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Endmember Bundle Extraction Based on
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Abstract— A number of endmember extraction methods have
been developed to identify pure pixels in hyperspectral images
(HSIs). The majority of them use only one spectrum to represent
one kind of material, which ignores the spectral variability
problem that particularly characterizes a HSI with high spatial
resolution. Only a few algorithms have been developed to identify
multiple endmembers representing the spectral variability within
each class, called endmember bundle extraction (EBE). This
article introduces multiobjective particle swarm optimization for
the identification of multiple endmember spectra with variability.
Unlike existing convex geometry-based EBE methods, which
operate on a single geometry of the dataspace, the proposed
method divides the observed data into subsets along the spectral
dimension and simultaneously operates on multiple dataspaces to
obtain candidate endmembers based on multiobjective particle
swarm optimization. The candidate endmembers are then refined
by spatial post-processing and sequential forward floating selec-
tion to produce the final result. Experiments are conducted on
both synthetic and real hyperspectral data to demonstrate the
effectiveness of the proposed method in comparison with several
state-of-the-art methods.

Index Terms— Endmember bundle extraction (EBE), hyper-
spectral, multiobjective optimization, spectral variability.

I. INTRODUCTION

W ITH the ability to record abundant spectral information
about materials, hyperspectral imagery has been widely

used for various applications, including vegetation map-
ping [1], mineral exploration [2], agricultural assessment [3],
and many others [4]–[6]. Hyperspectral unmixing (HU),
currently a hot topic in the processing of hyperspectral
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images (HSIs), involves estimating quantitative abundances
of pure ground components within a pixel, so as to derive
quantitative information at the subpixel scale. The selection of
pure ground components, referred to as endmembers, is impor-
tant for the successful application of HU. Endmembers can be
obtained either from observed data or from field or laboratory
measurement. To reduce the amount of time and expense
involved in field measurement and keep similar atmospheric
effects between endmembers and the data to be unmixed,
a number of methods have been proposed to automatically
extract endmembers directly from the image data. Many of
these approaches use a single spectrum to represent one kind
of material and only extract a single endmember spectrum
for each endmember class. Techniques in this category either
directly extract endmembers from the image, for example,
the pixel purity index (PPI) [7], N-FINDR [8], and vertex
component analysis (VCA) [9], among many others [10]–[12],
or they generate virtual endmembers without assuming the
presence of pure signatures in the input data, such as mini-
mum volume-based methods [13]–[15] and nonnegative matrix
factorization-based methods [16]–[18]. The major drawback of
these methods is that they ignore the endmember variability
problem within each endmember class. However, the end-
member variability problem is usually unavoidable in real
HSIs [19]. For example, illumination differences in the scene
can cause shape and magnitude variations within one endmem-
ber class. For a scene with large spectral variations, ignoring
the endmember variability problem can lead to poor unmixing
results.

Some solutions developed to solve the endmember vari-
ability problem incorporate multiple endmembers within each
endmember class [20], [21]. Multiple endmember spectral
mixture analysis (MESMA) [22], one of the most widely
used and successful methods, selects an optimal endmember
combination for each pixel from a spectral library that includes
spectral variability. However, there is a heavy computation
burden when there is a large number of candidate endmember
combinations. To alleviate this problem, MESMA selects a
small number of endmember spectra to represent spectral
variability within the data instead of assessing all the available
endmembers; however, this solution may lead to estimation
error of the abundance fractions. More efficient unmixing
methods to overcome endmember variability have been pre-
sented in the recent literature [19], [23]. Yet the premise
of these unmixing methods is the availability of a spectral
library that contains endmembers representing the spectral
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variability within each endmember class. To date, there are
only a few methods that can extract multiple endmembers with
spectral variability, also called endmember bundles, from the
image, indicating the need for new efficient endmember bundle
extraction (EBE) methods.

The method developed in [24] divides the global image
into spatial subsets and uses a traditional endmember extrac-
tion (EE) method such as N-FINDR to extract endmembers
within each spatial subset, then integrates the endmembers
of all the subsets to obtain the final multiple endmembers.
The automated EBE method proposed in [25] sequentially
generates a number of subsets by randomly selecting pix-
els from the observations, extracts endmembers from each
subset, then integrates all of the extracted endmembers as
the final endmember bundles. The above methods can extract
endmember bundles with high efficiency. However, they do
not consider spatial information, and they cannot guarantee
that endmembers appear in each subset, which may result in
the presence of mixed pixels in the extracted endmembers.
To enhance the ability of EBE, Xu et al. [26] proposed
an image-based EBE method using both spatial and spectral
information (SSEBE). SSEBE uses PPI to select candidate
endmembers. Since it takes all pixels that have a positive PPI
index as candidate endmembers, there is a high probability that
the candidate set contains mixed pixels. To solve this problem,
SSEBE uses a homogeneity index (HI) to retain the candi-
date endmembers that are spectrally similar to their spatially
adjacent pixels as final endmember bundles. Another work of
Xu et al. [27] also utilizes PPI to select candidate endmembers,
removing the mixed and redundant endmembers by analyzing
the reconstruction error between the chosen endmembers and
the remaining candidate endmembers. The effectiveness of
these two methods largely depends on the quality of the
candidate endmember set. However, the geometric structure
of a real HSI in the feature space is not a simple simplex and
endmembers may locate within the boundary of the simplex;
PPI may fail to extract those endmembers, resulting in an
incomplete candidate endmember set.

The convex geometry-based methods proposed in
[28] and [29] have the same difficulty of extracting
endmembers present within the boundary of the data simplex.
The spectral curve-based endmember extraction (SCEE)
method [30] obtains spectral curves by processing the original
observed data with wavelet transform with different scale
factors, and chooses a user-defined number of pixels with
maximal or minimal values in each dimension of the curves
as candidate endmembers. SCEE uses connected-component
labeling to remove mixed pixels from candidate endmembers:
an endmember region with an area of more than eight pixels
is retained and candidate endmembers that locate outside
of the region are removed. SCEE can extract complete
candidate endmember sets when the user-defined number of
pixels is large enough, which may lead to high redundancy.
Furthermore, rare pure pixels may be removed in the mixed
pixel removal step.

In recent years, intelligent optimization has been success-
fully applied in EE. These methods consider EE to be a com-
binatorial optimization problem and use different strategies to

optimize the designed objective functions [31]–[36]. The first
work applying intelligent optimization in EE was proposed
by Zhang et al. [31], who took the minimization of root-
mean-square error (RMSE) between the original image and the
reconstructed image as the objective function and used discrete
particle swarm optimization to search the optimal endmember
combination. Du et al. [37] systematically constructed a quan-
tum behavior-driven particle swarm optimization algorithm to
effectively extract endmembers from HSIs. Other strategies,
such as ant colony optimization and genetic optimization,
have also been employed to minimize the RMSE [33], [36].
It has been proven that intelligent optimization-based methods
can obtain results with smaller RMSE than traditional EE
methods. Another objective function used in the intelligent
optimization-based methods is the maximization of the volume
of the simplex constructed by the chosen endmembers. It has
been shown that the EE results obtained by these two objective
functions are different [38]. In order to get robust results for
different real images, multiobjective optimization is used to
simultaneously optimize the two objective functions [39], [40].
Although the existing optimization-based EE methods have
achieved better results than the traditional EE methods, they
do not consider the endmember variability problem, which
cannot best fit the situation of real HSIs.

This article proposes a new method to enhance the per-
formance of EBE by leveraging the outstanding optimization
ability of intelligent optimization. The proposed method is
called multiobjective endmember bundle extraction (MOEBE).
For the real HSI, the observed data in the feature space is
usually not a simple simplex. It is easy to lose some of
the endmembers if the EE is operated in a single dataspace.
Considering that different materials have different characteris-
tics among different wavelength ranges, we divide the original
data equally into three subsets along its spectral dimension.
The feature spaces of these three subsets are different, which
means that the distribution of endmembers may differ in the
three dataspaces. Even so, the pixels that locate on the vertices
of the data simplex for all three subsets are endmembers. The
idea of the proposed work is to simultaneously operate EE on
the three constructed spaces to obtain multiple endmembers
with variability. The simplex volume is used to measure the
positions of the endmembers, and the objective function is
used to simultaneously maximize the volume of the simplex
constructed by endmembers from each subset. A set of Pareto
solutions will be obtained by a modified multiobjective particle
swarm optimization method [41], and the Pareto solutions can
be integrated to produce candidate endmembers. To remove
the possible mixed pixels and redundant endmembers from the
candidate set, a post-processing step inspired by the technique
used in SSEBE [26] as well as the sequential forward floating
selection (SFFS) method [42] are utilized to reach the final
result. The main contributions of this work can be summarized
as follows:

1) Unlike existing EBE methods that only operate EE in a
single feature space, the proposed method jointly oper-
ates in multiple feature spaces to obtain multiple end-
members. In multiple feature spaces, more endmembers
will be located in the vertices of the data simplex, which
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will benefit the completeness of the extracted multiple
endmembers.

2) The multiobjective particle swarm optimization method
is modified to better fit the problem. Specifically,
the coding of the particles and searching strategy of the
population are designed based on the characteristics of
the HSI, which helps to find the optimal solution and
accelerate the optimization process.

3) Both the endmembers located in the vertices of the data
simplex and those located within the boundary of the
data simplex can be extracted by taking advantage of the
Pareto solutions. As long as the endmember combination
is not dominated by other combinations, it is a Pareto
solution and they will be taken as candidate endmem-
bers. In fact, this kind of endmember combination can
also contain endmembers located within the boundary of
the simplex. Therefore, the endmembers located within
the boundary of the simplex can be extracted by the
proposed method.

This article is structured as follows. Section II briefly
introduces the linear mixture model (LMM) and multiobjec-
tive optimization. Section III gives a detailed description of
the proposed method. Section IV describes the comparison
experiments between MOEBE and several representative EBE
algorithms, with both synthetic HSIs and real data sets. The
conclusion is given in Section V.

II. RELATED WORKS

A. Linear Mixture Model

The LMM [43] is widely used in HU. The majority of
existing EE methods are based on the LMM. In the LMM,
a mixed pixel is assumed to be the linear combination of
all its constituent materials and the corresponding abundance
coefficients. Suppose that the image contains N pixels with
L spectral bands, and let y = (y1, y2, . . . , yL)T be one of the
N pixel vectors. Without considering endmember variability,
the spectral signature y can be represented by the LMM as
follows:

y =
P∑

i=1

si ai + e = As + e (1)

where A = [a1, a2, . . . , aP ] denotes the L × P endmember
matrix, with ai = (a1, a2, . . . , aL)T being the ith endmember
signature, and P is the number of endmembers. The expression
s = (s1, s2, . . . , sP )T is a P-dimensional vector associated
with y, and si denotes the abundance fraction of the ith
endmember present in the pixel y. The term e represents the
L × 1 additive observation noise and error vector. The LMM
for all the observed pixels can be expressed by the matrix
notation as

Y = AS + E (2)

where Y = [y1, y2, . . . , yN ], S = [s1, s2, . . . , sN ], and E =
[e1, e2, . . . , eN ]. The abundance is subject to two constraints
with the physical meaning: the abundance nonnegative con-
straint (ANC) and the abundance sum-to-one constraint (ASC),

Fig. 1. Example of the Pareto optimal for the maximization optimization.

which can be given by si ≥ 0, i = 1, 2, . . . , P and 1Ts = 1,
respectively.

If the endmember variability problem is considered, we can
use endmember bundles that contain multiple endmember
spectra with variability within each endmember class to
substitute the corresponding endmember spectra in (1). The
endmember bundle matrix is denoted by B in this article.

B. Multiobjective Optimization

Considering the maximization optimization problem, a mul-
tiobjective optimization problem can be expressed as

max f (z) = [ f1(z), f2(z), . . . , fm(z)] (3)

where the decision vector z belongs to the feasible solution
space and m(≥ 2) conflicting objective functions are to be
maximized simultaneously. A decision vector z2 is said to be
dominated by z1 if

∀i ∈ [1, 2, . . . , m], fi (z1) ≥ fi (z2), ∃ fi (z1) �= fi (z2). (4)

A vector z1 is called Pareto optimal if it is not dominated by
any other vectors. Fig. 1 shows the Pareto optimal solutions
in the objective space when m = 2. It is obvious that
Pareto optimal solutions are nondominated solutions. There
is no single optimal solution for multiobjective optimization
problems. The results of the multiobjective optimization are a
set of Pareto optimal solutions. The corresponding objective
vector set of all Pareto optimal solutions is called the Pareto
front, and the task of multiobjective optimization is to achieve
the Pareto optimal solutions.

C. Evolutionary Algorithm

In the past decades, evolutionary algorithms have attracted
increasing interest for the solution of multiobjective optimiza-
tion problems and a large number of multiobjective evolu-
tionary algorithms (MOEAs) have been developed, including
genetic algorithm [44]–[46], differential evolution [47], [48],
particle swarm optimization [41], [49], [50], and memetic
algorithm [51]–[53]. The goal of MOEA is to reach a good
distribution of Pareto solutions with good convergence and
diversity. An MOEA usually maintains a population consisting
of a set of individuals, where an individual represents a
solution to the problem. The individuals are generated by
operators and the population is updated in each generation
of the evolution to approach the optimal result. Most of
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Fig. 2. Division of the image cube and the endmembers of each subset. The
red squares denote endmembers.

the MOEAs mainly focus on three categories. One cate-
gory contains the decomposition-based algorithms such as
those proposed in [54]–[56]. The second category is the
indicator-based approach such as [57]–[59]. The Pareto dom-
ination approaches [60], [61] belong to the third category.

The competition mechanism-based multiobjective parti-
cle swarm optimization (CMOPSO) algorithm [41], which
belongs to the Pareto domination approach, is adopted as the
basic optimization model for the multiobjective EBE problem
due to the high convergence speed and simple implementation.
In particle swarm optimization, a particle searches in the feasi-
ble solution space by moving along a trajectory depicted by its
position and velocity until reaching the optimal. In CMOPSO,
a competition mechanism-based learning strategy is used for
the updating of particles. In this strategy, particles are pairwise
randomly selected from the current swarm for competition.
The loser in the competition is updated by learning from
the winner, whereas the winner is directly passed to the
swarm of next generation. The elite particles, which are used
to provide candidate particles to be used in the pairwise
competitions to guide the search of the swarm, are selected
by the nondominated sorting and crowding distance-based
ranking as adopted in nondominated sorting genetic algorithm
(NSGA)-II [62].

III. EBE BASED ON MULTIOBJECTIVE

PARTICLE SWARM OPTIMIZER

The proposed MOEBE method implements the task of EBE
through a modified multiobjective particle swarm optimizer
and seeks to find the Pareto optimal solutions of multiple
objective functions in order to obtain candidate endmembers
with variability. The final results are obtained after removing
the mixed pixels and redundant endmembers. In the following,
we will introduce the method in detail.

A. Objective Functions

In the convex geometry-based EE methods, volume max-
imization is quite often utilized to extract endmembers.
It assumes that the vertices of the simplex with the largest
volume are endmembers. In MOEBE, the original image cube
is divided into three subsets along the spectral dimension,
as shown in Fig. 2. The volume maximization objective
function is applied for each subset as follows:

max fi = volume(Ai ) =

∣∣∣∣det

[
1T

Ãi

]∣∣∣∣
(P − 1)! , i = 1, 2, 3 (5)

where Ai (i = 1, 2, 3) are endmember matrices of each
subset. In order to calculate the volume, the dimensionality
of endmember matrices Ai (i = 1, 2, 3) is reduced to P − 1
by minimum noise fraction (MNF) [63]; Ãi (i = 1, 2, 3) are
the dimensionality reduced matrices.

The motivation of dividing the image cube into subsets is
that the observed data in the feature space is no longer a
simple simplex if there exists endmember variability. In this
situation, endmembers may locate within the boundary of the
data simplex, which makes the extraction of these endmembers
difficult. The division into subsets enables us to operate in
multiple spaces, making it possible to solve the variability
problem. A set of synthetic pixels is generated to show the
mechanism of MOEBE. The endmembers are chosen from
the United States Geological Survey (USGS) spectral library,
which are montmorillonite, calcite, and topaz, as shown
in Fig. 3. Abundance fractions are generated according to the
Dirichlet distribution. To display the pixels in feature spaces,
dimensionality reduction is implemented on all the pixels by
MNF. The structures of both the original data and the three
subsets are shown in Fig. 4. It is clear that both the structure of
the data and the locations of endmembers are different, which
indicates that operating EE in multiple spaces would be useful.

B. MOEBE Procedure

A modified multiobjective particle swarm optimization
algorithm based on CMOPSO is employed to optimize the
designed objective functions. For the EE problem, the feasible
solution space is discrete, accordingly the particle’s position
must be discrete. Spatial locations of endmembers are used to
code the position of particles. The position of a particle can
be written as

X = (Xr1, Xr2, . . . , Xr P , Xc1, Xc2, . . . , XcP ) (6)

where Xri (i = 1, 2, . . . , P) is the row number of the ith end-
member, and Xci (i = 1, 2, . . . , P) is the column number of
the ith endmember. With the row and column numbers, we can
accordingly build a combination of endmembers, which is a
feasible solution to the EE problem. The velocity of a particle
can be written as

V = (Vr1, Vr2, . . . , Vr P , Vc1, Vc2, . . . , VcP ). (7)

The competition mechanism used in CMOPSO is not
adopted by the proposed method. In MOEBE, we have
designed two kinds of particles, one that performs experienced
searching and another that performs local searching. The
number of particles for the two kinds is the same, and the total
number of particles is denoted by M . Assuming the velocity
and position of a particle at the current time are Vold and
Xold, and the velocity and position of a particle at the next
time are Vnew and Xnew. The update of velocity based on the
experienced searching is

Vnew = round(r1Vold + r2(Xb − Xold)) (8)

where r1 and r2 are random numbers in the interval (0, 1).
The term Xb is the historical best solution of the particle.
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Fig. 3. Endmembers used to generate synthetic pixels.

Fig. 4. Distribution of pixels in feature spaces. The red marks of diamond, asterisk, and square represent endmembers of montmorillonite, calcite and topaz,
respectively. (a) Data distribution of the original image. (b) Data distribution of the first subset. (c) Data distribution of the second subset. (d) Data distribution
of the third subset.

The round() operation rounds each element to the nearest
integer. The update of velocity based on the local searching is

Vnew = R([−5, 5]) (9)

where the operation of R is to randomly choose values from
the integers in the interval [−5, 5]. This operation makes the
particle search in a local window with the size 5 × 5. The
position of the particle is updated by

Xnew = Xold + Vnew. (10)

According to the definition of the particle’s position, there
should be a lower bound and an upper bound for each element
of the position. If the spatial size of the image is r × c, then
the lower band is 1 and the upper bound is r for the first P
elements, and the lower band is 1 and the upper bound is c for
the last P elements. To accelerate the optimization process,

the endmembers extracted by VCA are used to initialize a
part of the endmembers as [37] did. In order to increase the
diversity of the population, the polynomial mutation operator
in [64] is used after the update of particles. Nondominated
sorting [60] is utilized to choose the optimal solutions. The
nondominated solutions are saved in the archive gbest . When
the number of solutions in the archive is greater than M ,
we calculate the product of three objective function values
for each solution and only keep the first M solutions with
larger values to avoid explosion. Multiobjective particle swarm
optimization is an iterative process. The maximum number
of iterations max_i ter is used as the stopping condition
for the optimization process. All the solutions in the final
archive constitute the candidate endmember set. The opti-
mization results of independent runs of the multiobjective
particle swarm optimization method are different due to the
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Algorithm 1 Multiobjective Particle Swarm Optimization
1: Set the lower bound and the upper bound of the position

of the particles:Xl = ones(1, D), where D = 2 × P ,
Xu = [r × ones(1, P), c × ones(1, P)]. Set t = 0 and
gbest = ∅.

2: Randomly initialize the position of each particle with
values being within the lower bound and the upper
bound; initialize the velocity of each particle with all
zero elements. Perform VCA to each subset Yi , i =
1, 2, 3, and substitute the positions of the first three
particles with those extracted by VCA. Calculate the
three objective function values for all particles. Initialize
the best position of each particle Xb.

3: For each particle with experienced searching, update the
velocity by (8); for each particle with local searching,
update the velocity by (9).

4: Update the position of each particle by (10), and set
the elements to valid range by Xnew = min(max
(Xnew, Xl), Xu).

5: Perform the polynomial mutation.
6: Calculate the three objective function values for each

particle.
7: Do nondominated sorting on the objective function values.

If Xnew is not dominated by Xold , then gbest = gbest∪
Xnew . Update Xb.

8: If the size of gbest is larger than M , then only keep the first
M solutions with larger prod( fi (gbest), i = 1, 2, 3).

9: t = t + 1.
10: If t ≤ max_i ter , go to step 3, otherwise output gbest .
11: Find the corresponding endmembers from Y according to

gbest , and obtain the endmember candidates B.

intrinsic mechanism of the method. To ensure the stability
of the results, ten independent runs are implemented and the
candidate endmember set comes from the integration of the
results. The procedure of the multiobjective particle swarm
optimization method is shown in Algorithm 1.

To show that nondominated solutions can help to extract
endmembers with variability, we calculated the objective func-
tion values of all the endmember combinations among differ-
ent endmember classes from Fig. 3; the results are displayed
in Table I. The endmembers of montmorillonite, calcite, and
topaz are denoted by m, c, and t , respectively, and index values
1, 2, 3 are used to distinguish different endmembers within
an endmember class. All the nondominated combinations are
displayed in bold. It can be seen that the union set of all
nondominated solutions contains all of the nine endmembers,
which means that we can successfully achieve the endmember
candidate set containing all the endmembers if the nondomi-
nated solutions are obtained by multiobjective optimization.

C. Removal of Mixed Pixels and Redundant Endmembers

Spatial post-processing is utilized to remove mixed pixels
from the candidate endmembers. MOEBE adopts the post-
processing method used in [26] but uses a slightly different
approach. Its steps are: 1) calculate the spectral angle dis-

TABLE I

OBJECTIVE FUNCTION VALUES OF COMBINATIONS AMONG
ENDMEMBER CLASSES MONTMORILLONITE, CALCITE,

AND TOPAZ, NONDOMINATED SOLUTIONS

ARE SHOWN IN BOLD

tance (SAD) between each candidate endmember and its spa-
tially neighboring pixels within a 5 × 5 window and keep the
maximum SAD for each candidate endmember and 2) show
the histogram of the SAD for all candidate endmembers and
determine a threshold value τ according to the histogram. The
candidate endmembers with maximum SAD larger than the
threshold are then removed. After the spatial post-processing,
the candidate endmember set is updated to B1.

The post-processing is a rough screening and can only
remove some mixed pixels. In addition to the spatial post-
processing, the SFFS method is utilized to further remove
mixed pixels and redundant endmembers. Spatial post-
processing is applied before SFFS because SFFS is time
consuming: it saves time if the size of candidate endmember
set is reduced in advance.

The aim of the SFFS-based method is to select a subset
from the endmember candidate set. Two criterion functions are
required to search the optimal subset. One examines the signif-
icance of a new endmember, while the other tests if the newly
selected endmember can replace some of existing endmembers
and form a downsized subset with a higher performance score
than that for the same size subset. The criterion function for
identifying a new endmember is expressed as

J1(Bk) = error1(Bk, Bk) = [e1, . . . , ei , . . . , e(K1−k)]
ei =

√
1

L

bi − b̂i
2

2 (11)

where Bk is the set of k selected endmembers, Bk is the
remaining set of endmembers after removing k endmembers
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Algorithm 2 SFFS-Based Endmember Selection
1: Identify two initial endmembers. The first endmember b1

is selected as the one in B1 ∈ RL×K1 that yields the
maximum norm: b1 = arg

{
max

[
b
2
2

]}
. The second

endmember b2 is the one in Bk that has the biggest
distance with b1: b2 = arg

{
max

[
b − b1
2
2

]}
. Update

Bk and Bk .
2: Select the endmember corresponding to the largest J1(Bk)

value as the candidate of (k+1)th endmember bnew and
set Bk+1 = Bk + bnew .

3: If J2(Bk+1−bnew) ≤ min
1< j<k

J2(Bk+1−b j ), then set k = k+
1 and return to step 2, else exclude b j , 1 < j < k from
Bk+1 to form a new endmember set B �

k = Bk+1 − b j .
If k = 2, then set Bk = B �

k and return to step 2, else go
to step 4.

4: If J2(B �
k −bnew) ≤ min

1< j<k−1
J2(B �

k −b j ), then set Bk = B �
k

and return to step 2, else exclude b j , 1 < j < k − 1
from B �

k to form a newly reduced set B �
k−1 = B �

k − b j ,
set k = k − 1. Now Bk = B �

k . Return to step 2.
5: The termination condition for step 2 ∼ 4 is: k ≥ 3 and

abs((J2(Bk−2)− J2(Bk−1))−(J2(Bk−1)− J2(Bk))) < ω.
6: Output the selected endmembers B2 that contains in the

set Bk .

from B1. The term K1 is the number of candidate endmembers
in B1, bi is the ith endmember in Bk , and b̂i is the recon-
structed spectrum of bi by using the endmembers in Bk and
the nonnegative constrained least square (NCLS) method [65].
The reconstruction error for the ith endmembers in Bk is
denoted by ei .

The criterion function for testing the newly selected
endmembers is expressed as

J2(Bk) = error2(B1, Bk) = 1

K1

K1∑
i=1

√
1

L

bi − b̂i
2

2 (12)

where b̂i is the reconstructed spectrum of bi by using the
endmembers in Bk and the NCLS method. The term bi is
the ith endmember in B1. The procedure of the SFFS-based
endmember selection method is described in Algorithm 2.

D. Overall Workflow of MOEBE

The overall workflow of the proposed MOEBE method is
shown in Algorithm 3.

IV. EXPERIMENTS AND ANALYSIS

A. Data for Experiments

Four data sets were used to validate the proposed method.
One of them was simulated by library endmembers and syn-
thetic abundance fractions. The other three were real images:
the Samson data set, the Jasper Ridge data set, and the Urban
data set.

A synthetic data set was used for experiments because it
enabled methods to be precisely validated using known end-
members and abundances. The endmembers used to generate
the synthetic data were chosen from the USGS spectral library,

Algorithm 3 MOEBE

Input: Hyperspectral imagery Y ∈ Rr×c×L . The number of
particles M , where half of the particles do experienced
searching, and half do local searching. The number of
endmembers P . The maximum number of evaluations
max_i ter . The threshold ω for removing redundant end-
members.

Output: Multiple endmembers with variability.
Step 1: Division of the input hyperspectral imagery along

the spectral dimension
The observed data Y ∈ Rr×c×L is divided into three subsets:

Yi ∈ Rr×c×Li , i = 1, 2, 3,
∑3

i=1 Li = L, where the
number of bands for each subset is the same if L is
divisible by 3, otherwise the remainder are added to the
third subset.

Step 2: Dimensionality reduction of the subsets
Apply the MNF transformation to the input hyperspectral

data Y to obtain the transformation matrix.
Use the corresponding parts of the transformation matrix

to perform dimensionality reduction for Yi , i = 1, 2, 3,
generating the data Ỹ

�
i ∈ Rr×c×P−1, i = 1, 2, 3.

A row with all elements equal to 1 is added to Ỹ
�
i , i = 1, 2, 3,

constructing data Ỹi ∈ Rr×c×P , i = 1, 2, 3 that is used
to calculate the volume.

Step 3: Selection of endmembers by MOEBE
Perform MOEBE in Algorithm 1 to get the candidate

endmembers B ∈ RL×K .
Step 4: Removal of mixed pixels and redundant spectra

from candidate endmembers
Perform spatial post-processing to get a downsized endmem-

ber candidate set B1 ∈ RL×K1 .
Perform SFFS in Algorithm 2 to get the final result

B2 ∈ RL×K2 .

including 12 endmember classes as shown in Fig. 5. The
abundances with size 200 × 200 were generated by the “syn-
thesis tools” package, which is a MATLAB toolbox available
online.1 The abundance maps for the 12 endmember classes
are displayed in Fig. 6. To generate synthetic pixels, a single
spectrum was randomly selected from multiple endmember
spectra for each endmember class, and these selected end-
members were linear combined weighted by the corresponding
abundance fractions to produce the synthetic spectral mixture.
White Gaussian noise with SNR of 50 dB was added to the
synthetic data.

Samson is a simple data set. A region of 95 × 95 pixels
was used for this experiment, as shown in Fig. 7(a). Each pixel
is recorded with 156 spectral bands covering the wavelengths
from 401 to 889 nm. There are three main endmember classes
in this image, i.e., soil, tree, and water.

The Jasper Ridge data set used for this experiment contains
100 × 100 pixels, as shown in Fig. 7(b). The wavelength
ranges from 380 to 2500 nm. After removing the water absorp-
tion and noisy bands (1–3, 108–112, 154–166, and 220–224)

1[Online]. Available: http://www.ehu.es/ccwintco/index.php/Hyperspectral_
Imagery_Synthesis_tools_for_MATLAB
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Fig. 5. Synthetic multiple endmember spectra of each endmember class.

Fig. 6. Synthetic abundance maps of each endmember class.

from the original 224 bands, the remaining 198 bands were
used for the experiment. There are four main endmember
classes in this data: road, soil, water, and tree.

Urban is one of the most widely used hyperspectral data
used in the HU study and is shown in Fig. 7(c). There are
307×307 pixels. The wavelength ranges from 400 to 2500 nm.
After removing the water absorption and noisy bands (1–4,
76, 87, 101–111, 136–153, and 198–210) from the original
210 bands, the remaining 162 bands were used for the experi-
ment. The number of endmember classes was set to 6 for this
experiment: asphalt road, grass, tree, roof#1, roof#2, and soil.

B. Performance Metrics

Four metrics, SAD, RMSE, average deviation of the mean
(ADM), and average deviation of the standard deviations
(ADS), were used for quantitative validation [30]. SAD mea-
sures the SAD between each extracted endmember and the

reference endmember. RMSE is the root-mean-square error
between estimated abundances and true abundances. ADM
is the average deviation between the mean of the reference
endmembers for each endmember class and the mean of
the extracted endmembers for each endmember class. ADS
is the average deviation between the standard deviations of
the reference endmembers for each endmember class and the
standard deviations of the extracted endmembers for each
endmember class. Smaller values of the four metrics indicate
better results. The true endmembers and abundances of the
synthetic data were known. The reference endmembers and
abundances of the three real images were provided by Zhu
et al. [66]–[68], and are available online.2 Abundances were
estimated by sparse unmixing via the variable splitting and

2[Online]. Available: https://sites.google.com/site/feiyunzhuhomepage/
data sets-ground-truths
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Fig. 7. Three real HSIs. (a) Samson. (b) Jasper Ridge. (c) Urban.

augmented Lagrangian (SUnSAL) method [69] for all the
experiments. The extracted multiple endmembers were not
clustered into bundles by any clustering algorithm. Instead,
they were compared with the reference endmembers by calcu-
lating the SAD between the extracted endmember and each
reference endmember; the extracted endmember was then
assigned to the endmember class with the smallest SAD. The
abundance map for one endmember class was the sum of
the abundances of all the endmembers within the endmember
class.

All four of the metrics were used to evaluate performance
for the synthetic experiments, whereas only SAD and RMSE
were used for the real image experiments. This was because
references of the synthetic data are endmember classes with
variability, whereas there is only one reference spectrum for
one class for the real data sets.

C. Methods Used for Comparison With MOEBE and
Parameter Settings

The EBE [25], SSEBE [26], and SCEE [30] methods were
used for comparison with MOEBE. All four methods required
parameters. For EBE, the number of subsets and the percent-
age of the pixel number of subsets against the pixel number
of the original image are required parameters. For SSEBE,
the block size and the percentage of endmembers in each
block are required parameters. For SCEE, the user-defined
number of endmember candidates is the required parameter.
For MOEBE, the number of particles, the maximum number of
iterations, and the threshold for the SFFS method are required
parameters. The number of particles and the maximum number
of iterations were empirically set to 40 and 2000, respectively,
for all the experiments, and only the threshold for the SFFS
method was tested and specially determined for each experi-
mental data set. All parameters were determined for each data
set by choosing parameters that generated the best result in
terms of SAD and ADS for the synthetic data set, and in
terms of SAD and RMSE for the three real data sets.

For EBE, parameter combinations of the number of subsets
(30, 50, 70, 90, 110) and the percentage of subsets (0.05, 0.1,
0.15, 0.2, 0.3, 0.4, 0.5) were tested. Optimal parameter

combinations were 30 and 0.2 for the synthetic data set,
90 and 0.05 for the Samson data set, 110 and 0.05 for the
Jasper Ridge data set, and 110 and 0.05 for the Urban data
set. For SSEBE, parameter combinations of the block size
(15, 25, 35, 45, 55) and the percentage of endmembers in each
block (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3) were tested.
Optimal parameter combinations were 35 and 0.05 for the
synthetic data set, 35 and 0.3 for the Samson data set, 15 and
0.05 for the Jasper Ridge data set, and 15 and 0.05 for the
Urban data set. For SCEE, parameters of user-defined number
of endmember candidates (30, 50, 70, 90, 110, 130, 150) were
tested. Optimal parameters were 150 for the synthetic data set,
50 for the Samson data set, 50 for the Jasper Ridge data set,
and 90 for the Urban data set. For MOEBE, parameters of the
threshold for SFFS (10−6, 10−7, 10−8, 10−9, and 10−10) were
tested. Optimal parameters were 10−7 for the synthetic data
set, and 10−8 for the three real data sets.

D. Results

1) Results of Experiment 1 (Using the Synthetic Data Set):
To validate the effectiveness of the velocity and position
updating strategies used in MOEBE, the velocity and position
updating strategies of the proposed method are replaced with
the original ones in CMOPSO (named as MOEBE_CM),
and the method has been tested on the synthetic image.
The comparison results of SAD, RMSE, ADS, and ADM
from MOEBE and MOEBE_CM are shown in Fig. 8. The
proposed velocity and position updating strategies produced
better results than that of CMOPSO, which demonstrated the
effectiveness of the proposed method.

In experiment 1, the endmembers extracted by EBE,
SSEBE, SCEE, and MOEBE were evaluated quantitatively
with SAD, RMSE, ADS, and ADM under the condition that
the true endmembers with variability and abundances were
known. Ten independent runs were implemented for each
method in order to test the stability of each method. The mean
and standard deviations of SAD, RMSE, ADS, and ADM of
the ten runs are recorded in Table II, and are also shown in
the form of a bar graph in Fig. 9. Positive feedback for the
stability of each method was received from the small standard
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TABLE II

QUANTITATIVE EVALUATION RESULTS OF SYNTHETIC DATA SET

Fig. 8. Comparison results of the two velocity and position updating
strategies.

Fig. 9. Mean SAD, RMSE, ADM, and ADS of all the endmember classes
from the results of synthetic data set.

deviations of the ten runs. In particular, the standard deviations
for SCEE were zero, which indicated that the endmembers
extracted by SCEE were the same for each run with the
same parameters. The average SAD of all the endmember
classes for MOEBE was slightly smaller than that for SSEBE,
as well as smaller than those for EBE and SCEE. Results
from MOEBE had much smaller RMSE, ADS, and ADM
than those from EBE, SSEBE, and SCEE. The SAD, RMSE,
ADM, and ADS were calculated for each endmember class
(see Figs. 10–13, respectively). The SAD, ADM, and ADS
of the sixth endmember class for SCEE were empty because
SCEE failed to extract any endmembers in this class, which
resulted in a large RMSE for this endmember class. Mixed
pixels may have been extracted by EBE, resulting in much
larger SAD of the ninth endmember class than those of other
methods. The ADM and ADS for EBE, SSEBE, and SCEE had
big differences among different endmember classes, whereas
more balanced ADM and ADS were obtained by MOEBE.
MOEBE outperformed other methods in terms of RMSE for
each endmember class.

Fig. 10. SAD of each endmember class from the results of synthetic data set.

Fig. 11. RMSE of each endmember class from the results of synthetic
data set.

Fig. 12. ADM of each endmember class from the results of synthetic data set.

Finally, the mean and standard deviations of computational
times for ten runs are shown in Table III. The 64-b version of
MATLAB was implemented on a 3.4-GHz Intel Core i7. The
results indicate that EBE was much cheaper computationally
than other methods.

2) Results of Experiment 2 (Using the Samson Data
Set): There was only a single reference endmember spectrum
to be compared with the multiple endmembers within an
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Fig. 13. ADS of each endmember class from the results of synthetic data set.

TABLE III

MEAN AND STANDARD DEVIATIONS OF COMPUTATIONAL
TIMES FOR TEN RUNS

TABLE IV

SAD BETWEEN EXTRACTED ENDMEMBERS AND
REFERENCES FOR THE SAMSON DATA SET

TABLE V

RMSE BETWEEN ESTIMATED ABUNDANCES AND
REFERENCES FOR THE SAMSON DATA SET

endmember class for the real image experiments. Extracted
endmembers within one class were compared to the same
reference endmember spectrum and the mean SAD was
recorded. Here a small SAD can only indicate that the
extracted endmembers were not likely to be mixed pixels, but it
cannot demonstrate that the multiple endmembers within each
class have similar spectral variability to the true variability.
Nevertheless, RMSE can reflect the accuracy of multiple
endmembers, since the RMSE would be small if endmembers
with variability were accurately extracted. Samson is an image
with very simple ground objects, and all methods achieved
abundance maps similar to the reference abundance maps
by using the extracted multiple endmembers (see Fig. 14).
Although MOEBE had the smallest mean SAD among the four
methods (see Table IV), SCEE estimated abundances more
accurately than the other methods (see Table V). The overall
performances of EBE, SSEBE, SCEE, and MOEBE were sim-
ilar. From the results of computational times (see Table VI),

TABLE VI

COMPUTATIONAL TIMES REQUIRED FOR THE SAMSON DATA SET

TABLE VII

SAD BETWEEN EXTRACTED ENDMEMBERS AND REFERENCES

FOR THE JASPER RIDGE DATA SET

TABLE VIII

RMSE BETWEEN ESTIMATED ABUNDANCES AND REFERENCES
FOR THE JASPER RIDGE DATA SET

TABLE IX

COMPUTATIONAL TIMES REQUIRED FOR THE JASPER RIDGE DATA SET

EBE was the most computationally efficient method, and
SCEE spent more time than other methods.

3) Results of Experiment 3 (Using the Jasper Ridge Data
Set): The estimated abundance maps created by using multiple
endmembers extracted by EBE, SSEBE, SCEE, and MOEBE
are shown in Fig. 15. The abundance map of tree produced by
EBE and soil produced by SSEBE were obviously darker than
the reference maps. The abundance maps of water produced by
all methods lost some detail, compared with the reference map.
From the results of SAD in Table VII and RMSE in Table VIII,
MOEBE produced smaller SAD and RMSE than did EBE,
SSEBE, and MOEBE. From the results of computational times
(see Table IX), EBE was the most computationally efficient
method, and MOEBE spent the most time.

4) Results of Experiment 4 (Using the Urban Data Set):
The scene in the Urban data is more complex than that
of Samson and Jasper Ridge. In addition to natural ground
objects, man-made objects also appear in the Urban data.
The estimated abundance maps of EBE, SSEBE, SCEE, and
MOEBE are shown in Fig. 16. For EBE, there were obvious
differences between the produced and reference abundance
maps of asphalt road and soil, and the abundance fractions
of roof#2 were overestimated. For SSEBE, abundance maps
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Fig. 14. Reference abundance maps and estimated abundance maps created by using multiple endmembers extracted by EBE, SSEBE, SCEE, and MOEBE
for the Samson data set. The endmember classes from top to bottom are: soil, tree and water. (a) EBE. (b) SSEBE. (c) SCEE. (d) MOEBE. (e) Reference.

Fig. 15. Reference abundance maps and estimated abundance maps created by using multiple endmembers extracted by EBE, SSEBE, SCEE, and MOEBE
for the Jasper Ridge data set. The endmember classes from top to bottom are: tree, water, soil and road. (a) EBE. (b) SSEBE. (c) SCEE. (d) MOEBE.
(e) Reference.

of asphalt road, roof#2, and soil were obviously different from
those of the reference maps, where the abundance fractions of
roof#2 were underestimated for some pixels, and the abun-
dance fractions of asphalt road and soil were overestimated.
For SCEE, the abundance map of soil was partly different
from that of the reference abundance map, and the map of

grass was darker than that of the reference map. For MOEBE,
the abundance fractions of tree were overestimated for some
pixels. The overall performance of MOEBE was the best
visually. SSEBE had the smallest SAD and MOEBE had the
smallest RMSE among all the methods (see Tables X and XI).
The SAD and RMSE for SSEBE and MOEBE were much
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Fig. 16. Reference abundance maps and estimated abundance maps created by using multiple endmembers extracted by EBE, SSEBE, SCEE, and MOEBE
for the Urban data. The endmember classes from top to bottom are: asphalt road, grass, tree, roof#1, roof#2 and soil. (a) EBE. (b) SSEBE. (c) SCEE.
(d) MOEBE. (e) Reference.

smaller than those of EBE and SCEE. From the results of
computational times shown in Table XII, EBE was the most
computationally efficient method.

E. Discussion

The results of the four experiments indicate that EBE,
SSEBE, SCEE, and MOEBE performed well for the two

relatively simple images in Samson and Jasper Ridge, in which
only endmembers of natural materials were to be extracted
and the number of endmember classes was small. When these
four methods were applied to extract multiple endmembers for
the synthetic and Urban images, some of the results were not
satisfactory. Although the synthetic image has only a simple
type of noise (no noise or error from the imaging process
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TABLE X

SAD BETWEEN EXTRACTED ENDMEMBERS AND
REFERENCES FOR THE URBAN DATA SET

TABLE XI

RMSE BETWEEN ESTIMATED ABUNDANCES AND

REFERENCES FOR THE URBAN DATA SET

TABLE XII

COMPUTATIONAL TIMES REQUIRED FOR THE URBAN DATA SET

and no anomaly) compared with the real images, it contains
12 classes of endmembers with 11 kinds of minerals and the
vegetation class, which increases the complexity of the image.
In this experiment, some extracted endmembers from EBE had
a large SAD from the reference endmembers. This showed
that mixed pixels may have been extracted as endmembers
by EBE. EBE extracts endmembers from randomly selected
subsets, so the mixed pixels could be mistakenly extracted as
endmembers once the endmember of one class is absent in
the subset. The ADM and ADS of some endmember classes
were large for SSEBE, which indicated that some endmembers
within the endmember class may have been lost by SSEBE.
SCEE failed to extract one class of endmembers. Because
SCEE utilizes the connected region to remove mixed pixels
from candidate endmembers, true endmembers may also be
removed if they are not located in the connected region.
This is not good for the identification of rare endmembers.
MOEBE performed well in extracting multiple endmembers
for each of the endmember classes, and the variability of
spectra within each class was close to the true variability. This
is an indicator of MOEBE’s potential. The Urban image has
only six endmember classes, but it is affected by various noises
or interferences and contains both natural and man-made
materials, which result in a complex scene. EBE and SSEBE
performed poorly in this experiment, which implies that the
multiple spectra extracted by these two methods were not able

to represent true endmember variability well for this image.
EBE may have introduced mixed pixels in the endmember
set. SSEBE failed to extract the endmembers located within
the boundary of data simplex, leading to inaccurate variability
within the endmember class. SCEE and MOEBE were able to
provide multiple endmembers describing the variability within
the endmember class more accurately.

EBE had very high efficiency in computational time for the
four experiments. For SSEBE and SCEE, the computational
time increased as the image size increased. The PPI method
used in SSEBE conducts a large number of random projections
for the pixels, so it will take more time to do the projections if
the number of pixels increases. Since one step of SCEE applies
the wavelet transform to the input image with several different
scale factors, an image of a larger size will cost more time.
In MOEBE, it only takes tens of seconds to get the candidate
endmembers and the image size has little effect on the time
cost. The most time-consuming part for MOEBE is the mixed
pixel removal by SFFS. It will spend more time to get the
result if the number of extracted endmembers increases.

V. CONCLUSION

A novel method, MOEBE, which extracts multiple end-
members with variability within endmember classes has been
demonstrated. MOEBE constructs subspaces of the original
image, and simultaneously searches endmembers in multiple
spaces by using multiobjective particle swarm optimization.
The comparison of MOEBE with EBE, SSEBE, and SCEE
using synthetic data showed that MOEBE obtained more accu-
rate results than did the other methods. Multiple endmember
spectra obtained by MOEBE represented the true variability
well for each endmember class. The abundance maps gener-
ated with multiple endmembers extracted by MOEBE were
reliable under the complex scene of a real image.
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