases are provided in Section IV.
Finally, the conclusions are drawn in Section V.

II. PROPOSED BUILDING DAMAGE DETECTION APPROACH

Consider a set of samples {(xi, di )}M
i=1, where each xi ∈ R

n

is a feature vector that was computed from remote sensing data
for each building footprint and di ∈ R is a demand parameter
for building i during the disaster event. The components of
a feature vector are hand-engineered features associated with
the degree of similarity between a pair of images. The main
objective is to determine whether a building i has suffered
damage via the identification of changes in images that were
captured before and after the disaster. The proposed approach
consists of two steps: 1) exploit the spatial distribution of the
disaster intensity to collected training samples using a demand
parameter threshold and 2) calibration of a discriminant func-
tion by exploiting the distribution of the training samples in
the feature space. Two different strategies are reported in
this step. In the following, the two steps are described
in detail.

A. Demand Parameter Thresholding

The first step of the proposed approach for change detection
aims to collect reliable training samples. Heuristic reasoning
is used to divide the samples into two subsets. The key to the
proposed approach is the prior assumption that it is expected
for the ratio of severely damaged buildings to increase as
the demand parameter increases. This assumption has been
supported empirically by the studies on fragility functions
discussed in Section I. Accordingly, it is possible to set a
demand parameter threshold D such that the ratio of severely
damaged buildings with di ≤ D is negligible. In contrast,
samples with di > D can be severely or nonseverely damaged
buildings. For instance, during a tsunami, buildings affected
by an inundation depth of less than, for example, 30 cm will
be mostly nondamaged buildings (see Fig. 1). Let us define
the corresponding subsets B1 and B−1 as

B1 = {xi |di ≤ D}
B−1 = {xi |di > D}. (1)

Fig. 1. Number of damaged and nondamaged buildings inspected in the
coastal area of the city of Palu, Indonesia, during the 2018 Sulawesi–Indonesia
tsunami. Note that buildings with an inundation depth of less than 36 cm were
not damaged. The figure was modified from [22].

From the assumption mentioned earlier, B1 can be used as
the training data of nonchanged samples. Note that although
samples with d ≤ D belong to the nonchanged class, it does
not necessarily mean that samples with d > D belong to
the changed class. For instance, in the case of earthquakes,
additional information, such as the strength, stiffness, and
dynamic properties of the structure, is required to infer if a
given building suffered damaged when experience a demand d .
Thus, the set B−1 contains both changed and nonchanged
samples.

In some cases, it is observed that #B1 � #B−1, where #
denotes the cardinality of a set. In other cases, the opposite
is observed, #B1 � #B−1. To avoid imbalance in the sizes of
the data sets, either B−1 or B1 is subsampled to the same size
as the other. Thus, the following rule is adopted:

1) If #B−1 > #B1, recall that the larger the demand
parameter, the larger the percentage of damaged build-
ings (see Fig. 1). Consequently, in order to induce
more changed samples in B−1, samples with the largest
demand parameter in B−1 are kept, and the rest are
filtered.

2) If #B−1 < #B1, then B1 is randomly subsampled.

The relevance of the demand parameter in the first step is
twofold. First, it provides criteria to select samples that are
entirely independent of the sample distribution in the feature
space. The second advantage of using the demand parameter
for thresholding is the straightforward selection of D. The
demand parameter has a clear physical meaning. In most cases,
it is possible to select a very conservative value near zero,
without compromising the distribution of the training data in
the feature space. In some cases, it will require expertise in the
disaster in question; however, it does not represent a pitfall if
we consider that these experts are always involved in disaster
management and support the decision-makers. Furthermore,
we show later that small variations of D do not affect the
accuracy.

B. Calibration of Discriminant Function

The second stage considers the problem of learning from
labeled and unlabeled data. Given the label set Z = {1,−1},
samples xi ∈ B1 are labeled as zi = 1, whereas samples
xi ∈ B−1 are unlabeled. The goal is to define a discriminant
function that accurately separates changed (zi = −1) from
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Fig. 2. Contour lines of the one-class SVM decision function, f (x),
at intervals of 1.5. The blue circle marks denote the samples from B1 and
were used to calibrate f (x). The red square marks are samples from B−1. The
parameter ν = 0.1 is used, that is, the closed boundary, f (x) = 0, contains
at least 90% of samples from B1. The radial-basis function (RBF) kernel
function with γ = 0.1 was used. The dashed isolines denote the negative
values of f (x).

unchanged (zi = 1) samples. In the following, we report two
procedures for realizing this objective.

1) Distance-Based Sample Selection (DSS) Approach:
An iterative approach to identify the elements of a subset
B̂−1 ⊆ B−1 that can be used as training of changed samples
is adopted. Then, with training samples from both classes,
a standard classifier (here, SVM) for binary classification can
be learned. It is expected that B̂−1 should contain the patterns
associated with the change class in the feature space and
should not conflict with the patterns associated with the set
B1. Accordingly, we propose to identify B̂−1 based on the
coordinates of its elements in the feature space with respect
to the set B1. It is, thus, necessary to characterize B1 in a
functional form. There are several methods to define a closed
boundary that contains B1 [46]–[48]. Here, we use the support
vector of high-dimensional distribution [48], which is referred
to, in this study, as one-class SVM.

The one-class SVM consists of mapping B1 to a feature
space that belongs to a kernel and fitting a hyperplane to
separate these samples from the origin with the maximum
margin. To separate B1 from the origin, the following quadratic
problem needs to be solved:

min
w,ξ,ρ

�
1

2
||w||2 + 1

νl

�
i

ξi − ρ

�

s.t. (w · �(xi)) ≥ ρ − ξi , ξi ≥ 0 (2)

where ξi is a slack variable associated with a sample xi ∈ B1,
ν ∈ (0, 1] is a parameter that denotes the upper bound on the
fraction of outliers in B1 if ρ �= 0, �(x) is a function that
maps xi to the kernel feature space, R

n → F , w ∈ F is a
vector that is perpendicular to the hyperplane, and ρ ∈ R is a
constant offset. The function that identifies B1 in the feature
space is expressed as

f (xi) = (w · �(xi)) − ρ (3)

where f (x) is positive for most of the samples from B1,
the closed boundary is defined as f (x) = 0, and f (x) is
negative for samples outside the closed boundary (see Fig. 2).

The selection of samples for B̂−1 is based on their distances
to the hyperplane in the F-space calibrated via the one-class
SVM [see ((2))]. Recall that sorting the samples according
to their distances to the hyperplane is equivalent to sorting
the samples by their corresponding values of f (x) [see ((3))].
That is, sorting the samples that are located outside the closed
boundary f (x) = 0 in ascending order of their values of f (x)
is equivalent to sorting the samples by their distances to the
hyperplane in descending order. Therefore, B̂−1 is defined such
that, ∀x̂i ∈ B̂−1 and ∀xi ∈ B−1 \ B̂−1, the following inequality
holds:

f (x̂i) ≤ f (xi). (4)

Simply, B̂−1 contains the samples from B−1 with the largest
distance to the closed boundary f (x) = 0. Note that f (x)
was already calibrated using the one-class SVM; thus, sorting
samples from B−1 does not require significant computational
effort. Using B̂−1 and B1, the final discriminant function,
g(x) = (w · �(xi)) + ρ, is calibrated by solving the
quadratic programming problem associated with the one-norm
soft-margin SVM

min
w,ξ

⎧⎨
⎩1

2
w · w + λ

�
i|xi ∈B1∪B̂−1

ξi

⎫⎬
⎭ (5)

s.t. zi (w · �(xi ) + ρ) − 1 + ξi ≥ 0

ξi ≥ 0 ∀i |xi ∈ B1 ∪ B̂−1 (6)

where zi = 1 if xi ∈ B1 and zi = −1 if xi ∈ B̂−1.
The proposed method consists of determining # B̂−1. An iter-
ative strategy that gradually increases # B̂−1 from an initial
low value, for example, # B̂−1 = 1, is adopted. As result,
the boundary decision function (i.e., g(x) = 0) is gradually
approaching B1 (see Fig. 3). When # B̂−1 reaches #B−1, and
because B−1 may contain several nonchange samples, it is very
likely that, after calibration, the region in the feature space
with g(x) < 0 (i.e., region where samples will be classified
as changed) will overlap greatly the region where f (x) > 0
(i.e., the region where most samples from B1 are located).
From these considerations, it follows that the optimal value
for # B̂−1 should be lower than #B−1.

The application of the distance-based sample selec-
tion (DSS) approach requires adjustment of # B̂−1, the reg-
ularization parameter λ, and the parameter associated with
the kernel function γ . Recall that the realization of high
accuracy on samples from B1 is of high priority due to the
assumption that most of them belong to the nondamaged class.
B−1 is used as an auxiliary data set to improve the classifier.
Thus, we evaluate the free parameters using the following
expressions:

max
γ,λ,# B̂−1

{s} (7)

where

s = r · RB1 + RB−1

r + 1
(8)

where RB1 denotes the ratio of samples classified as non-
changed from set B1, RB−1 is the ratio of samples classified
as changed from set B−1, and r > 1 denotes a weight
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Fig. 3. Discriminant function (solid line) and margin bounds (dashed lines) at different stages of the DSS approach. Blue circles: samples from B1. Red
squares: samples from B−1 (#B1 = #B−1 = 200). The filled squares are the samples that belong to B̂−1 when (a) # B̂−1 = 2, (b) # B̂−1 = 10, and
(c) # B̂−1 = 50.

Fig. 4. MRP approach: effect of λp and λn in the calibration. Boundary decision function computed for (a) λp/λn = 0.5, (b) λp/λn = 1.0, and (c) λp/λn = 2.0.
The solid line denotes the boundary decision function h(x) = 0. The dashed lines denote the bounds of the margin. The arrows denote the largest slack
variable for B1 (ξ+) and B−1 (ξ−). Note that the shortest value of ξ− occurs when λp/λn = 0.5, whereas the shortest value for ξ+ occurs when λp/λn = 2.0.

factor that is defined in advance by the user. Recall that
this iterative strategy is only possible under the assumption
that B1 is a good representation of the nonchange class.
Different approaches were adopted when the amount of
training data is limited for all classes, or the information
regarding the patterns of the classes in the feature space is
incomplete [45], [49].

2) Multiple Regularization Parameter (MRP) Approach:
The second alternative to calibrate the discriminant function
g(x) is based on a modification of (5) and (6) regarding how
outlier samples are addressed. The second term of (5) is known
as a regularization term, and it is the reason for the term
soft margin in the method’s name. It relaxes the assumption
that the hyperplane, g(x) = 0, separates the two classes.
The slack variable, ξi , is the amount of discrepancy when a
support vector xi does not lie in the bounds of the margin
(i.e., g(x) = 1 for the set B1 and g(x) = −1 for the set B−1).
For samples that are not support vectors, ξ = 0. The slack
variables allow misclassifications in the training data. The
regularization term, λ > 0, is critical to the performance of the
classifier. A small value will result in a flexible discriminant
function that allows many outliers in the training data. A large
value of λ will result in a rigid discriminant function with
few outliers. The election of λ is a tradeoff issue between the
generalization of the discriminant function and the accuracy of
the training data. Advice regarding its selection can be found
in [50].

For the problem that this study addresses, if we regard B1

and B−1 as training samples for nonchanged and changed

classes, respectively, B−1 would be contaminated by many
more outliers than B1. Therefore, a proper discriminant
function should allow many outliers from B−1 while being
stricter/more rigid with samples from B1. This desirable
function can be obtained via the use of two regularization
parameters, instead of one, in the quadratic programming
problem

min
w,ξ

⎧⎨
⎩1

2
|w|2 + λp

�
i|xi ∈B1

ξi + λn

�
i|xi ∈B−1

ξi

⎫⎬
⎭ (9)

s.t. zi (w · �(xi) + ρ) − 1 + ξi ≥ 0

ξi ≥ 0 (10)

where zi = 1 for all xi ∈ B1 and zi = −1 for all
xi ∈ B−1. The regularization parameters λp and λn are asso-
ciated with the samples from B1 and B−1, respectively. Conse
quently, the dual-problem of (9) and (10) is defined as follows:

min
α

⎧⎨
⎩1

2

�
i

�
j

αiα j zi z j k(xi , x j) −
�

i

αi

⎫⎬
⎭ (11)

s.t. 0 ≤ αi ≤ λp if zi = 1

0 ≤ αi ≤ λn if zi = −1 (12)

where αi denotes the Lagrange multipliers and k(xi, x j ) =
�(xi) · �(x j) is a kernel function. Fig. 4 depicts the decision
boundary g(x) = 0 calibrated under different values for λp and
λn . When λn > λp , the resulted decision boundary prioritizes
accuracy in the set B−1 at the expense of errors in B1,
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Fig. 5. Processing chain for damage mapping.

which is a nondesired situation. In order to have a decision
boundary that prioritizes accuracy in the set B1, we expect that
λn < λp. Recall that the idea of multiregularization parameters
for change detection is not new. In [45], the samples that
are located close to the decision boundary have different
regularization parameters than those located far from the
decision boundary. Unlike the work in [45], we do not impose
a restriction on the potential value for λp and λn . However,
we expect λp ≥ λn , which is confirmed in the empirical
evaluations.

Like the DSS method, the multiple regularization para-
meter (MRP) method has three free parameters that require
adjustment: the regularization parameters λp and λn and
the parameter associated with the kernel function �. These
parameters will be evaluated from (8)

max
γ,λp,λn

{s}. (13)

III. EMPIRICAL EVALUATIONS

We evaluate the performances of the proposed method-
ologies on three disaster events, each of which recorded
with different types of remote sensing data. The block dia-
gram in Fig. 5 illustrates the damage mapping processing
chain that is going to be followed in every case study. The
process requires four inputs: remote sensing data, a geocoded
building inventory, a demand parameter map, and D. First,
the remote sensing data and the geocoded building footprint
are used to compute the hand-engineered features for each
building, and the demand parameter map is used to extract
the demand at each building sample. This approach focuses
on built environment areas because hand-engineered features
may exhibit patterns that differ among land use areas, such as
agriculture targets [51]. Then, using D, the sets B1 and B−1

are defined, and the discriminant function, g(xi), is calibrated
either with the DSS or the MRP method. Finally, the dis-
criminant function is used for binary classification of changed
and nonchanged samples of the study area, where changed
samples are associated with severely damaged buildings and
nonchanged samples are associated with nonseverely damaged
buildings. For all the experiments, the score [see ((8))] is
computed with r = 2. Note that it is expected that the building
footprint is available before the occurrence of a disaster, and

the demand parameter can be computed in real or near real
time. Therefore, the implementation at an operational level lies
in the availability of remote sensing data.

The accuracy of the DSS and MRP methods is com-
puted with truth data collected by a third party. In addi-
tion, the results are contrasted with those obtained from the
one-class SVM method and previous studies that used the
same data sets.

A. First Case Study (CS1): The 2011 Tohoku
Earthquake–Tsunami

The March 11, 2011, Tohoku earthquake, with Mw 9.0,
is one of the largest well-recorded earthquakes ever. The
maximum recorded strong-motion acceleration was 2.7 g, and
the largest coseismic deformation that was recorded by Global
Navigation Satellite System (GNSS) was 5 m. The earthquake
triggered a tsunami, which caused extensive damage in the
coastal area of Tohoku. The maximum measured tsunami
height was 40 m. The Ministry of Land, Infrastructure, Trans-
port and Tourism (MLIT) [19] conducted field surveys and
provided a building damage inventory, as shown in Fig. 6(a),
for the coast of Miyagi prefecture. Seven levels of damage,
which range from no damage to washed away, were defined
in the survey. In this study, we focus on the buildings that
are located within the inundated areas on the coast of Miyagi
prefecture for which TerraSAR-X images were available.

1) Demand Parameter: Most of the damages were produced
by the tsunami. Thus, the tsunami inundation depth is used
here as the demand parameter. In this empirical evaluation,
the actual inundation depth, which was provided by the MLIT,
is used [see Fig. 6(b)].

2) Feature Space: The feature space was prepared from
two microwave images of the coastal area of Miyagi pre-
fecture, which were recorded by TerraSAR-X [see Fig. 6(c)
and (d)]. The images were captured on October 12,
2010, and March 13, 2011, namely, before and after the
earthquake–tsunami. As preprocessing, coregistration, radio-
metric calibration, speckle filter, and terrain correction were
applied to the synthetic aperture radar (SAR) images. The
resolution of the images is 1.25 m. Two features are computed
from the imagery: the averaged difference in backscattering
intensity, xi1, and the correlation coefficient between the
images, xi2. The features were computed at the location of
each building that was surveyed by the MLIT. Both features
were computed with the pixels within a rectangular box
that contains the building footprint [see Fig. 6(a)]. A total
of 31 262 samples constitute the data set. As preprocessing,
the feature vectors were standardized such that, for any j ∈
{1, 2}, (1/M)

�
i xi j = 0, and (1/M)

�
i x2

i j = 1.
3) Results: The subsets were defined using D = 0.15

m. From the MLIT’s inventory, 498 buildings experienced
an inundation depth of less than or equal to 0.15 m,
and 30 764 buildings experienced an inundation depth that
exceeded 0.15 m. Then, #B1 = #B−1 = 498. Fig. 7
shows the sets B1 and B−1 in the bidimensional feature
space. The resulted predictions are shown in Fig. 8, from
which nonchanged and changed samples are colored blue
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Fig. 6. CS1: the 2011 Tohoku-Oki earthquake. (a) Study area: coast of Miyagi prefecture, Japan. The mark denotes the building’s geolocation, and its
color denotes the damage that was surveyed by the MLIT. The inset presents the location of the study area within northern Japan. (b) Tsunami inundation
depth, as provided by MLIT. (c) TerraSAR-X intensity image that was recorded on October 21, 2010. (d) TerraSAR-X intensity image that was recorded on
March 13, 2011.

Fig. 7. Sample sets B1 (blue marks) and B−1 (red marks) selected using
D = 0.15 m for the CS1.

and red, respectively. The one-class SVM classifications were
computed from B1 using ν = 0.1 and the RBF kernel function,
k(xi , x j) = exp(γ �xi − x j�2), with γ = 0.1. It is worth
noting that samples with the largest correlation coefficient,
xi1, are classified as changed, which is a misclassification.
The correlation coefficient is a hand-engineered feature asso-
ciated with the degree of change between the pair of images.
The largest value, before standardization, is one, which is
associated with nonchange samples. However, in practical
applications, a correlation coefficient of one is not frequent.
Such samples appear to be outliers; thus, they might be
incorrectly classified as damaged by the one-class SVM.
Therefore, the use of a classifier calibrated solely from B1

is not completely satisfactory.
A total of # B̂−1 = 374 samples from B−1 were used as

changed samples for the DSS approach. The regularization
parameter was set to λ = 0.05, and the RBF kernel para-
meter was set to γ = 0.07. Regarding the MRP approach

[see Fig. 8(c)], the regularization parameters were set to
λp = 5.46 and λn = 3.36. The Gaussian kernel parameter
was set to γ = 0.043. Fig. 9 presents the largest values of
the score s under fixed values of the kernel γ . The numbers
that are specified at each mark are the optimal values of the
other two parameters, namely, S and λ for the DSS method
and λp and λn for the MRP method. When γ is less than
approximately 1, s does not vary substantially. Regarding the
DSS method, the percentage of samples from B−1 that is
used to calibrate the discriminant function fluctuates between
75% and 95%. For the MRP method, for any arbitrary value
of γ , the selected regularization parameters always satisfy
the inequality λp ≥ λn , namely, the classifier is tolerating
more outliers from B−1 than from B1. Note that the same
trend observed in Fig. 9 is also seen in the other experimental
studies.

The damage level that was surveyed by MLIT and our
predictions are compared in Table I. Most buildings that
were labeled as noncollapsed were predicted as nonchanged.
Likewise, most buildings that were labeled as washed-away
were predicted as changed. Surprisingly, most of the samples
that were labeled as collapsed were predicted as nonchanged.
This controversy has been discussed in our previous stud-
ies [14], [43], [44]. The classification by MLIT was conducted
in the context of the building’s structural system. Therefore,
it is highly likely that by the time the postevent image
was recorded, many of the buildings that were labeled as
collapsed were still standing. Nevertheless, DSS and MRP
clearly outperform the one-class SVM. In addition to the
results of our study, the results that were reported in [44] are
also included here as a baseline (BL) performance for our
predictions. Recall that [44] used exactly the same data but
with additional information from fragility curves.

The performances of the classifiers are reported in Table II,
where the user accuracy (UA), producer accuracy (PA), and
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Fig. 8. Classification of changed (red marks) and nonchanged (blue marks) samples using (a) one-class SVM, (b) DSS, and (c) MRP methods for the CS1.

Fig. 9. Calibration of parameters for the CS1. Top: DSS method. The numbers in red and blue are the # B̂−1 and λ values that yield the highest score under
a fixed value of γ . The highest score is realized when # B̂−1 = 0.75#B−1, λ = 0.05, and γ = 0.07. Bottom: MRP method. The numbers in blue and red are
the values of λp and λn that yield the highest score under a fixed value of γ . The highest score is realized for λp = 5.46, λn = 3.36, and γ = 0.04. Note
that, in all cases, λp > λn .

TABLE I

COMPARISON OF THE MLIT’S SURVEY WITH THE PREDICTIONS FROM THE ONE-CLASS SVM (1SVM), THE DSS APPROACH, AND THE

MRP APPROACH AND THOSE THAT WERE PUBLISHED IN [44] (BL) FOR THE CS1. NC: NONCHANGE. C: DETECTED CHANGE

F1 scores are presented. Here, the UA represents the percent-
age of samples that were surveyed as noncollapsed (washed-
away) and were predicted as nonchanged (changed). Likewise,
the PA is the percentage of samples that were predicted as

nonchanged (changed) and were surveyed as noncollapsed
(washed away). The F1 score is computed via the follow-
ing expression: 2(UA−1 + PA−1)−1. Again, DSS and MRP
outperform the one-class SVM in terms of all the scores.
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TABLE II

UA, PA, AND F1 SCORE FOR THE PREDICTIONS FROM THE ONE-CLASS SVM (1SVM), THE DSS APPROACH,
AND THE MRP APPROACH AND THOSE THAT WERE PUBLISHED IN [44] FOR THE CS1

Furthermore, the results from DSS and MRP demonstrate
almost the same level of accuracy as those that were reported
in [44].

B. Second Case Study (CS2): The 2016
Kumamoto Earthquake

On April 14, 2016, an Mw 6.2 earthquake struck the
Kumamoto prefecture, Japan. Then, approximately 28 h later,
another earthquake with Mw 7.0 occurred. The first event
was designated as the foreshock and the second as the main-
shock. In both events, the largest recorded shaking intensity
was 7, which is the highest score in the Japanese Meteoro-
logical Agency (JMA) intensity rating system. Both events
occurred in the town of Mashiki. Substantial damages to
buildings, lifeline systems, and transportation infrastructure
were reported [15], [53], [54].

1) Demand Parameter: In this case study, the demand para-
meter represents the PGV. Other potential demand parameters
can be used for earthquake events, such as the PGA and
the seismic intensity. However, field observations have shown
that damages to buildings that were made of wood in Japan,
which is the most common construction material, are well
correlated with the PGV. The PGVs at the locations of the
samples are provided by QuiQuake [see Fig. 10(c)], which is a
platform that provides several demand parameter maps in near
real time [52], [55]. QuiQuake uses the strong motion records
from the K-NET and KiK-net networks to compute the PGA,
the PGV, and the JMA seismic intensity scale. The K-NET and
KiK-net together consist of approximately 2000 accelerom-
eters that cover Japan’s entire territory uniformly. Fig. 11
illustrates a scheme that is followed to compute the demand
parameter maps. First, QuiQuake computes the demand para-
meter at each accelerometer’s location. Then, using soil ampli-
fication factors, the demand parameter values at the bedrock
level are estimated. Using an interpolation method, the demand
parameter values are estimated approximately every 250 m
within a grid format. The interpolation considers attenuation
laws of the demand parameter with respect to its distance
to the earthquake source. The interpolation is conducted at
the bedrock to avoid the soil effects of the subsurface layers.
Finally, the soil amplification factors are used again to estimate
the demand parameter map at the ground surface.

2) Feature Space: Immediately after the foreshock, a mis-
sion to record the area with Lidar was conducted by the Asia
Air Survey Co., Ltd. Later, a second mission was conducted
seven days after the mainshock. The features were computed
from two Lidar-based digital surface model (DSM) products
of these missions [see Fig. 10(a) and (b)]. The resolution of

the DSMs is 50 cm. Using a geocoded building footprint [see
Fig. 10(b)], three features were computed at each building:
the average (xi1) and the standard deviation (xi2) of the
differences between the DSMs and the correlation coefficient
(xi3) between the DSMs. A total of 27 428 samples were
extracted. The same features were used in [15]; thus, we will
be able to use their results as a BL. Similar to the first case
study, the feature spaces were standardized.

3) Results: A threshold of D = 80 cm/s was selected.
Of the samples, 1012 experienced a demand that was lower
than D and 26 416 experienced a demand that exceeded D.
Therefore, #B1 = #B−1 = 1012 [see Fig. 12]. After calibra-
tion, the following values for the DSS approach are selected:
γ = 0.01, B̂−1 = 810 (80% of #B−1), and λ = 1.67. For the
MRP method, the following values are selected: γ = 0.18,
λp = 5.46, and λn = 3.36. Fig. 13 presents the resulted
predictions. Table III presents our predictions on 903, from
which its actual damage level is known [20]. Four levels of
damage to buildings were reported in [20]: no damage (DL1),
partial/moderate damage (DL2), inclined (DL3), and collapsed
(DL4). It is observed that the changes that were detected in the
predictions are more strongly associated with collapsed build-
ings. Moreover, the collapsed buildings are better predicted by
DSS and MRP than by the one-class SVM method; however,
part of this improvement is at the expense of lower accuracy
in the prediction of the noncollapsed class. In [15], a standard
SVM was used with the same surveyed samples to calibrate
a discriminant plane. The prediction of the referenced study
is also reported in Table III, from which the samples with
damage levels from DL1 to DL3 were merged. These samples
were used as training samples and not for testing. Thus, this
prediction represents the best separation of samples that can be
realized with a plane. Table IV reports the accuracy scores UA,
PA, and F1. Here, the UA represents the percentage of samples
that were surveyed as DL1-3 (DL4) and were predicted as
nonchanged (changed). Similarly, the PA is the percentage
of samples that were predicted as nonchanged (changed) and
were surveyed as DL1-3 (DL4). These scores demonstrate that
the DSS and MRP methods outperform the one-class SVM
method.

C. Third Case Study (CS3): The 2018 Okayama Floods

Beginning from July 5, 2018, heavy rainfall occurred in
western Japan. As of August 2, 2018, 220 casualties, nine
missing persons, and 381 injuries had been reported due to
the floods, mainly in Hiroshima and Okayama prefectures.
Furthermore, 9663 houses were partially or completely col-
lapsed, and 2579 were partially damaged [56].
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Fig. 10. CS2. (a) Lidar-based DSM that was recorded on April 23, 2016, over the study area. The inset shows the location of the study area within Kyushu
Island, Japan. (b) Lidar-based DSM that was recorded on April 15, 2016, over the same area. The red marks denote the buildings’ geolocations. (c) PGV that
was provided by QuiQuake [52].

TABLE III

COMPARISON OF [20]’S SURVEY WITH THE PREDICTIONS FROM THE ONE-CLASS SVM (1SVM), THE DSS APPROACH, AND

THE MRP APPROACH AND THOSE PUBLISHED IN [15] (BL) FOR THE CS2. NC: NONCHANGE. C: DETECTED CHANGE

TABLE IV

UA, PA, AND F1 SCORE THAT WERE COMPUTED OVER THE PREDICTIONS FROM THE ONE-CLASS SVM (1SVM), THE DSS
APPROACH, AND THE MRP APPROACH AND THOSE THAT WERE PUBLISHED IN [15] FOR THE CS2

Fig. 11. Schematic of the estimation of the demand on a uniform grid
using the Japanese strong motion network. It consists of three main steps.
First, the demand parameter is computed at the accelerometer’s station, and
its value at the base rock is estimated via a deconvolution process (blue
arrows). Second, the demand parameter is estimated at an arbitrary location
at the bedrock via an interpolation method (green arrows). Third, the demand
parameter is estimated at the ground surface via a convolution process (red
arrow).

1) Demand Parameter: In this case study, the demand
parameter is the flood inundation depth, which had been
estimated from the results of a numerical flood analysis.
Fig. 14(a) denotes the location of Mabi town, which is the
area of interest that experienced the largest flood. It is located
in the city of Kurashiki, Okayama prefecture. The simulation

Fig. 12. Sample sets B1 (blue marks) and B−1 (red marks) selected using
D = 80 cm/s for the CS2.

area is 156 km2, and 62 400 grids were prepared. Topographic
data were obtained from the Geospatial Information Authority
(GSI). We upscaled the grids from the original 5- to 50-m
grids for the analysis to reduce the calculation load. The water
level data were obtained from the Public Works Research Insti-
tute (PWRI). Three observation sites, namely, Higashiminari,
Hiwa, and Sakadu, were selected as boundaries. The river area
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Fig. 13. Changes that were detected in the DSMs that were due to CS2 using (a) one-class SVM, (b) DSS, and (c) MRP methods. The samples in blue
correspond to nonchanged buildings, whereas the samples in red are detected changes.

Fig. 14. CS3: the 2018 Western Floods in Japan. (a) Study area: Okayama city. The gray marks denote the buildings’ geolocations. The inset shows the
location of the study area within western Japan. (b) Numerical-simulation-based inundation depth. (c) Preevent coherence that was computed from a pair
of ALOS2-PALSAR2 images that were acquired on March 3, 2017, and April 14, 2018. (d) Coevent coherence that was computed from a pair of ALOS2-
PALSAR2 images that were acquired on April 14, 2018, and July 7, 2018. (e) Dissimilarity that was computed from the same imagery as the coevent
coherence.

was identified using data on the land use that was provided by
GSI, and the river bed elevation was assumed to be −4 m from
the original elevation data. The flood at the area of interest
was simulated using the following nonlinear shallow water
equations:

∂h

∂ t
+ ∂M

∂x
+ ∂ N

∂y
= 0 (14)

∂M

∂ t
+ ∂(uM)

∂x
+ ∂(vM)

∂y
= −gh

∂ H

∂x
− gn2u

√
u2 + v2

h1/3

(15)

∂ N

∂ t
+ ∂(u N)

∂x
+ ∂(v N)

∂y
= −gh

∂ H

∂y
− gn2v

√
u2 + v2

h1/3

(16)

where h is the water depth (m); M and N are the fluxes
in the x- and y-directions (m2/s), respectively; u and v are
the velocities in the x- and y-directions (m/s2), respectively;
H is the water level (m); and g is the acceleration that
is caused by gravity (m/s2). A leap-frog difference scheme
was used to solve this system of equations, and structured
meshes were used for the calculations. The Manning roughness
coefficient, n, was set as 0.025 s/m1/3 for the river area
and 0.03 s/m1/3 for the flood plain. Rainfall, infiltration, and
evaporation were not considered in this model. The flood inun-
dation depth that was obtained via the numerical simulation
is presented in Fig. 14(b). Also included is an estimate of
the inundated area, which was based on images and videos,
as provided by the GSI [57]. According to GSI results, our
results underestimate the affected area.



MOYA et al.: DISASTER INTENSITY-BASED SELECTION OF TRAINING SAMPLES 8299

2) Feature Space: In the aftermath of the 2018 western
floods in Japan, the ALOS-2 satellite conducted observations
of the affected areas. Thus, a postdisaster SAR image (POS)
that was recorded on July 7, 2018, was available. In addition,
two preevent SAR images, which were recorded on March 3,
2017 (PRE1) and April 14, 2018 (PRE2), were used to
construct the feature space. All images were in the single look
complex (SLC) standard product. As preprocessing, coreg-
istration, radiometric calibration, speckle filter, and terrain
correction were applied to the SAR images. The resolution
of the images is 3 m. In contrast to the CS1, both phase
information and amplitude information are available here; thus,
richer information can be used. A 3-D feature space is set in
this case study. The first feature (xi1) is the coherence that
was computed between the PRE1 and PRE2 images, which is,
hereafter, referred to as the preevent coherence. The second
feature (xi2) is the coherence that was computed between the
PRE2 and the POS images, which is, hereafter, referred to as
the coevent coherence. In an ordinary scenario, it is typical to
expect large coherence values in urban areas, unless the areas
have suffered perturbations, such as the effect of the flood.
Thus, it is expected that most of the samples will exhibit large
preevent coherence. Furthermore, the samples that are affected
by the flood will exhibit lower values of coevent coherence.
The third feature (xi3) is the averaged absolute difference in
intensity that is computed over a window size of 5×5 between
the PRE2 and POS images. Within the context of texture
analysis in a 3-D domain, this feature is referred to as the
dissimilarity [14]. Depending on the flood inundation depth
relative to the building height, the backscattering intensity
in the affected area can either decrease or increase. If the
inundation depth is much lower than the building height,
an increment of the backscattering intensity is expected due to
the joint effect of the specular reflection and double-bounding
backscattering mechanisms; in contrast, if the inundation depth
is larger than the building height, only the specular reflection
mechanism occurs, and, thus, the backscattering intensity
decreases significantly. Despite negative or positive changes,
the dissimilarity will be always positive, which is the main
reason for its use as a feature. A total of 41 130 samples were
extracted. As in previous cases, the samples were standardized
to zero mean and unit standard deviation.

3) Results: A threshold D = 0 was selected. According to
the numerical simulation, 37 947 samples did not experience
any inundation (D = 0), and 3183 samples were inundated
(D > 0). Thus, #B1 = #B−1 = 3183. Fig. 15 shows the
sets B1 and B−1 in the feature space, and Fig. 16 depicts
the resulted predictions. The final parameters for the DSS
method are # B̂−1 = 2705 (85% of #B−1), λ = 1.67, and
γ = 0.016. The final parameters for the MRP method are
λp = 23.76, λn = 14.38, and γ = 0.01. Considering the
meanings of the features, it is clear that the results from both
the DSS and the MRP methods outperform those from the
one-class SVM.

It is unfortunate that we were unable to rigorously evaluate
the predictions. As of today, the official report provides only
aggregated values of the affected buildings per city and/or
town. However, we evaluate the consistency of our predictions

Fig. 15. Sample sets B1 (blue marks) and B−1 (red marks) selected using
D = 0.0 m for CS3.

TABLE V

CS3: NUMBERS OF SAMPLES PREDICTED AS NC AND CHANGED (C)
WITHIN THE AREA THAT WAS DELINEATED BY GSI

with those from GSI [see Fig. 14(b)]. The area that is delin-
eated by GSI is based on photographs and videos. The field
survey was not conducted; thus, we are uncertain regarding the
accuracy of the boundary area and whether there were other
affected areas nearby. Fig. 17 depicts the building change map
product of the predictions from the one-class SVM, DSS, and
MRP methods. Again, a significant discrepancy is observed
between the results from the one-class SVM and the GSI map.
In contrast, the results from both the DSS and MRP methods
are less noisy and much more consistent with the GSI map.
Table V reports the numbers of buildings that are classified
as changed and nonchanged inside the area that is delineated
by GSI. The results from one-class SVM are very poor, with
about 43% of buildings predicted as changed. In contrast,
the percentages of buildings that are classified as changed by
DSS and MRP are 73% and 73%, respectively.

IV. DISCUSSION

This manuscript reports the application of SVM-based
frameworks for the automatic detection of severely damaged
buildings without gathering training samples in the traditional
form. While the method is fully automatic, its implementation
may require expertise on the disaster that is under consid-
eration. Consider the threshold value, D, for instance. For
CS1 and CS3, an inundation depth of D = 0, or close to
zero, is a safe choice. However, in some cases, it may not be
a straightforward decision, such as in the CS2. Within the area
of interest, the demand parameter (PGV) exceeded 50 cm/s.
Thus, knowledge of earthquake engineering was required for
setting a suitable threshold such that B1 is mainly composed
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Fig. 16. Changes that were detected in the ALOS-2 PALSAR-2 imagery that were due to CS3 using (a) one-class SVM, (b) DSS, and (c) MRP methods.
The samples in blue are unchanged samples, whereas samples in red are samples in which changes have been detected.

Fig. 17. CS3: spatial distribution of the predicted changes by (a) one-class SVM, (b) DSS, and (c) MRP methods. The black polygon denotes the flooded
boundary that was provided by the Geospatial Information Authority of Japan.

Fig. 18. Effect of the threshold value D on the accuracy of the results for
(a) CS1 and (b) CS2.

of nonseverely damaged samples. Another issue that requires
consideration is the effect of D on the sizes of the subsets B1

and B−1. A small value of D may produce a very small B1.
Fig. 18 shows the effects of D on the accuracy scores (UA,
PA, and F1) for CS1 and CS2, for which ground-truth data
are available. For CS1, the effect of D is almost negligible.

In contrast, the effect of D is distinguished for CS2. We posit
that, for values that are lower than 80 cm/s, the size of
B1 affects the results substantially. Upon closer inspection,
the size of B1 decreased significantly for D = 60 cm/s
(see Table VI). A tradeoff is observed between the UA
and PA scores for both CS1 and CS2. If a change of D
increases (decreases) the UA, then the PA will decrease
(increase). Hence, the decision boundary is always moving
toward either of the classes if D is increasing or decreasing
only. For CS1, the decision boundary is approaching the non-
changed class as D increases. In contrast, for CS2, the decision
boundary is moving toward the changed class as D increases.

Note that this study has focused on the detection of severely
damaged buildings. Tables I and III show that the detected
changes are mainly associated with the highest damage level,
that is, washed away buildings for CS1 and collapsed buildings
for the CS2. Intermediate levels of damage were classified
as nonchanged. We believe that the detection of intermediate
damage levels is limited by the spatial resolution of the remote
sensing data. According to FEMA-356 [58], intermediate
damage is associated with cracks of 1/8 inches in the structural
elements. Besides, it is expected a story-drift of less than
3%, which translates to a roof deformation of 24 cm for
two-story buildings. Such patterns cannot be observed with the
spatial resolution of the remote sensing data used in this study.
As a future study, assuming that remote sensing data with
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TABLE VI

EFFECT OF D ON THE SIZE OF #B1 FOR CS1 AND CS2

higher resolution are available, further modifications on the
approaches will be carried out for a multiclass classification
problem.

We have reported two approaches to calibrate a discriminant
function that identifies changed and nonchanged samples.
As we observed in Section III, their performance in terms
of accuracy is practically the same. There are, however, some
contrasts in their implementation. It can be noted that the DSS
approach uses the coordinates of the feature vectors from B−1

with respect to the set B1 in the feature space F . Thus, it is
not restricted to only the SVM method. Recent developments
focus on deep neural networks, which can identify the intrinsic
features behind the satellite imagery. For instance, in [59],
a cycle-consistent generative adversarial network to calibrate
a generator network for transcoding SAR images into the
optical image domain is implemented. The referred network
is then used to extract bitemporal deep features. In [60],
variational autoencoders were used to align the distribution of
deep features from different domains, from which one domain
consisted of labeled samples, whereas the other domain con-
tained nonlabeled samples. It is our belief that such networks
can be adapted to follow the DSS approach as a constraint in
the calibration process (i.e., a term in the loss function). On the
other hand, the MRP approach uses the quadratic programming
problem associated with the one-norm soft-margin SVM; thus,
it cannot be adapted to other classifiers.

Another issue to be considered is the implications of the
DSS and MRP approaches in their numerical implementation.
For instance, the sequential minimal optimization algorithm
(SMO) [61], a popular algorithm to solve the SVM opti-
mization problem, breaks the quadratic programming problem
[see (11)] into a series of smaller quadratic problems con-
sisting of only two Lagrange multipliers. In unusual cases,
when the two chosen Lagrange multipliers are associated
with two samples with equal feature vectors but different
labels, no improvement in the calibration is achieved. The
use of B−1 as training samples of class z = −1, as in the
MRP approach, strongly induces the occurrence of such cases
because of the number of nonchanged samples that it might
contain. As a result, the search for a suitable pair of Lagrange
multipliers may compromise the classifier’s performance in
terms of runtime. Conversely, the DSS approach uses only
samples from B−1 that is distant from the region where the
nonchanged samples are clustered. Thus, the runtime of the
DSS is lower than that of the MRP approach.

In Section II, we stated that the sizes of B1 and B−1 must be
balanced, and throughout the empirical evaluations, we used

Fig. 19. Effect of the ratio of size on the accuracy of the results for
(a) CS1 and (b) CS2.

the same size for both subsets. However, this is not strictly
necessary. Intuitively, #B−1 should be larger than #B1 since
B−1 is not entirely composed of one class. Fig. 19 reports
that the effect of the ratio #B−1/#B1 does not change the
accuracy scores significantly. The reason lies in the approach
that was used to define B−1: B−1 must contain the samples
that correspond to the largest demand parameter values in the
study area.

Regarding the calibration process, the two proposed meth-
ods, namely, DSS and MRP, require the tuning of two para-
meters each. However, for a nonlinear discriminant function,
at least one additional parameter (kernel γ ) must be tuned.
The optimal set of parameter values is selected from a range
of discrete values using (8). For the regularizations terms (λ
for the DSS and λp and λn for the MRP) and γ , which is
associated with the kernel function, a logarithmic grid from
10−2 to 102 was employed. For the parameter S from the DSS
method, a linear grid from 5% to 100% of the size of B−1

was used. If a grid array of N discrete values is used for each
parameter, then the discriminant function will be calibrated
N3 times. Thus, significant computational resources may be
necessary. Practical strategies are available for mitigating this.
For instance, the use of a linear discriminant function will
reduce the number of parameters to two, which will signifi-
cantly reduce the number of calibrations. In our experience,
the linear discriminator performs well for binary classification.
Another option could be to restrict the sizes of the subsets B1

and B−1 to a few thousand. For the particular case of the MRP
approach, if the following restriction is imposed, λp > λn , then
the number of calibrations reduces to about half.

Regarding CS3, namely, the case study of the
2018 Okayama floods, the numerical simulation of the
floods was conducted under the assumption of real-time
application, namely, only information that was available
at the time of the event was used. In addition, the grid
resolution was reduced to reduce the runtime. Thus, the few
constraints and the lower resolution were two of the reasons
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for the differences between our estimates and the flooded
area that was delimited by GSI. However, DSS and MRP
are robust under low-accuracy estimates of the demand
parameter. This is because the proposed methods are based
on the soft-margin SVM, which considers outliers that are
produced by the inaccuracy in the estimation of the demand
parameter, among other factors. Although not presented here,
our predictions could be used as additional constraints to
improve the numerical flood simulation. However, this is a
topic for another study.

V. CONCLUSION

This manuscript introduces the use of the demand parame-
ter, which quantifies the disaster intensity, to systematically
extract samples from remote sensing imagery and use them
to calibrate a change detection classifier. The demand para-
meter of each sample is estimated via instrumentation and/or
numerical simulation, which can be computed in real or near
real time. We propose the use of a demand parameter map
to group the samples into two subsets, where one subset is
composed of samples for which the geolocations experienced
low demand and the other subset is composed of samples
with medium and/or large demand. We assumed that the first
subset was mainly composed of nonchanged samples and
that the second subset was composed of both changed and
nonchanged samples. Under these constraints, two methods
are reported for calibrating a discriminant function. The first
method is composed of two main steps. First, the subset with
low demand is used to calibrate the discriminant function
using the one-class support vector machine (SVM). Second,
the discriminant function is improved using the other sub-
set. The second method uses a soft margin SVM with two
regularization parameters. In contrast to the standard SVM,
which employs one regularization parameter, the SVM with
two regularization terms can have different levels of tolerance
for the subsets, namely, the discriminant function will accept
few outliers from the subset that is composed of samples with
low demand while being highly flexible and accepting many
outliers from the subset that is composed of samples with large
demand.

The proposed methods were evaluated on three disasters:
the 2011 Tohoku earthquake–tsunami, the 2016 Kumamoto
earthquake, and the 2018 western Japan floods. In addition,
the feature space of each case study was constructed from
different types of remote sensing data. Backscattering inten-
sities from microwave imagery were used for the first case
study, Lidar-based DSMs were employed in the second case
study, and backscattering complex values from microwave
imagery were used for the third case study. The results were
of approximately the same level of accuracy as the results that
were reported in previous studies in which traditional machine
learning methods were employed. However, in contrast to the
other studies, our methods can be used in near real time.

In the aftermath of a large-scale disaster, the traditional pro-
cedure for extracting training samples represents the bottleneck
in the creation of a machine-learning-based damage map. The
automatic extraction of training samples is an open problem
in the use of machine learning for early disaster response.

Therefore, the relevance of our study is that it contributes to
solutions to events from which the disaster intensity can be
estimated.
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