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Impact of Beam Diameter and Scanning Approach
on Point Cloud Quality of Terrestrial Laser

Scanning in Forests
Meinrad Abegg , Ruedi Boesch , Michael E. Schaepman , Senior Member, IEEE, and Felix Morsdorf

Abstract— In recent years, portable laser scanning devices
and their applications in the context of forest mensuration have
undergone rapid methodological and technological developments.
Devices have become smaller, lighter, and more affordable,
whereas new data-driven methods and software packages have
facilitated the derivation of information from point clouds. Thus,
terrestrial laser scanning (TLS) is now well established, and
laser–object interactions have been studied using theoretical,
modeling, and experimental approaches. The representation of
scanned objects in terms of accuracy and completeness is a key
factor for successful feature extraction. Still, little is known about
the influence of TLS and survey properties on point clouds in
complex scattering environments, such as forests. In this study,
we investigate the influence of laser beam diameter and signal
triggering on the quality of point clouds in forested environments.
Based on the Swiss National Forest Inventory data, we simulate
the TLS measurements in 684 virtual forest stands using a 3-D
content creation suite. We show that small objects lack sufficient
representation in the point cloud and they are further negatively
influenced by large laser beam diameters, dense stands, and large
distances from the scanning device. We provide simulations that
make it possible to derive a rationale for decisions regarding the
appropriate choice of TLS device and survey configuration for
forest inventories.

Index Terms— Forest inventory, occlusion, simulation, stem
diameter distribution.

I. INTRODUCTION

FORESTS cover more than 30% of the global land area,
serving as a source of livelihood, protecting soil, water,

and infrastructure, holding more than 75% of the world’s
terrestrial biodiversity, and providing a multitude of ecosystem
services [1], [2]. Notably, forests play a vital role in carbon

Manuscript received May 23, 2019; revised August 30, 2019 and February 3,
2020; accepted October 10, 2020. Date of publication December 8, 2020;
date of current version September 27, 2021. This work was supported by the
Swiss National Forest Inventory (LFI). The work of Michael E. Schaepman
and Felix Morsdorf was supported by the University of Zurich’s Research
Priority Program on Global Change and Biodiversity. (Corresponding author:
Meinrad Abegg.)

Meinrad Abegg is with Forest Resources and Management Unit,
Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
CH-8903 Birmensdorf, Switzerland (e-mail: meinrad.abegg@wsl.ch).

Ruedi Boesch is with Land Change Science Unit, Swiss Fed-
eral Institute for Forest, Snow and Landscape Research WSL,
CH-8903 Birmensdorf, Switzerland.

Michael E. Schaepman and Felix Morsdorf are with Remote Sensing Lab-
oratories, Department of Geography, University of Zurich, CH-8057 Zürich,
Switzerland.

Digital Object Identifier 10.1109/TGRS.2020.3037763

storage [3]. To ensure sustainable management of forests,
monitoring is crucial. Forest mensuration provides a large
toolset to acquire information on forests, from remote sensing
to field measurements on systematic grids in the case of forest
inventories. Even though remote sensing covers many aspects
of forest monitoring, field measurements are still essential,
providing data not measurable by remote sensing or serving
as ground truth to calibrate remote sensing products such
as wall-to-wall maps of forest features (see [4]). However,
certain forest features, such as light availability, crown size,
forest structure, and tree volume, are nearly impossible to
measure with traditional approaches or only at a very high cost.
They are based either on models (e.g., tree volume models)
or on expert assessments (e.g., forest structure). The fast
development of efficient and lightweight close-range remote
sensing technologies in recent years, such as terrestrial laser
scanning (TLS) and their applications, raises the question
of their applicability for forest mensuration, e.g., in forest
inventories [5].

New measurements must be evaluated in terms of
efficiency, precision, and the quality of the newly acquired for-
est information. For close-range scanning applications where
ground truth is difficult to acquire [6], one established way to
evaluate this technology is the use of simulation approaches
(see [7]–[10]). Once a simulation environment is established,
it is possible to test many configurations in short time frames.
A major advantage of simulation is the possibility to conduct
sensitivity studies by comparing different configurations of the
same object [11]. The simulation environment is merely an
abstraction of reality, and consequently, the representativeness
of the virtual scene and the implemented LiDAR technology
has to be considered carefully.

The application of laser scanning technologies is dependent
on many factors, such as laser geometry properties and the
interaction of light with the object surface [12]. Adams and
Kerstens [13] and Newnham et al. [14] pointed to the phe-
nomenon of “mixed pixels” (edge noise), which occur when
a pulse emitted by a laser scanner hits more than one object
in its path, may leading to false range measurements. Some
authors (see [15], [16]) describe different approaches for signal
triggering in time-of-flight systems. Newnham et al. [14]
mentioned “range averaging” in phase shift laser scanners in
case of mixed pixel situations. Furthermore, some approaches
exist to simulate the characteristics of various laser scanning
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technologies (see [12], [17]), but they are mostly focused on
airborne laser scanning systems with large beam diameters
and full waveform information (time-of-flight systems). The
specific peculiarities of terrestrial laser scanners, phase shift,
or time-of-flight systems, working with small laser diameters
are mostly unknown even though certain information, such as
the intensity pattern of the LiDAR reflections, is sometimes
known (see [18], [19]). These publications indicate that there is
a gap between theory and real implementation in laser scanners
regarding details in signal triggering. In addition, producers
of terrestrial laser scanners keep the technical details of the
implemented LiDAR technology as industrial secrets.

The goal of this study is to use a simulation approach to
understand specific effects, e.g., influence of signal triggering,
diameter of the laser beam, or size of the scanned object, on the
application of TLS in complex environments, such as forests.
We hypothesize that depending on certain properties of the
LiDAR device, such as the diameter of the laser beam or the
signal triggering approach, there are clear limits to the ability
of point clouds to contain accurate geometric information on
scanned objects.

In order to conduct this simulation study, we analyze
the main “mixed pixel” effects of three TLS devices in
experiments performed in a laboratory setting with respect
to signal triggering, omission of echoes during scanning, and
deviation of scan points from object surfaces, integrate these
system effects to a laser scanning simulation environment, and
conduct a simulation study using different forest stand charac-
teristics by simulating laser scanners with different laser beam
diameters and signal triggering approaches (including distance
deviation and filtering), ultimately leading to recommendations
for suitable TLS objectives and detectable object (tree and
branch) sizes.

II. MATERIALS AND METHODS

A. Simulating Laser Scanning With Blender

Blender [20] is an open-source 3-D content creation suite.
It is designed to easily build digital 3-D objects and their
light-interaction properties. It usually generates photorealistic
images or animations as output. Blender provides a large
toolbox to define, manipulate, and store 3-D objects. As in
one of our previous studies [21], we used Blender version
2.74 and fully controlled the simulation using python scripts
(Version 2.7.13).

BlenSor is an add-on for Blender that allows access to
an internal part of Blender and hence provides the basics
to simulate various types of range scanners and other optical
instruments [22]. It enables an efficient intersection of mathe-
matical vectors (rays) with 3-D objects defined in Blender and
returns the range and the incidence angle on the object surface.
Similar to Monte Carlo ray-tracing approaches (see [23]–[25]),
single rays of light (photons) can be traced on their way
through a virtual scene.

If the geometric properties, i.e., the diameter at exit and
the divergence, of the laser emitted by a laser scanning
system are known, this ray-tracing capability can theoretically
be used to simulate any kind of LiDAR sensor. To do so,

TABLE I

BEAM DIAMETERS AND DIVERGENCES OF DIFFERENT

DEVICES ACCORDING TO THE 1/e2 DEFINITION

multiple photons (light rays) can be sampled within one laser
beam cone. Following an assumed distribution of energy (e.g.,
Gaussian-shaped), the sampling density can be varied within
the laser beam. If it is known exactly how a laser scanner
uses the backscattered light to trigger one or multiple echoes,
an implementation in Blender enables a realistic laser scanning
simulation.

B. Analysis of Terrestrial Laser Scanners

1) Tested Devices: We tested three different portable state-
of-the-art terrestrial laser scanners with beam properties (beam
diameter at exit and beam divergence), as shown in Table I.
The Leica BLK360 uses the “time of flight enhanced by
waveform digitizing technology” [26]. It triggers one point
per laser pulse and offers a field of view of 360◦ horizontally
and 300◦ vertically. It measures 100 mm in diameter and
165 mm in height, with a weight of 1 kg. It has a range
of 0.6–60 m [26]. The FARO Focus3D 120 is a phase shift
system that sends out a modulated laser beam to trigger a
single echo per direction. It offers a field of view of 360◦
horizontally and 305◦ vertically, leaving only a small spot
beneath the scanner uncovered. Various scan parameters can
be adjusted, including the angular resolution and the point
cloud quality parameters. It measures 240 × 100 × 200 mm,
with a weight of 5 kg. It has a range of 0.6–120 m [27]. The
Riegl VZ-1000 is a time-of-flight system, with the ability to
capture multiple points per laser pulse and options to provide
full-wave data. It offers a field of view of 360◦ horizontally
and 100◦ vertically. The scanner, measuring 200 × 203 ×
308 mm and with a weight of 9.8 kg, has a wide range of
adjustable settings, including pulse repetition frequency and
angular resolution. It has a range of 2.5–1400 m [28].

2) Experimental Laboratory Setup for the Analysis of Mixed
Pixel Effects: We evaluated mixed pixel effects that emerge
when two separated objects are intersected by one laser beam
cone. This enables us to derive models of point triggering
functionalities and describe the most important mixed pixel
effects of the examined devices. As preparation, we conducted
various test scans with different setups of obstacles at dif-
ferent distances to infer a suitable experimental setup. The
final experimental setup is listed in Table II. These setups
capture the most important noise effects, previously observed
in our data.

As shown in Fig. 1, we placed two objects in the field of
view of the scanner: one (obstacle 1) closer to the scanner
and the other (obstacle 2) farther away. Obstacle 1 has two
horizontal edges at the same height: one is a top edge and
the other is a bottom edge. Because edge noise in the point
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Fig. 1. Setup of lab experiment to analyze edge noise effects of terrestrial
laser scanners. Two obstacles are placed at a known distance (“obstacle
distance”) from each other, in such a way that effects on the point triggering
of laser beam cones hitting the two objects can be analyzed. (Left) Side view
of the experimental setup when a laser pulse intersects with obstacle 2 and the
lower part of obstacle 1. (Right) Footprint of two laser pulses on obstacle 1,
both hitting the obstacles with approximately 50% of the beam energy. The
laser pulses on the left (and top) part of obstacle 1 are only used to derive
the height of the horizontal edge. The laser pulses on the right (and bottom)
part are used for both, the derivation of the horizontal edge height and the
analysis of the edge noise effects.

TABLE II

SETUP OF THE OBSTACLES FOR THE LAB EXPERIMENTS

cloud at these edges is symmetric, the edge height can be
derived from the point cloud directly by comparing the edge
noise patterns at the bottom and the top edge. With the known
beam diameter at the distance of the obstacle, the amount of
laser beam energy hitting the two obstacles can be calculated.
The obstacles’ surfaces are white sheets of paper with an
appropriate thickness to ensure a flat surface.

3) Model Description of Signal Triggering: In this section,
we describe the derivation of signal triggering models based on
the lab experiments outlined in Section II-B2. Generalized for
multiple obstacles, these models can be applied to a simulation
study.

As mentioned in Section II-A, the LiDAR simulations,
as applied in this study, can only make use of distance
measurements to objects with the corresponding energy ratios
of simulated laser beam cones hitting them. Hence, the models
derived from the lab experiments also rely on these two
parameters.

To know which points in the point cloud are based on laser
pulses hitting the two objects, the energy ratio of the laser
pulse on the two objects was calculated. For this purpose,
the size of the laser footprint on the object must be known.
Even though only explicitly provided for Riegl [28] and partly
for FARO [27], we assumed the laser beam of all three devices

to be circular with a Gaussian-shaped energy distribution.
As the three devices use different units to describe the laser
beam diameter, we calculated them according to the “1/e2”
standard, as described in (1). All the standards provide a means
to describe the ratio of the maximally irradiating energy across
a laser beam diameter, which is used to define the width
between two opposite points where this irradiance ratio is
reached

DB(1/e2)
= √

2DB(1/e) = 1.699 ∗ DB(FWHM) (1)

where DB(1/e2)
is the diameter according to the “1/e2” standard

(maximum irradiance/e2), DB(1/e) according to the “1/e” stan-
dard (maximum irradiance/e), and DB(FWHM) according to the
“full-width at half-maximum (FWHM)” standard (maximum
irradiance/2). Assuming a Gaussian-shaped energy distribu-
tion, the “1/e2” range within the laser beam contains 95.45%
of the energy, covering two times the standard deviation of the
Gaussian-distributed energy.

By using a Gaussian distribution function with the expecta-
tion value (μ), the standard deviation (σ ), and a quantile (q),
the energy ratio on the objects can be derived.

a) Leica BLK360: An examination of Leica
BLK360 point clouds revealed noise in only very few
exceptional cases and no noise at all in the specific setup of
the lab experiments. Consequently, we did not derive a noise
model. However, as we saw in our analysis (see Fig. 4),
the Leica scanner only triggers one echo per laser pulse
and does perform a filtering of the point cloud. Because the
filtering is executed during the scanning, we refer to it as
prefiltering to distinguish it from the filtering of the point
cloud as part of processing after the scanning.

For our model derivation, we used laser pulses intersecting
the two obstacles with an energy ratio slightly above twice the
standard deviation of the energy distribution (from 2% to 98%
of the laser beam energy on the two obstacles). A prefiltering
model is represented by the probability that an echo (or signal)
is triggered (referred to here as “signal triggering probability”).
Thus, we derived a model for the signal triggering probability
based on the Leica scanner lab data. To obtain the true value
of the signal triggering probability, we built equal bins of
vertical scan angles and counted the number of points in each
bin. An approximation of the triggering probability equals the
ratio of the point number per bin to the mean point number
in bins without prefiltering. To derive a suitable model for
the triggering probability, we only need to analyze the energy
ratios ≥50% because if the energy ratio of the laser pulse on
one of the two obstacles is lower, the point is triggered on the
other object (or not at all).

The basis for the signal triggering probability model is a
logit function in the following equation:

p = 1

1 + e−L
(2)

where p is the triggering probability and L is a function of
the energy ratio of the laser on an obstacle.

The model was fit empirically in the following form, where
El is the ratio of energy of the laser pulse on the object that
obtains the most energy, Do is the positive distance in meters
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Fig. 2. Side view of point clouds from Riegl VZ-1000 (bottom row) and FARO Focus3D 120 (top row) scanners when the laser beam cones of the scanners
intersect with two obstacles. The green dots indicate the triggered echoes (scan points). The blue solid line indicates the center of the view line from the
scanner over the edge, and the blue dashed (dotted) lines indicate twice (four times) the standard deviation of the Gaussian-shaped laser beam footprint.
Vertical gray bars indicate the positions of the obstacles.

to the closest neighboring obstacle (and a minimal value of
at least 1), α = 1.02, β = −0.11, and γ = 90. γ is used to
stretch the model in the x-direction, whereas α and β shift
the curve in the x-direction, both influencing the obstacle
distance Do

p = 1

1 + e−(El−α+βDo) γ
Do

. (3)

b) FARO Focus3D 120: As shown in Fig. 2, the FARO
scanner applies four different signal triggering functionalities.

i Common Distance Measurement: A single object placed
within the laser beam cone.

ii Distance Deviation Through Lack of Object Separation:
The distance is the weighted mean distance of two
objects because the following conditions hold: iiA the
objects are too close to each other for separation or
iiB the objects obtain a nearly identical amount of laser
energy and are set wide apart.

iii Distance deviation through ambiguity in distance mea-
surement.

iv No signal triggering (filtering).

i) First, when the laser beam cone intersects with only a
single object, no specific triggering model is needed because
the distance to the point in the point cloud is the unambiguous
distance measured by the laser.

iiA) Second, when the laser beam intersects with two
obstacles that are close to each other (0.5 m or less), the scan-
ner does not identify them as separate objects. The distance
delivered by the scanner appears to be a weighted mean
distance. To derive the model of the distance measurement,
we included all points that originated from laser pulses hitting
the two obstacles in the lab experiments with at least 2% of

the laser energy. Only the lab experiments where the obstacle
distance was between 0 and 0.5 m were selected. We assumed
a weighted distance to the two obstacles, as shown in the
following equation:

Dp = D(1)eαE(1) + D(2)eαE(2)

eαE(1) + eαE(2)
(4)

where Dp is the distance between the scanner and the point,
D(1) and D(2) are the distances from the scanner to the two
obstacles, E(1) and E(2) are the ratios of the energy on the
respective obstacles, and α = 4.37 is the parameter that
resulted from the nonlinear least-squares fit of the model.

iiB) Another effect of a lack of object separation occurs
when the laser energy on the two obstacles is nearly identical
and the obstacle distance is at least 1.8 m. We assumed a
weighted mean distance, where the respective laser energies
on the two obstacles Elo serve as the weights

Dp = Do1 ∗ Elo1 + Do2 ∗ Elo2

Elo1 + Elo2

. (5)

iii) Third, the other case of distance deviation seems to be
dependent on the obstacle distance. The distance deviation
oscillates around the edge toward the scanner and away
from it. To fit a model, we selected points from around the
edge of obstacle 1 of the lab setups with object distances
greater than 0.5 m. We assumed, based on effects observed
in lab experiments, that the distance deviation depends on a
sinusoidal weighted obstacle distance and on the energy ratio
of the laser beam on the obstacle. Hence, we set up the model
for the distance deviation �D as follows:

�D = −1 ∗ sin
(

Do−0.5
α

2π
)

β
∗ e

γ
El (6)
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where Do is the obstacle distance (see Fig. 1) and El is the
energy ratio of the laser pulse on the obstacle. α gives a weight
to the obstacle distance, whereas β weights the sinusoidal
effect and γ weights the energy ratio of the laser beam. The
latter leads to the effect that the stronger the laser beam hits
the object, the smaller the distance deviation becomes. The
nonlinear least-squares model fit ended up with α = 1.324,
β = 65180, and γ = 5.792.

iv) Fourth, the last effect we observed in our data (see
Fig. 4) is that in certain cases, the FARO scanner does not
trigger signals at all, hence prefiltering mixed pixel points
with too much ambiguity. This is the case when obstacles
are at least 0.6 m apart (meaning that they are identified as
separate objects) and the laser energy on both objects is of
similar intensity. We assume prefiltering when the energy on
the two objects is within the range of 50% ± 20%, based on
the observations of the lab data.

c) Riegl VZ-1000: The Riegl VZ-1000 scanner has more
complex noise patterns than the FARO and the Leica scanner.
This could be due to its ability to trigger multiple echoes from
one laser pulse. To describe the noise patterns mathematically,
we need to know the exact beam diameter of the Riegl
scanner. However, for the Riegl VZ-1000, there is no such
specification, neither in its technical specification sheets nor
in its manual [28]. The point cloud, however, shows that
the scanner produces noise up to 21 mm above the edge of
obstacle 1 (see Fig. 2). We assumed a beam diameter at exit
of 18 mm (1/e2), as officially specified for the Riegl VZ-4000.
In the point cloud of the Riegl VZ-1000 scanner, we observed
the following signal triggering functionalities (see Fig. 2).

i Common Distance Measurement: A single object lies in
the laser beam cone.

ii Common Distance Measurement of a Laser Pulse Hit-
ting Two Objects: The laser energy on the first object is
above 50%.

iii Multiple signal triggering.
iv Distance deviation through lack of object separation.
v Distance deviation when separate objects are identi-

fied with specific. patterns for: obstacle 1 (vA) and
obstacle 2 (vB).

i) First, when the laser beam cone intersects with only a
single object, no specific triggering model is needed, and the
distance of the point in the point cloud is the unambiguous
distance measured by the laser.

ii) Second, as shown in Figs. 2 and 4, the Riegl scanner
triggers the points on the surface of obstacle 1 if the laser
energy reaching it is at least 50% (assuming an equal reflec-
tion). Besides this threshold, no specific model needs to be
developed.

iii) Third, when the laser beam intersects with the two
obstacles, and with obstacle 1 with less than 50% of the laser
energy, the probability of triggering two points per laser beam
appears to be 100% when the obstacles are at least 1.5 m apart.
However, if it is between 0.7 and 1.5 m apart, the probability of
triggering two points rises from 0 to 100%, but still only when
the laser beam energy on obstacle 1 is less than 50%. The
model for the probability of triggering an additional point for
obstacle 1, hit with less than 50% of the energy and an obstacle

distance of 0.7 and 1.5 m, is the following, with α = 0.51 and
β = 2.7 (nonlinear least-squares fit):

Pt = 1 + α
E(1) − 0.5

D(2) − D(1)
e

1
(D(2)−D(1) )β . (7)

iv) Fourth, when the obstacles are closer to each other than
0.7 m, and in cases where there is no multiple triggering up
to an obstacle distance of 1.5 m, the Riegl scanner does not
appear to distinguish between separate objects and calculates
a weighted mean, similar to the FARO scanner. To capture
the effect of the “mean distance,” we fitted a nonlinear least-
squares model only for the lab data where obstacles were
0.7 m or less apart, as the separation of single and multiple
triggered signals between obstacle distances of 0.8 and 1.6 m
is difficult, whereas the model presumably remains the same.
The resulting model is similar to the model in (4) of FARO,
with α = 4.1

Dp = D(1)eE(1) + D(2)eα(E(2)−0.5)

eE(1) + eα(E(2)−0.5)
. (8)

v) Fifth, once Riegl identifies separate objects, it reveals
various patterns of distance deviation (noise pattern) on the
two obstacles. To clarify these structures, we separated them
from the two obstacles.

vA) If a laser pulse hits obstacle 1 with less than 50% of
the energy and a signal is triggered [see model 3)], the points
show a specific noise pattern (see Fig. 2). Besides a distance
deviation, there is a deviation perpendicular to the laser beam
based on the fact that the center of the laser beam is no longer
on the object.

We derived an unbiased Gaussian-distributed distance devi-
ation, with a standard deviation of 0.02 m if the obstacles are
between 0.7 and 1.1 m apart. If the obstacles are farther apart,
the distance deviation from obstacle 1 (�D) has the following
shape (α = 27.8, β = 0.012, and γ = −0.50):

�D = β

1 + eα(−E(1)+γ )
− β (9)

with a model for the distance uncertainty (standard deviation)
σ�D

σ�D = γ + 1

αEβ
(1)

(10)

where α = 1394, β = 0.72, and γ = 0.0022.
vB) Due to the fact described in ii, only points with laser

energy ranging from 50% to 100% on obstacle 2 are triggered
for obstacle 2. The distance deviation from obstacle 2 for
obstacle distances between 1.1 and 1.8 m is split into two
parts: one distance deviation toward the scanner and one away
from it. The distance deviation for obstacle distances between
0.7 and 1.1 m is not modeled separately because of difficulties
in separating it from the points modeled under iv. The distance
deviation was fitted with a nonlinear least-squares approach for
the following equation:

�D = α(1 − e−βE(2) ) − α. (11)

The noise part toward the scanner obtained α = 1.3 and
β = 4.7, and the noise part away from the scanner obtained
α = −0.46 and β = 2.4. The corresponding uncertainty for
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the distance deviation toward the scanner was fitted with the
following model, with the result that δ = 0.0089 and γ = 2.9:

σ�D = δ
1

Eγ
(2)

. (12)

The uncertainty for the distance deviation away from the
scanner resulted in α = 0.00051, β = 0.0099, and γ = 13.2 for
the model

σ�D = β + α
1

Eγ
(2)

. (13)

Beyond an obstacle distance of 1.8 m, we observed a
constant distance noise depending on the energy on obstacle 2,
as in (12), with α = 0.01 and γ = 2.4.

C. Simulation Study: Laser Scanning for Forest Inventories

1) Stand Models Based on Swiss National Forest Inven-
tory (NFI) Data: Swiss NFI data are collected on a systematic
grid covering the entire country. This makes it possible to
make a statistical inference regarding population values, such
as wood volume, for the area of interest, e.g., for a whole
country [29]. Since 2009, field measurements for the Swiss
NFI have been conducted on nine systematic subgrids of equal
size. This enables representative evaluations of either single or
combined grids.

As in an earlier study [21], we used information about the
measured trees with heights of at least 1.3 m to derive stand-
describing parameters in the form of a Weibull distribution.
The variability of the derived stand descriptions covers all the
possible stand parameters that are likely to occur in Swiss
forests and includes some extreme values as well.

2) Stand Models for Simulation: We implemented the stand
models in the same manner as in one of our previous stud-
ies [21], using Blender and the stand parameters to set up
cylinders as a proxy for tree stems, with a position and a
diameter, for a horizontal scan. Mixed-signal effects are based
on laser beams hitting multiple objects, and the goal is to
have the same for cylinders at the edge of the sample plot.
We therefore at least doubled the edge length of our square
sample plots compared with the size of the plot we used for the
evaluation. Because the time needed for the definition of new
cylinders increases exponentially, we limited the number of
cylinders in a scene to 4000, unlike in [21]. However, in order
to simulate dense stands as well, we applied simulations to two
different rectangular plot sizes, with edge lengths of 23 and
100 m, to evaluate plots with the edge lengths of 10 m for
plots with tree densities above 4000 trees per hectare and with
50-m edge lengths for plots with tree densities below
4000 per hectare.

3) Signal Triggering Models: The goal of the simulation
study is to simulate the most important effects when laser
beam cones of TLS systems intersect with multiple objects.
In this section, we describe the approaches used to simulate
TLS systems based on our lab observations. As mentioned in
Section II-A, we sampled the footprint of a circular-shaped vir-
tual laser pulse based on a Gaussian-shaped density across the
beam energy distribution. In Blender, one can set the angular
resolution in longitudinal or latitudinal directions. In our study,

we set both angular resolutions to 0.04◦. The sampling rate for
one laser pulse was set to 300 sampled distances. The sampling
rate has an influence on the sensitivity of the simulated laser
scan at the fringes of the laser footprint. For our simulation
study, we implemented different kinds of models derived from
the lab tests but also some theoretical approaches as a “base-
line” for comparison purposes. All the models have in common
that they deliver a distance from the scanner. Knowing the
longitudinal and the latitudinal direction of the laser beam
center, the combination with the distance to the scanner makes
it possible to calculate a point in the point cloud.

The first step in the simulation of signal triggering was to
identify possible objects for each laser pulse based on the
range measurements of the samples (n = 300) within the
respective laser beam cones. For this purpose, we counted
the number of range measurements within a 0.2 m window,
moved in 1 mm steps from the minimal measured distance
within the laser pulse to the maximal measured distance.
Within this array of 1-mm steps, we identified the local
maxima. These local maxima, their locations, and the number
of samples assigned to them provide a rudiment of objects,
their ranges, and the amount of laser pulse energy hitting them.
In this study, these rudiments of objects are named “proto-
objects.” The amount of laser energy hitting a proto-object
(referred to as EI ) is the ratio of the number of range samples
closest to the respective proto-object (local maximum) to the
total number of distance measurements sampled within one
laser pulse.

a) Geometric scanning: “Geometric scanning” is a the-
oretical approach that stands for a scanner with an infini-
tesimally small laser beam diameter. In the simulation, this
means that one only samples the main direction of the virtual
laser beam with one sample. This distance measurement is
not subject to any distance deviation or other noise effect.
It serves as a “baseline” to compare the performance of the
other scanning approaches.

b) Mean distance: The “mean distance” scanner is a the-
oretical approach as well. It represents a very primitive (nonex-
istent) LiDAR scanner that simply produces a mean distance
to the obstacles that are hit by a laser pulse. It serves as a
“worst case scenario” comparison with the other approaches.

c) L-system: A Leica-like LiDAR simulation: The lab
experiments of the Leica BLK360 scanner reveal only pre-
filtering as an effect of laser pulses hitting multiple objects.
Prefiltering of points produced by a laser scanner is always
based on ambiguous backscattered signals from a LiDAR
distance measurement. Ambiguous signals reduce the prob-
ability of triggering a signal. We implemented a prefiltering
model, i.e., a model for triggering probability based on the
lab data from the Leica BLK360 scanner (see Section II-B3).
In the simulation, the prefiltering model first derives the proto-
objects for each laser pulse. If there is only one proto-object
within one laser pulse, the distance to that object is taken
directly. If multiple proto-objects are in the way of a laser
beam, the model checks the triggering probability for the
proto-object that obtained the most energy from the laser pulse,
according to the triggering probability function in (3). The
input parameters for the model are the energy ratios of the
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Fig. 3. Decision tree on signal triggering of R- and F-system. Op are the
proto-objects, and E p is the according energy ratio on each proto-object. Oid
are the identifiable objects, whereas one Oid can be composed of either one
or several Op . Eid is the cumulative energy ratio on all Op within each Oid .
Procedures i, ii, iii, iv, vA and vB for the R-system and i, iiA, iiB, iii and iv
for the F-system, are described in the text.

laser pulse on this proto-object (EI ) and the distance to the
closest neighboring proto-object Do. However, we limited the
values of Do to a minimum of 1 m and a maximum of 8 m
to produce plausible probabilities with the trigger probability
function.

d) F-system: A FARO-like LiDAR simulation: We imple-
mented the observed scanner properties in the following man-
ner in order to handle multiple objects in the direction of the
laser beam (see Fig. 3). The bases for applying the models
are the “proto-objects,” with their corresponding distance and
energy ratios of the laser pulse reflected by each object.
According to our observations, the FARO scanner does not
separate objects within one laser pulse that are less than
0.55 m apart but treats them as one [the threshold lies
between 0.5 and 0.6 m, according to the laboratory tests,
see Fig. 2 (left)]. Therefore, we grouped the proto-objects
together if they were less than 0.55 m apart and called them
“identifiable-objects.” Within these groups, we summed the
reflected laser energy and calculated the mean distance to
the proto-objects within the groups. We observed that the
FARO scanner only triggers one signal per range measurement.
Because this happens on the object that reflects the most
energy, we selected the identifiable-object with the most laser
energy. In cases where multiple objects had the same amount
of energy, we selected the one closest to the scanner. In addi-
tion, we selected the identifiable object with the second most
energy reflection. As the last preparatory action, we calculate
the average energy of all the identifiable objects. Based on this

information, we implemented the following triggering models
(see Section II-B3).

i) If there is only one proto-object in the laser beam cone
for the range measurement, this distance is taken.

iiA) If the identifiable object with the most energy is com-
posed of multiple proto-objects, the weighted mean dis-
tance of the proto-objects according to (14) is calculated
(α = 4.37). This distance might be subject to prefiltering.

Dp =
∑n

i=1 D(i)eα(E(i)−0.5)

∑n
i=1 eα(E(i)−0.5)

(14)

where Dp is the distance between the scanner and the
point, D(i) are the distances from the scanner to the n
proto-objects, and E(i) are the ratios of the laser energy
on the respective proto-objects.

iiB) If all identifiable objects are farther from each other than
1.8 m and reflect a laser beam energy that is within ±5%
of the average energy on all identifiable objects, a simple
mean distance, weighted by the respective energies of
the identifiable objects, is calculated according to (5).

iii) If the identifiable object with the most energy contains
only one proto-object, but the laser beam cone intersects
with multiple identifiable objects, the distance measure-
ment is subject to a distance deviation according to the
model described in (6). As the distance between the
obstacles (Do), the distance between the two identifiable
objects with the most energy is taken. The laser pulse
energy can also be distributed across more than two
objects, and the model input of laser energy was there-
fore adjusted so that the possible range of energy on the
identifiable object is 70%–100%, which are the energy
values that the model is fitted on. The slight intercept
of this model when 100% of the energy is reached
is removed from the distance deviation. In addition,
the amount of energy (El) is set to a minimum of 70% so
that the derived model produces plausible values. These
signals are subject to prefiltering as well.

iv) Prefiltering: If the energy of the identifiable object with
the most energy is less than the average energy of all
identifiable objects plus 20%, no signal is triggered.
The idea behind this approach is, with reference to
observations in the lab experiments, that if the energies
on the objects are too close to each other, the scanner
omits the echo. Thus, we assume that if the identifiable
object with the most energy is too close to the average
energy, ambiguity has been reached for the scanner.

e) R-system: A Riegl-like LiDAR simulation: Fig. 3 shows
the implemented signal triggering for the Riegl like system.
Similar to the FARO scanner, there is a minimal distance
at which the Riegl device does not appear to distinguish
between two objects. In the lab experiments, this threshold
is very clearly visible up to an obstacle distance between
0.7 and 0.8 m. Therefore, we grouped proto-objects that were
closer to each other than 0.75 m into “identifiable-objects”
and calculated their mean distance to the scanner and the
energy ratio of the laser beam hitting the proto-objects within
each identifiable-object. However, also beyond this distance
up to 1.5 m, depending on whether the scanner performs
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Fig. 4. Prefiltering and multiple triggering from lab tests of three different
scanners [(Top) Leica BLK360, (Middle) FARO Focus3D 120, and (Bottom)
Riegl VZ-1000]: point densities per scanning angle (theta) from multiple
experimental setups as a function of obstacle distances. The blue solid line
shows the view line of the scanner at the edge height of obstacle 1. The blue
dashed line represents the footprint (using 1/e2) when the beam center is
at the edge height of obstacle 1. Colors on the vertical bars indicate point
densities.

multiple triggering, the Riegl scanner does not appear to
distinguish between these obstacles, with decreasing proba-
bility. For multiple-signal triggering, we checked whether the
identifiable objects are closer to each other than 1.5 m. In the
lab experiments (see Fig. 4), the Riegl scanner always triggers
multiple signals when obstacle distances are beyond this value.
When they are smaller, it triggers with increasing probability.
We implemented the following signal triggering models for
the R-system (see Section II-B3).

i) If the laser pulse for the range measurement hits only
one object, the range measurement to that object is used
to directly calculate the coordinates of the point.

ii) In the lab experiments (see Figs. 2 and 4), the Riegl
scanner triggers a point clearly on the first obstacle

that the laser beam hits, as long as the laser beam
energy on this obstacle is above 50%. Consequently,
we implemented the same logic for either the proto-
objects or the identifiable objects, with their specifically
calculated distances [see iv)].

iii) Multiple-signal triggering is implemented as follows
[considering ii)]. As shown in Fig. 4, the Riegl scanner
always triggers a signal for each obstacle if they are
farther from each other than 1.5 m. We implemented
this rule for each “identifiable object.” However, when
the obstacle distance is between 0.7 and 1.5 m, the prob-
ability of triggering signals for separate obstacles con-
tinually rises from 0% to 100%. The implementation
of multiple-signal triggering for groups of identifiable
objects when they are between 0.7 and 1.5 m apart is
as follows. The identifiable object with the most energy
is definitely triggered. The probability (p) of triggering
a signal for the other obstacles (identifiable objects) is

p = 1 + α ∗ (Ewithin − 0.5) ∗ 1

Dmeo
∗ expD−β

meo (15)

where α = 0.51, β = 2.7, Ewithin is the relative energy
of the laser pulse on all identifiable objects that are
0.7–1.5 m apart and are intersected by one laser pulse,
and Dmeo is the distance to the identifiable object with
the most energy. When p is below 0, it is set to 0.

iv) The lab experiments indicate that obstacles closer to
each other than 0.75 m are not distinguished as sepa-
rate objects. Also, beyond that obstacle distance, up to
1.5 m, the scanner does not appear to always distin-
guish between separate objects, although with decreas-
ing probability. This probability appears to be connected
to the triggering of multiple signals with one laser pulse.
Thus, if the scanner identifies separate objects, it triggers
points for each obstacle; otherwise, it treats them as the
same object. In that case, the scanner interprets multiple
proto-objects as a single object and calculates a weighted
mean distance. We implemented the calculation of the
weighted mean distance to the obstacle Dp based on (8)
in the following way:

Dp = D(1)eE(1) + ∑n
i=2 D(i)eα(E(i)−0.5)

eE(1) + ∑n
i=2 eα(E(i)−0.5)

(16)

where D(i) are the distances from the scanner to the (1 to
n) obstacles and E(i) is the amount of laser pulse energy
on the (1 to n) obstacles, with α = 4.08.

vA) The obstacle closest to the scanner shows two patterns
of distance deviation for points triggered from laser
pulses intersecting the obstacle with less than 50% of the
energy and hence with their center not on the obstacle
itself. Depending on the distance to the next obstacle,
this distance deviation gradually develops a specific
pattern (see Fig. 2). We split this gradual development
into two specific patterns: one for obstacle distances
below 1.15 m and one for obstacle distances beyond
1.15 m.
At obstacle distances below 1.15 m, we assumed a
constant normally distributed distance deviation with
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a standard deviation of σ = 0.02 m. For obstacle
distances beyond 1.15 m, a distance deviation is directly
implemented with (9) for the shape and with (10) for the
uncertainty.

vB) Fig. 2 shows different distance deviation patterns on
obstacle 2. To be close to the output of the lab experi-
ments, we implemented the distance deviation pattern
as follows. The case where obstacles cannot be dis-
tinguished is already treated under iv). Once multiple
triggering takes place, a gradual change occurs in the
pattern of obstacle distances from 0.7 to 2 m, beyond
which it appears to remain constant. We thus imple-
mented the distance deviation pattern for the obstacles
that are not hit first by the laser pulse with two models:
one for obstacle distances below 2 m and another for
obstacle distances above 2 m. For the distance deviation
of identifiable obstacles with a distance of less than
2 m to the next object, we split the range measure-
ments into two equally sized groups: one deviating
toward the scanner and the other away from the scanner.
For the shape of these distance deviations, we used (11)
and the corresponding standard deviations in (12)
and (13) for a Gaussian-shaped distance uncertainty of
the deviation toward the scanner and away from it. When
the laser energy E(l) on one of the objects drops below
50%, it is set to 50%.
If an identifiable object is at least 2 m away from the
next object, (12) is used again, with α = 0.01 and
γ = 2.4 for an unbiased distance noise, dependent on
the energy on the respective object.

4) Simulated Laser Scanner Types and Beam Proper-
ties: We implemented the above-described LiDAR simulation
approaches, except for the “geometric scanning,” with beam
diameter sizes at exit (1/e2) of 3, 18, and 50 mm, following
the diameters described in Table I. The idea was to have a
small and a large TLS version and a diameter that represents
a footprint of a drone-mounted LiDAR scanner. As a beam
divergence, we implemented 0.3 mrad for all simulations.

5) Simulation Control, Data Preparation, and Statistical
Analysis of Simulation Output: The simulations were imple-
mented in Blender [20], as adapted in [22] and described
in this publication. We used Blender to simulate diameter
distributions from one annual panel (representative grid) of
the Swiss NFI, as described in [21]. Each of these scenes was
virtually scanned with the abovementioned scanner models
with different beam diameters. This led to a total of 8890 2-D
point clouds. For the evaluation, we used the true position
and the diameters of the cylinders in the scene to assign the
points from the point cloud to the closest cylinder. In real
TLS applications, point clouds are usually filtered in order
to remove possible noise, e.g., from mixed pixel echoes,
or points of unwanted objects, e.g., leaves in case woody
volume is targeted. The filtering procedure depends to a large
extent on the scanned objects, the evaluation routines, and
the goal of the scanner application. As a proxy for noise
filtering, we implemented a simple filter procedure, removing
all points farther than 2 cm and 10% of the cylinder diameter
from its surface. This filtering approach is not applicable in

real scanning situations, as it needs a priori knowledge on
the objects, but was used here to illustrate possible filtering
effects, as well as the influence of noise points with large
distance deviations. All statistical analyses were performed in
R (Version 3.4.4) [30].

III. RESULTS

A. Analysis of Edge Noise Effects of Three Terrestrial Laser
Scanners

Edge noise effects of three terrestrial laser scanners (Leica
BLK360, FARO Focus3D 120 and Riegl VZ-1000) were ana-
lyzed using the experimental setup, as shown in Fig. 1. The
distances between the obstacles intersected by one laser pulse
play a major role in how these devices trigger one or multiple
points, as our observations of their point clouds indicate. The
distance between obstacles, as used in our experiments, had
to be adapted for each individual device because every device
triggers points in a unique way. To simplify the experimental
approach and modeling, we only used two obstacles.

1) Prefiltering: One aspect of the triggering functionality is
how the devices omit echoes (prefiltering). Fig. 4 shows the
number of echoes (points) triggered per laser pulse sent out by
the laser scanner in a specific latitudinal direction (theta). The
Leica scanner omits echoes from multiple obstacles that are
close to each other such that the energy of the laser pulse is
similar on both objects. The closer the objects are, the stronger
the prefiltering is. The FARO scanner also performs prefilter-
ing when the energy on both obstacles is similar, but from an
obstacle distance of around 0.5 m and greater. With increasing
distance between the obstacles, prefiltering becomes slightly
stronger. At an obstacle distance greater than 1.8 m, however,
and only when the laser pulse energy on two objects is almost
the same, the prefiltering intermits.

2) Multiple Triggering: Neither the FARO nor the Leica
scanners trigger multiple points from one laser pulse. On the
other hand, the Riegl scanner does no prefiltering at all but
supports multiple triggering. Multiple triggering is referred to
here as the triggering of more than one point per laser pulse.
Time-of-flight laser scanner systems have the ability to trigger
multiple signals from one laser pulse [12], [31]. As shown
in Fig. 4, the Riegl VZ-1000 triggers more than one point
per laser pulse for specific obstacle setups. Up to 50% of the
laser pulse energy on the first obstacle reflected by it leads to
clear triggering on the first obstacle. If the energy is less than
50% when the laser beam center has crossed the edge, and
the obstacles are more than 0.7 m apart, the scanner begins to
trigger echoes from both obstacles with increasing probability,
reaching 1 when the obstacles are more than 1.5 m away
from each other. Beyond this obstacle distance, two signals
are always triggered when a laser beam intersects with two
objects.

3) Distance Deviation Through Lack of Object Separation:
The placement of obstacles intersected by one laser pulse
of a scanner influences not only prefiltering and multiple
triggering but also where a point is triggered. A user of laser
scanners expects the points to represent points on the surface
of scanned objects. However, depending on the surface a laser
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pulse hits, the time-dependent profile of the backscattered
light (waveform) is altered (see [32]). Based on this waveform,
the scanner has to decide whether it has hit one or more objects
with one laser pulse. With strong prefiltering, the Leica scanner
removes most of the ambiguous distance measurements so that
only signals that lie fully on the object surface are triggered
(except for the common range noise). In very rare cases,
as can be observed in Leica point clouds, this is not the
case. However, as we can see in Fig. 2, the FARO and the
Riegl scanners do not distinguish between two objects if they
are close to each other. When the obstacle distance is small,
these scanners trigger the points at something similar to a
weighted mean distance of the laser beam to the obstacles
[see Fig. 2 (left)]. With increasing distance between the
objects, points are triggered at the distance of either one of
the two objects (or both as in the case of multiple-signal
triggering). The distance threshold is up to 0.6 m for the
Riegl scanner and 0.5 m for the FARO scanner. Beyond these
obstacle distances, the scanners produce separated point clouds
for different obstacles. However, even with higher obstacle
distances (e.g., 1.8 or 2 m) and when the laser beam center
hits the edge of obstacle 1 exactly, the FARO scanner appears
to have problems separating the two obstacles.

4) Distance Deviation Through Mixed Pixel Effects: As we
observed in the lab experiments, FARO Focus3D 120 and Riegl
VZ-1000 produce specific range deviations when the laser
beam cone intersects more than one object and the scanner
is able to distinguish between two objects (see Fig. 2). The
FARO scanner triggers points on either object, starting at a
distance between obstacles of 0.6 m. It produces a slight
distance deviation of the triggered points, sometimes toward
the scanner, sometimes away from it, in a sinusoidal manner
depending on the distance between the obstacles.

The distance deviation of the Riegl scanner displays a more
complex pattern. The Riegl device triggers points “exactly”
at the surface of obstacle 1 when the laser pulse energy
on it is greater than 50%. However, there are scan points
above the edge of obstacle 1, due to the ability to trigger
multiple signals for one laser pulse (see Fig. 2). This begins
to happen when the laser energy on the first obstacle is less
than 50% and the obstacle distance is at least 0.8 m, with an
increasing probability of triggering with increasing obstacle
distance, reaching 100% when the obstacles are 1.4 m apart.
In addition, these points slightly deviate toward the scanner
by a few centimeters. The points on obstacle 2 deviate in both
directions depending on the laser pulse energy on this obstacle.
The pattern of the noise on obstacle 2 changes for obstacle
distances of up to 2 m. Above that distance, the pattern
remains constant (depending on the laser pulse energy ratio
on obstacle 2).

B. Analysis of Simulation Study

1) Impact of Laser Beam Diameter and Object Size on Visi-
bility: Our hypothesis (see Section I) was that beam diameter
and signal triggering have an influence on the detection of
objects. For forest inventories, it is crucial to know which
object size is still detectable, as this makes it possible to set

realistic objectives when applying close-range laser scanning.
We defined “detectable” objects as those that have at least
one laser point assigned (closer to their surface than to the
surface of another object). We simulated laser scanning in
a plane with different beam diameters and signal triggering
approaches, where cylindrical objects following stand densities
derived from 684 NFI sample plots were placed as detectable
objects. To show the effect of filtering procedures on the point
cloud, we removed points that were more than 10% of the
cylinder diameter and at least 2 cm away from the cylinder
surface.

Fig. 5 shows the comparison regarding the mean detectabil-
ity of different object sizes by laser beam diameter and
signal triggering from 514 square sample plots with edge
lengths of 50 m and tree densities below 4000 trees per
hectare. Each signal triggering approach is compared with a
geometric scanning, which represents a laser scanner with an
infinitesimally small laser beam. Such a theoretical scanner
would deliver a point cloud without any noise or distance
deviation from the objects. We also implemented a system
“mean distance,” which calculates the mean distance weighted
by the reflected energy to all the objects that are hit by a laser
pulse. This system represents the opposite of the geometrical
approach and delivers a maximum amount of noise. The
most important effect is that the smaller the beam diameter,
the higher the detection rate of small objects, especially in
dense plots (see Fig. 7). When only one point per laser pulse
can be triggered, small objects up to at least 4 cm in diameter
are clearly less frequently detected. The reason for this effect
is that when multiple objects are hit by one pulse, the larger
objects reflect more light, which favors their identification.
In the case of scanning systems with prefiltering (L-system
or F-system), this effect can lead to a further loss of points
for small objects. On the other hand, systems with multiple
triggering abilities, as implemented in the R-system, show a
clearly higher rate of object detection. If a scanner system were
to use the “mean distance” approach, the detection rate without
filtering would be at the same level as with multiple triggering
(R-system) or even higher. Yet, as the detection rates after
filtering in Fig. 5 indicate, most of the objects are false
detections. This implies that many of the points for small
objects would not contribute to a reasonable reconstruction
of a scanned object. The “visibility” of an object depends
strongly on the object size, the distance to the scanner, and
the stand parameters (e.g., the density of objects). Thus, with
shorter distances from the scanner, for example, for squares
with edges 10 m in length, more objects are detected, even
with a higher “tree density.” Especially, small objects are
less occluded when scanned with small laser beam diameters,
as shown in Fig. 7.

2) Impact of Laser Beam Diameter and Object Size on the
Representation of Scanned Objects: The number of points
by which an object is represented in a point cloud, and the
precision of their location, are crucial for the assessment of
using laser scanning. We, therefore, evaluated the number of
points per object (cylinder) with and without filtering. The
filtering is described in Section III-B1. “Invisible” objects, that
is, objects with no points after filtering, were not considered
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Fig. 5. Ratio of the number of cylinders with at least one “hit” to the total
number of cylinders on 514 square plots with an edge length of 50 m in forest
stands with a tree density of less than 4000 trees per hectare, by cylinder
diameter class, signal triggering model, and laser beam diameter at exit.
Dashed line: number of visible cylinders after filtering the point cloud.

in the evaluation. The filtering serves as an indicator of the
quality of the precision of the points’ locations. Fig. 6 shows
the variation in the number of points as boxplots. It only
compares objects that have at least one triggered echo in
each of the scanning approaches. The variation arises from
the distance to the scanner and the stand parameters, especially
the density of the objects (see also [21]). A regression analysis
using the following formula demonstrates the importance of
the influence of the objects’ diameters, their distances from

Fig. 6. Number of points per cylinder in simulation experiments for
514 square sample plots of 50 × 50 m in forest stands with tree densities of
less than 4000 trees per hectare. Only cylinders that have at least one point
in all the simulated scanning settings are evaluated. The box plots show the
variation in the number of points per cylinder for different cylinder diameters,
point triggering models, and laser beam diameters at exit from the scanner.
The red dots indicate the median of the number of points after filtering the
point cloud (points must be closer than 10% of the cylinder diameter and,
if not, closer than 2 cm). The point triggering model “geometric” simulates
a laser scanner with an infinitesimally small laser beam.

the scanner, and the number of objects per scene:
√

n p = log(diamo) + log(Ds) + √
nt + propL (17)

where n p is the number of points per object, diamo is the
diameter of the objects (cylinders), Ds is the distance between
the object and the scanner, and nt is the number of objects
per scene and indicates the density of objects. As we have
shown previously (see [21]), nt is the most important stand
parameter that influences the visibility of a sample plot when
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TABLE III

STANDARDIZED MODEL COEFFICIENTS BASED ON SCALED VARIABLES
TO MAKE THEIR EFFECT SIZE COMPARABLE, FOR THE DIAMETER OF

THE OBJECTS (CYLINDERS) diamo , THE DISTANCE BETWEEN THE

OBJECT AND THE SCANNER Ds AND THE NUMBER OF OBJECTS

(TREES) nt . ADJUSTED R2 = 0.69

performing laser scanning. To show the effect of these three
influencing parameters, we removed the influence of the
LiDAR property propL (signal triggering system and beam
diameter) by including it in the model.

In dense stands (see Fig. 8), the L- and F-systems have
fewer points per object with increasing laser beam diameter,
especially on small objects. However, in stands with lower
tree density, a larger laser beam diameter leads to more
points per object. The R-system, which is capable of multiple-
signal triggering, displays a significant discrepancy between
the unfiltered and the filtered point cloud for large footprints.
In the point cloud without filtering, the number of points
is far greater and wrongly suggests that a large footprint
performs better than a small one. This indicates that point
location precision is suboptimal. All plots in Fig. 6 suggest
that there are limits to object sizes that are reasonable to scan,
depending on the scanning system, the beam diameter, and
the application. As can be seen in Fig. 8 and also suggested
in Table III, scans from closer objects deliver a much greater
number of points per object, even for smaller sizes.

IV. DISCUSSION

The objective of this simulation study was to investigate
the effects of certain TLS properties, such as laser beam
diameter and signal triggering, on point cloud quality when
scanning in forested environments. For the implementation of
a TLS simulation, we analyzed three state-of-the-art terrestrial
laser scanners in terms of their effects when their laser beams
intersect with multiple objects along their range. The findings
from this study provide a basis for setting realistic objectives
regarding the application of TLS for forest inventories.

The presented simulations make it possible to partially
explain how the various scanning effects of the three devices
influence the resulting point cloud. These effects are the
prefiltering of points based on ambiguous echoes, the distance
deviation patterns at edges of objects, the lack of separation
of objects, and the triggering of multiple points per range
measurement. The simulation study reveals the extent to which
laser beam diameter and signal triggering approaches influence
point cloud quality. The main implications are that objects
with “small” diameters can hardly be depicted by TLS in
a reasonable way because they are not visible in the point
cloud, represented by very few echoes, and/or subject to severe

measurement errors due to ambiguous echoes (edge effects).
The actual threshold for “small” depends on the objective of
the TLS application and the point cloud evaluation algorithms
applied.

The lab experiments demonstrate two effects of deviation
of scan points from an object’s surface: one perpendicular to
and the other parallel to the laser beam. The perpendicular
deviation is an effect of multiple-signal triggering, which
produces points along the central axis of the laser beam. Thus,
if a beam touches an object at its edge, the point’s possible
distance to the object is directly dependent on the diameter of
the laser. Concerning the distance deviation parallel to the laser
beam, the phase shift system (FARO) performs differently
compared with time-of-flight systems (Riegl and Leica). The
phase shift system struggles with ambiguity problems, due to
the combination of intensity modulations in the laser beam to
measure a range. Therefore, depending on the distance of the
scanned obstacles to each other, it can either remove points
that are clearly problematic (prefiltering) or display a distance
deviation that is sinusoidally weighted by the distance between
the obstacles. In certain cases, ambiguities cannot be resolved
and produce severe distance deviations (range averaging as
described in [14]). Time-of-flight systems do not struggle with
this kind of problem, due to their ability to evaluate the whole
reflected laser energy pattern over time. The Riegl and FARO
scanners do not separate obstacles that are close to each other,
whereas the Leica scanner solves the problem by prefiltering
these points. For a scanning device, there is no way to perfectly
resolve all types of objects of any shape, as one object with
an inclined surface may reflect the same light pattern as two
separate objects. There are only two available options, to either
prefilter or provide some kind of average distance to the
objects (range averaging, see [14]).

The simulation study shows the limitations of depicting
small objects precisely in a point cloud. Either they are not
visible or they have only very few points because of their
small size. Especially when a scanner prefilters the point
cloud, almost no points are left on small objects. Triggering
multiple signals alleviates this effect, whereas the points are
at a certain distance from the object surface, which can lead
to erroneous object reconstructions. Another observed effect is
that objects appear flattened in the point cloud with increasing
beam diameters. This effect is due to the laser beam working
like a moving window, averaging the ranges measured within
its footprint.

The signal triggering of laser scanning systems is influ-
enced by many factors, such as the object shape, its surface,
the reflectance of the object, the constellation of multiple
objects, and even the atmospheric conditions. In addition,
the scanner settings (adjustable or not) have an influence
on the point cloud. However, reverse engineering of signal-
triggering functionalities, without any detailed manufacturer’s
information on the devices, is a huge effort. Nevertheless,
we were able to cover the most important effects observed
in point clouds.

The effects observed with the two-obstacle lab setting had to
be generalized for cases where a laser pulse hits more than two
objects. Hence, the effects caused by such settings most likely
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Fig. 7. Ratio of the number of cylinders with at least one “hit” to the
total number of cylinders on 170 square plots with an edge length of 10
m in forest stands with tree densities of more than 4000 trees per hectare,
by cylinder diameter class, signal triggering model, and laser beam diameter
at exit. Dashed line: number of visible cylinders after filtering the point cloud.

do not match reality exactly. Prefiltering effects are assumed to
be reproduced in a realistic way and surely provide realistic
implications. The primary objective of the simulation study
was not to reproduce exactly the same scanning results of the
three devices investigated, but to allow general conclusions
to be made regarding the effects of different signal triggering
approaches. Nevertheless, the effect of the laser beam size
is based on realistic assumptions, as the effect of its size is
precisely reproducible.

There are various effects that could additionally be consid-
ered with the simulation approach used in this study, such as

Fig. 8. Number of points per cylinder in simulation experiments for
170 square sample plots of 10 × 10 m in forest stands with tree densities
of more than 4000 trees per hectare. Only cylinders that have at least one
point in all the simulated scanning settings are evaluated. Box plots show the
variation in the number of points per cylinder for different cylinder diameters,
point triggering models, and laser beam diameters at exit from the scanner.
The red dots indicate the median number of points after filtering the point
cloud (points must be closer than 10% of the cylinder diameter, and, if not,
then closer than 2 cm). The point triggering model “geometric” simulates a
laser scanner with an infinitesimally small laser beam.

the intensity of the reflected light, multiple reflectance of the
photons of the laser pulse, the influence of incidence angles
on the objectives, and errors in the range measurement of the
different devices.

An important finding of the present study for forest inven-
tory applications is that small objects lack appropriate repre-
sentation in point clouds of the signal triggering approaches
investigated here, in which points are either prefiltered or
subject to a deviation from the object’s surface. Information on
small objects deteriorates even more with increasing distance
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to the scanner, especially in environments with a high density
of objects, due to occlusion and an increasing probability
of mixed pixel situations. This implies that scanning small
branches (e.g., less than 2 cm in diameter) in tree crowns
(large distance to the scanner) with many small branches
(high density) will be nearly impossible when tree crown
reconstruction is the objective of the application. In such a
situation, scanners with small laser beam diameters perform
slightly better. On the other hand, larger laser beam diameters,
in combination with multiple triggering, deliver more points
per object. Larger branch diameters (e.g., up to 6 cm) are also
difficult to represent, depending on the application. Another
problem occurring with large laser beam diameters is that
the object shape tends to be flattened. This could lead to a
bias in diameter estimation, e.g., when applying the widely
used Hough transform approach (see [33]–[36]) to fit circles
or cylinders in the point cloud.

These findings indicate that TLS-based wood volume esti-
mations of smaller trees might be severely impacted, as well
as estimations of small branches. Depending on the triggering
approach, small branches are either underestimated, because of
prefiltering and occlusion, or overestimated, through the dis-
tance deviation of points. Scanning in dense forests, e.g., those
with understorey, will increase occlusion effects considerably
(see [21]), further reducing the number of visible objects.
In addition, we expect additional noise in the point clouds due
to an increment in mixed pixel effects caused by laser pulses
intersecting with multiple small branches. Similar effects are
to be expected when scanning during the growing season (leaf-
on conditions), when additional problems of separating echoes
from leaves and woody parts would arise. In addition to these
technical limitations, even slight wind or precipitation would
add further noise to the point cloud. Nevertheless, we expect
that TLS-based wood volume estimations of large trees or
large branches are mostly accurate since the ratio of erroneous
points is decreasing with increasing object size. Therefore,
if diameter thresholds are chosen appropriately, TLS is still
the most promising approach for tree volume estimation. Yet,
future simulation experiments, including volume estimation
approaches, need to be conducted to examine details of volume
estimation.

V. CONCLUSION

In this study, we investigated the edge noise effects of three
terrestrial laser scanners. We used their scanning properties to
evaluate the influence of signal triggering approaches, laser
beam diameters, and stand properties on the quality of the
point cloud. We show that these devices handle ambiguous sig-
nals from a controlled experiment, with obstacles placed in the
laser beam, with different approaches: prefiltering, multiple-
signal triggering, and deviation of points from object surfaces.
All approaches have disadvantages, either leading to a lack
of information or biased information. In a simulation study
with 684 stand diameter distributions, we show that especially,
small objects (twigs and small branches) in combination with
large (or strongly diverging) laser beams produce lower point
cloud quality. These effects are increased when objects are
farther away from the scanner and/or the density of objects is

high, for example, in tree crowns. We, therefore, recommend
the choice of a targeted branch diameter to be measured of at
least 2 cm, whereas a reasonable diameter would be the one
for “merchantable” wood (≥7 cm), which is widely used in
NFI reporting. Furthermore, we recommend using terrestrial
laser scanners with a small footprint if object reconstruction is
intended. If the gap probability of a stand needs to be assessed,
a device with multiple-signal triggering will provide more
information with a similar angular resolution than devices
with single-signal triggering. These findings contribute to the
ability to set realistic objectives when applying TLS for forest
inventories and support the selection of suitable scanners.
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