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Abstract—Many atmospheric correction schemes of radiance-
based optical satellite data require the selection of normalized
solar spectral irradiance models at the top of atmosphere (TOA).
However, there is no scientific consensus in literature as to
which available model is most suitable. This article examines
five commonly used models applied to Landsat 8 Operational
Land Imager (OLI) TOA radiance and reflectance products to
assess the accuracy and stability between models used to derive
surface reflectance products. It is assumed that the calibration
of the United States Geological Survey (USGS) Landsat 8 OLI
TOA reflectance and radiance products are accurate to currently
claimed levels. The results show that the retrieved surface
reflectance can exhibit significant variations when different
solar irradiance models are used, especially in the OLI coastal
blue band at 443 nm. From the five solar irradiance models,
the Kurucz 2005 model showed the least bias compared with OLI
TOA reflectance product and least variance in surface reflectance.
Furthermore, improvement was obtained by adjusting the total
solar irradiance (TSI) normalization, and additional validation
was provided using observed in situ water leaving reflectance
data. The results from this article are particularly relevant
to aquatic applications and to satellite sensors that provide
TOA radiance such as previous Landsat and other current and
historical missions.

Index Terms— Atmospheric correction, Landsat 8 Operational
Land Imager (OLI), sensor calibration, solar irradiance, spectral
solar constant.

I. INTRODUCTION AND BACKGROUND

HE normalized solar spectral irradiance at the top of

atmosphere (TOA) is an important boundary condition
used in radiative transfer modeling as well as energy bal-
ances of the atmosphere [1]. It is a fundamental observation
used in a wide range of applications ranging from climate
modeling [2] to atmospheric correction of satellite data,
where the sensors measure upwelling radiance resulting from
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interactions with atmosphere and the Earth’s surface [3]—[5].
For Earth observation applications, its shape and magnitude
are particularly important for spectral wavelengths less than
500 nm, where spectral variations in the solar irradiance
flux are larger compared to longer wavelength. The total
integrated energy over all wavelengths varies periodically with
the Sun—Earth distance, and its value normalized to the mean
Sun—Earth distance is called the solar constant. The solar
spectral irradiance normalized to mean Sun—Earth distance
has sometimes been called the “spectral solar constant,” a
term which will be used here to avoid confusion with other
irradiances. The integrated value over all wavelengths is the
“total solar irradiance” (TSI). The TSI also varies over time
with the 11-year cycle of solar activity, but it is a relatively
small variation [2], [6] compared with the annual Sun—Earth
distance effect with only about a 0.5% variation occurring in
the visible and near-infrared (NIR) areas of the spectrum [2].
The structure and form of the spectral solar constant have
been the focus of intensive and long-term studies incorporating
ground and satellite observations, leading to the existence of
a number of published estimates covering a wide range of
wavelengths relevant to Earth observation at very high spectral
resolutions [3]-[5], [7].

Despite the observed low variability (other than Sun—Earth
distance) of the spectral solar constant in spectral regions
used for recent Earth observation (roughly 400-2600 nm),
it has been observed that there are considerable differences
between the commonly available estimates. For example,
Zhang et al. [8] studied the effects of using selections of
spectral solar constant from six older models and found
significant differences in the calculation of indices. They
suggested the Thuillier model [4] seemed to be most accurate
but found it hard to evaluate what establishes a “best” model.
Thome et al. [9] made a more detailed comparison with two
selections of spectral solar constant in regards to the vicarious
calibrations of instruments prior to Landsat 8. They concluded
that the differences existed, and one (the Chance and Kurucz
1997 model [7]) seemed better than the other. However, they
suggested that vicarious calibration bias would have to be less
than 5% to provide a proper assessment. Similarly with [9],
Shanmugam and Ahn [10] addressed the same questions for
ocean color situations and identified significant effects in the
low reflectance targets. However, they also found vicarious
methods not accurate enough to decide between the choices
of calibration and spectral solar constant selection. Their
preference was the Thuillier model [4].
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Landsat 8 OLI data can possibly resolve the questions left
unanswered by the previous studies. The data have a very
high signal-to-noise ratio (SNR) and radiometric stability [11]
compared with previous Landsat instruments and are provided
to end users as both calibrated TOA reflectance and TOA
radiance products. These products are based on two differ-
ent calibration approaches [11]. The TOA radiance product
employs traditional direct calibration of the observed radiance
using prelaunch laboratory calibration maintained by on-board
lamps as well as innovative methods such as lunar observations
and other cross-checks. For the TOA reflectance product, the
measurement is directly referenced to solar irradiance using
solar diffuser panels. Regular measurements are interpolated
to a particular scene using Sun—Earth distance variations. It is
theoretically an ideal way to calculate the TOA reflectance
as the radiative transfer-based atmospheric correction process
in this case does not then require a reference spectral solar
constant model from the literature. As the panel reading
senses the “true” solar irradiance, the comparison between
the retrieved surface reflectance using TOA radiance and
TOA reflectance also provides an opportunity to evaluate
how different solar constant models perform in atmospheric
correction, assuming the accurate calibration of both OLI TOA
radiance and reflectance.

In this article, five commonly used solar constant models
and one normalized model generated as part of this work
have been used to evaluate their suitability for operational
atmospheric correction of OLI data. The models include three
of 13 available in MODTRAN 6 [7], along with one from the
open-source software version of 6S [12], and one based on
Thuillier et al. [4], currently recommended for standard use
in atmospheric correction for Earth observation by CEOS [13].
The motivation for this study was to quantify the variation seen
in retrieved surface reflectance using different selections of
spectral solar constant models and TOA radiance. In particular,
considerable differences had been observed in water covered
areas and dense vegetation in the new coastal blue spectral
band (433-453 nm) available for Landsat 8 OLI. The previous
studies have proposed that either the coastal blue bands were
not well calibrated [14], or as is being considered here, there
was a problem with the spectral solar constant.

II. METHODS, DATA, AND STUDY AREAS
A. Methods
TOA reflectance can be defined as follows:

T Ltoad2 T Lioa
Egcos(6y) Eqcos(6s)

Proa = (1)
where L., is radiance measured by the sensor, E, is the
spectral solar constant at the TOA for mean Sun—Earth dis-
tance, E{ is estimated normal solar irradiance at the TOA
for the Sun—Earth distance at the time of measurement, d is
the ratio of Sun-Earth distance to mean Sun—Earth distance
(astronomical units), and 6 is the solar zenith angle.

Since the spectral solar irradiance is incorporated into
atmospheric correction primarily through the magnitudes of
surface irradiance and path radiance terms, the Lambertian
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surface reflectance p; estimate can be used to analyze the
impact of the spectral solar constant. For a given waveband,
Lambertian surface reflectance p,; can be written as follows:

_ (Lloa - Lp)
Eycos(0)T, Ty /m + S(Lioa — L))

where L, is path radiance added by the atmosphere, 7, and
T, are total transmittances of the sun and view directions,
respectively, and S is atmospheric albedo (accounting for
interactions between surface and atmosphere). In this article,
the terms of (2) are provided by running MODTRAN [7] at
wavenumber level to solve the radiative transfer and balance
energy. The properly integrated terms (such as transmittances
or albedos) at spectral band level allow (2) to be used for band
data with high accuracy. The spectral solar constant is also
applied at wavenumber level, and its integrated band value
is output by MODTRAN [7]. MODTRAN allows a user to
provide their preferred spectral solar constant model when it
is not available from standard selections. The terms used in this
article are all assumed to be integrated correctly to the seven
Landsat 8 bands. However, the band dependence is suppressed
to keep the expressions simpler.

Using (1), Ly, can be expressed as pioa E( cos(6s) /7, and if
L, can also expressed as p, E( cos(0y)/m, (2) can be expressed
as

Ps @)

_ Proa — Pp

I, Ts + S(ptoa - Pp).

In (3), p, is path reflectance which is effectively
independent of solar irradiance and can be defined as
nL, / (E{cos(by)). Strictly, p, is only independent of E| at
single wavelength or wavenumber level. However, if inte-
grated properly, any difference at band level is negligible.
Equation (3), therefore, shows that to very close approxi-
mation, the retrieval of band integrated (Lambertian) surface
reflectance p; does not require the selection of a spectral solar
constant model if the satellite sensor measures py,, directly.

Most of the sensors only provide measured TOA radiance,
and thus, the accuracy of the retrieved surface reflectance
depends on the effective selection of a spectral solar constant
model. Since OLI has independent calibrated TOA radiance
and TOA reflectance products [11], the comparison between
the retrieved surface reflectance from TOA radiance and TOA
reflectance can be used to evaluate the performance of the
spectral solar constant model used in the correction.

To demonstrate how the choice of spectral solar constant
affects the retrieval of Lambertian surface reflectance, the term
ps can be replaced by a term p; defined as p; = p;/(1 — Spy)
to simplify the equations. The relationship between p, and p;
is very close, and converting between them does not involve
the choice of solar constant. With this change and combined
with (1), (3) can then be written more concisely as

ps G)

7T Lioa
Eqcos(0y)

Consider that there are two selections of solar constant,
namely, Case 1 and Case 2. Both are assumed adjusted for

the Sun-Earth distance and are, therefore, denoted E;, and
E(,, respectively. In this article, Case 1 will be taken as for

Proa =T, Tsp/s +pp = 4)
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OLI when py, has been estimated directly from the TOA
reflectance product. Assume that the panel reflectance for TOA
reflectance is accurately known, and then, the solar irradiance
for Case 1 is a measured value. Case 2 uses a selected spectral
solar constant model and the OLI TOA radiance product.
In both cases, the radiance (Li,) will be the same if the
OLI calibrations for both TOA reflectance and TOA radiance
products are accurate. Then, reformatting (4) leads to

1 /
Lioa = ;Em COS(QX)(TDTspsl "‘Pp)

1 ! /
= ;Eoz cos(@s)(TD Tipgr + pp). 5)

In this equation, p), and p), are retrieved Lambertian
surface reflectance factors (or strictly the composite factors
involving S) for Case 1 and Case 2, respectively.

The ratio of the TOA reflectance values (r;) from the two
cases is defined from (1) as
— Proa2 _ @ _ E_([)l (6)

Proal E02 E02
where pia1 and pran are TOA reflectance values for Case 1
and Case 2, respectively. Note that although the value of E; is
not explicitly known, the ratio (r;) can still be found. This ratio
is found to be very stable and is only waveband dependent.

Rewriting (5), it follows that

Pp
T,T;

This relates the reflectance that is obtained if the selected
spectral solar constant model and TOA radiance are used (p.,)
to the solution obtained if the TOA reflectance product is used
(p;;)- Obviously, if r, = 1, then the two cases result in the
same ground target value. In this article, p;, will be taken as
the correct result. Otherwise, the result of using the spectral
solar constant model is altered by the ratio r, and a bias
term denoted p;; which depends on the path radiance, diffuse
radiation, and transmittances. The bias term is greatest in the
blue and least in the NIR and shortwave infrared (SWIR).

This result can be expressed in other ways. One way is as
the difference between the values

P2 — ps1 = (e — D) (phs + pjy). (®)
The difference is depending on land cover (p;,) and the bias

term (py,).
Another way to evaluate the change is to use the ratio

Iy

Ps2=Trips + (re = 1) =rpsy+ - 1)p;’;. (7)

re=—==r+@—-1)—. ©)

The result is that surface ratio r; is the ratio of TOA
reflectance values (7;) plus a perturbation consisting of the
ratio of the new wavelength-dependent bias term (p) and the
Case 1 surface target reflectance.

Based on this theoretical model (9), it is clear that low
reflectance targets are more greatly affected in the shorter
wavelength regions. Thus, these effects have been noticed in
aquatic applications, where even small variations can lead to an
unrealistic spectral signature for techniques utilizing radiative
transfer or physics-based methods with a radiance product.
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TABLE I
SPECTRAL SOLAR CONSTANT MODELS TESTED IN THE STUDY

Model References
1 MODTRAN 6 default, MODTRAN LSUNFL default [3] [7]
5 Kurucz 2005, MODTRAN LSUNFL 1 [5] [7]
3 MODTRAN Thuillier, MODTRAN LSUNFL 4 [7]
4 Open source 6S [12]
5 CEOS Thuillier [13]
6 Normalised Kurucz 2005 (Model 2) [5] [7] scaled by a factor of

0.988

B. Data and Study Area

Six solar constant models have been used in this study as
the Case 2 selections, and they are shown in Table I.

The Model 6 is the Kurucz 2005 (Model 2) adjusted to
have the average ratio (r;) over spectral bands nearer to 1.0,
as described later.

The atmospheric and surface radiometric measurements
are routinely collected at the Integrated Marine Observing
System (IMOS) Lucinda Jetty Coastal Observatory (LJCO)
located at the end of a 6 km long jetty in coastal waters
of the Great Barrier Reef south of Hinchinbrook Island,
Queensland. The LJCO operates a modified version of
a CIMEL CE-318 sun-photometer, capable of performing
autonomous atmospheric and above water radiance measure-
ments at defined viewing and azimuth angles. This system
contributes to NASA’s global AERONET-OC network [15].
During clear-sky conditions, the instrument measures the
water-leaving radiance at approximately half hourly intervals
in eight spectral bands between 412 and 1018 nm. These
measurements are available for ground validation. Direct sun
and sky radiance measurements are also performed to derive
spectral columnar aerosol optical depth and additional prod-
ucts such as precipitable water vapor. The OLI tile covering
LJCO (18.52 S, 146.39 E) and defined by path 095 and row
073 also includes other land and ocean surfaces without field
measurements but with atmospheric information provided by
the LICO. These sites are also suitable for testing the impact
of the spectral solar irradiance models. Fig. 1 shows the false
color image of Lucinda and surrounding areas. The yellow
stars are the 15 land cover sites without ground truth data
that are used for the general analysis later. The targets include
rainforest, agriculture, inland and ocean water, and mangrove
and bare soil. Table II shows the 11 selected Landsat 8
images that have concurrent LJCO and land cover observations
acquired during different seasons and years.

The images were processed in two groups to calculate
Lambertian surface reflectance using (2) and (3) and the
OLI TOA reflectance and radiance products. Since it is time
consuming and impractical to run MODTRAN pixel by pixel,
in this study, Landsat images were divided into four rectangles
and MODTRAN run at the nine corner coordinates. For
any pixel in the image, the MODTRAN outputs are then
interpolated from the nine points using bilinear interpolation in
each rectangle to get the pixel values [16]. These can account
for multiangle effects in the atmosphere. Since Australia
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Fig. 1. False color image of test scene, where yellow stars are the test sites
and the star beside Lucinda is the LICO.

TABLE 11
LANDSAT 8 DATA USED IN THIS ARTICLE

Scene centre information (path 095, row 073)

» D at/e Time (H) o o
(dd/mm/year) (UTC) Latitude (°)  Longitude (°)
03/01/2014 0.3031 18.7902S 146.0873E
28/06/2014 0.2756 18.7903S 146.1035E
31/08/2014 0.2817 18.7904S 146.0985E
16/09/2014 0.2825 18.7903S 146.0993E
02/10/2014 0.2829 18.7903S 146.1010E
18/10/2014 0.2841 18.7901S 146.0880E
19/11/2014 0.2831 18.7903S 146.1019E
18/08/2015 0.2757 18.7902S 146.0979E
21/10/2015 0.2811 18.7903S 146.0968E
26/02/2016 0.2784 18.7904S 146.1086E
10/10/2017 0.2848 18.7904S 146.0794E

has little spatial variation of aerosol and water vapor, single
aerosol and precipitable water vapor for Landsat scene extent
(200 km x 200 km) were used, and the data were obtained
from the AERONET web site [17] and other ancillary data
were from the Geoscience Australia Analysis Ready Data
(ARD) processing system [16]. Only ry is impacted by
atmosphere based on (6) and (9).

III. RESULTS

All 11 images were processed to Lambertian surface
reflectance using the TOA reflectance product as well as the
TOA radiance product and with the six spectral solar constant
models shown in Table I. To assess the impacts on the surface
reflectance retrieval, the coordinates of the 15 target areas with
various landcover types (inland water, ocean water, agricul-
ture, rainforest, bare soil and mangrove, etc.) were identified
in each image (the yellow stars in Fig. 1), and a kernel
of 9 x 9 pixels was used for each site to average both TOA
and surface reflectance.

4097

1.2
TOA reflectance ratio
—e—Model 1
115 ¢ —o—Model 2
—+—model 3
g 11 | Model 4
£ ——Model 5
e
9 ——Model 6
g t
8105 R\
o
2
=
o
<
e 1}
095 r
0.9
400 600 800 1000 1200 1400 1600 1800 2000 2200
Wavelength nm
Fig. 2. Average TOA reflectance ratio, r;.
1.2
Surface reflectance ratio
—e—Model 1
115 —e—Model 2
—+—model 3
Model 4
.E, 11 | —e—Model 5
E ——Model 6
3
c
©
B 105
®
Q
=]
.g X
> 1+
wv
095 r
0.9
400 600 800 1000 1200 1400 1600 1800 2000 2200
Wavelength nm
Fig. 3. Average surface reflectance ratio, ry.

Fig. 2 shows the average ratio of r; (puwa2/proal, averaged
over 15 test areas and 11 images, where py. is TOA
reflectance estimated using OLI TOA radiance product and
the different spectral solar constant models, and pi,; is the
direct TOA reflectance calibrated product). Table III shows
the average ratio and its standard deviation. The ratio, which
estimates r,, is temporally stable and showed no variations
based on land cover changes (small standard deviation, STD)
but only varies between different bands/wavelengths and selec-
tions of spectral solar constant model (see Table III). This
stability is expected, and the ratios can also be directly
estimated and confirmed from the Landsat 8 calibrations as
will be shown later.

Fig. 3 shows the average ratio of ry (ps2/ps1, Where pg is
retrieved Lambertian surface reflectance using the TOA radi-
ance product and the different spectral solar constant models,
and py; is obtained by using the TOA reflectance product).
While generally similar, there are some significant differences
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TABLE III
TOA REFLECTANCE RATIO r; AND STANDARD DEVIATION (STD)

Model 1 2 3 4 5 6

band Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD
1 1.0589 0.0010 0.9949 0.0006 1.0270 0.0007 1.0470  0.0009 1.0413 0.0009 1.0071 0.0005
2 0.9942 0.0006 0.9802 0.0007 0.9915 0.0006 1.0218  0.0006 1.0053 0.0006 0.9925 0.0005
3 0.9881 0.0005 0.9850 0.0005 1.0066 0.0005 1.0038  0.0005 1.0207 0.0005 0.9972 0.0003
4 1.0028 0.0006 0.9946 0.0006 0.9977 0.0006 0.9963  0.0006 1.0117 0.0006 1.0070 0.0003
5 1.0088 0.0006 1.0003 0.0006 0.9604 0.0005 0.9839  0.0006 1.0088 0.0006 1.0129 0.0004
6 0.9776 0.0005 0.9840 0.0006 0.9837 0.0006 09688  0.0006 0.9634 0.0007 0.9963 0.0004
7 0.9774 0.0006 0.9716 0.0007 0.9715 0.0007 09712 0.0007 0.9378 0.0013 0.9837 0.0004

Ave  1.0011 0.0006 0.9872 0.0006 0.9912 0.0006 0.9990 0.0006 0.9984 0.0007 0.9995 0.0004

TABLE IV

SURFACE REFLECTANCE RATIO r; AND STANDARD DEVIATION (STD)

Model 1 2 3 4 5 6

band Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD
1 1.1957 0.0578 0.9829 0.0061 1.0899 0.0264 1.1564 0.0461 1.1373 0.0404 1.0240 0.0080
2 0.9840 0.0052 0.9456 0.0165 0.9766 0.0075 1.0595 0.0176 1.0143 0.0044 0.9796 0.0068
3 0.9661 0.0180 0.9569 0.0228 1.0186 0.0095 1.0110 0.0059 1.0585 0.0300 0.9928 0.0044
4 1.0079 0.0070 0.9845 0.0118 0.9933 0.0058 0.9893 0.0085 1.0329 0.0251 1.0152 0.0091
5 1.0164 0.0096 1.0003 0.0014 0.9259 0.0447 0.9697 0.0187 1.0164 0.0097 1.0198 0.0087
6 0.9721 0.0077 0.9808 0.0041 0.9801 0.0050 0.9617 0.0096 0.9548 0.0118 0.9957 0.0006
7 0.9730 0.0067 0.9660 0.0088 0.9657 0.0089 0.9659 0.0088 0.9255 0.0190 0.9820 0.0022

Ave 1.0164 0.0160 0.9739 0.0102 0.9929 0.0154 1.0162 0.0164 1.0200 0.0200 1.0013 0.0057

between the results shown in Figs. 2 and 3, primarily in
the coastal blue, blue, and green bands. These results can
be directly interpreted using (9). In (9), the choice of solar
constant affects the retrieved surface reflectance both through
r; and the path radiance bias. The factor (r; — 1) implies
that the bias increases the divergence away from 1.0 with
greatest effect in the coastal blue band. Due to the variation
of the atmosphere (e.g., aerosol and water vapor), the effects
vary with time, leading to significant temporal variation in the
visible region. Each band and land cover type creates different
temporal and spatial variations. Among specific land cover
classes, dark target ratios show the greatest departures from
1.0 when the path radiance bias is high. The results are also
shown in Table IV. The standard deviations in Table IV are
much higher than those in Table III.

Figs. 2 and 3, therefore, show how even if the deviation
of r, from 1.0 is small, the overall impact for the surface
reflectance retrieval can be much larger, especially in dark
targets and the far blue end of spectrum. In these situations,
selecting a suitable solar constant model is essential to retrieve
a reliable surface reflectance from a radiance based product.
The use of the OLI TOA reflectance product as reference also

allows the “best” model to be defined as the one that leads
to the signatures from the OLI radiance product being most
similar to those from the OLI reflectance product.

If only Models 1-5 are considered, Fig. 3 and Table IV show
that Model 2 is best fitting to the ratio 1.0 in terms of standard
deviation, but the r-value still has an overall low bias from 1.0.
This conclusion is supported through the analysis of individual
scenes and sites. However, it is not as clear in Fig. 2 as it is in
the data due to the clustering of the different models. The bias
in Model 2 led to the use a value of 0.988, very close to its
mean r, in Table III, as a factor to adjust the TSI of the model.
This resulted in a new model (Model 6), which achieves the
least bias in all cases and the closest match of results produced
from the OLI radiance product to those produced from the OLI
reflectance product.

The other models vary much more significantly than
Models 2 and 6 — particularly at the blue end of the spectrum.
Although the two models based on Thuillier’s measurements
(Models 3 and 5) perform better in coastal blue band compared
with Models 1 and 4, they are variable in other areas of
the spectrum and neither performs well in the comparisons
made here, suggesting that they may need to be revised.
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Fig. 4. Average difference ps» —py1 (average of all valid pixels for 11 images),
where pgy is retrieved Lambertian surface reflectance using Landsat 8 TOA
radiance product and the different spectral solar constant models, and py; is
obtained by using Landsat 8 TOA reflectance product.

Models 1 and 4 did not perform well in the coastal blue
band and have quite divergent properties in different parts
of the spectrum. The analysis, therefore, poses some relevant
questions in regards to the way these models were constructed.

Figs. 2 and 3 and Tables III and IV only show averages at
the 15 selected test sites (yellow stars in Fig. 1). Fig. 4 shows
the overall reflectance change (ps—pys1, average of all valid
pixels for 11 images) for different spectral solar constant mod-
els. The difference follows (8) with r-values above 1.0 being
biased higher and r-values below 1.0 being biased lower. Fig. 4
clearly shows similar patterns to Figs. 2 and 3 with the path
radiance bias playing a significant role. Among the various
models, the results from using the adjusted Kurucz 2005 model
(Model 6) again gave overall best results as measured by
the least bias. Models 3 and 5, both of which are based
on Thuillier et al. [4], gave the highest general divergence.
The most noticeable specific variations are in the coastal blue
band. The highest divergence in the coastal blue band was for
Model 1, which generated a very high surface reflectance with
the average difference being over 0.01 reflectance units. This
bias in the radiance product has fundamental implications in
aquatic applications which use radiative transfer or physics-
based approaches, such as for water quality assessment and
shallow water bathymetry derivation. Although the influence
on the coastal blue band has brought this problem to the fore,
this study shows that other regions of the spectrum are also
affected.

To increase confidence in the above analysis, the estimated
water leaving reflectance values were compared with ground
in situ measurements from the Lucinda AERONET installa-
tion. Fig. 5 shows one comparison for an image sensed on
October 2, 2014. For the water leaving reflectance retrieval,
additional corrections were also applied to the Landsat 8 OLI
data to account for the removal of sky and sun glint as follows:

Ps = Pw + Pgsun + Pgsky- (10)
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Fig. 5. Comparison between water leaving reflectance retrieved from OLI
TOA reflectance and radiance products with different spectral solar constant
models and ground measurements on October 2, 2014. “Measured” indicates
the CIMEL p,, measurement and “REF” means using the TOA reflectance
product to retrieve p,,. “Model 1’—“Model 6” means p,, retrieved using the
TOA radiance product with the different spectral solar constant models shown
in Table L.

In (10), p, is the water leaving reflectance factor shown
in Fig. 5. pesun and pggiy are sun glint and sky glint, respec-
tively. Details as to how pgeun and pguy are computed can
be found in [18]. Since the estimation of pgsun and pgsiy is
independent of the choice of spectral solar constant, the rela-
tionship between py, and spectral solar constant should be the
same as the one between ps and spectral solar constant.

The measured p, data obtained by the SeaPRISM instru-
ment located at LICO, compared with the p,, derived from the
OLI TOA reflectance and radiance with different spectral solar
constant models, are shown in Fig. 5. The diverging results in
Fig. 5 are fully consistent with the previous analysis, but, in
this case, field data also show how the OLI TOA reflectance
product matches the observations the best in magnitude and
shape. It is, therefore, clear that if the spectral solar constant
model is not selected carefully, not only are the estimates from
OLI radiance product noisy but also the retrieved signatures
are less accurate, and significantly so for low-reflectance
applications such as aquatic remote sensing.

IV. SENSITIVITY AND ERROR ANALYSIS

In Fig. 3 and Table IV, it can be observed that the ratios
of reflectance values at the surface (r;) from Case 1 and
Case 2 in the different bands can depart significantly from the
corresponding r-values at TOA r,. The observed magnitude
of the difference in the bands depends on the atmospheric
conditions and the land covers sensed. Equation (9) shows
how if all r; values are 1.0, there is no variation between r;
and r, for any land covers or any atmospheric conditions. The
difference of r,; value from 1.0 is, therefore, the major source
of differences between surface reflectance values based on the
reflectance product from those based on the radiance product
in images.
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Assume that the difference of r-value from 1.0 is written
as or; =r; — 1 and ory, = ry — 1, then (9) can be rewritten as

*

_ Pa _ Pp
ry = —/_(1+5rg)_(1+5r,)+5r,—/ (11)
sl sl
Py
5}"525}”[ l+T . (12)
Psl1

Equation (12) was derived to directly relate the variations of
the ratio of reflectance values obtained using the radiance and
reflectance products at the surface (ry) with the r-value at
TOA (ry).

The surface variations Jr; are created by different land
covers (p,, which is the reference reflectance in the band being
considered) and different atmospheres [p;’; from (7) combines
path radiance reflectivity and atmospheric transmittances] and
vary with spectral band.

The first thing to note is that for NIR and SWIR bands,
the path radiance reflectivity is very small or negligible, and
transmittance is large. The variation in the r-value at the
surface (Jry) is, therefore, simply the same as the variation
at the TOA (Jr;). The effects on the reflectance at a surface
described earlier in this article (such as seen in Fig. 5) are
mostly properties of the visible region and are greatest in
the coastal blue band because the path radiance reflectivity
is largest and the atmospheric transmittances are the least in
this band. The offset in (12) alters the ratio of reflectance
values most for land covers, where the band reflectance values
are small. These are also the situations, where the offset
effect is most detrimental to the values obtained using the
radiance product. Jr; is, therefore, a very sensitive measure
of performance and is clearly determined directly by the
magnitude of dr;.

The studies that have been undertaken in Section II-A and
Section III confirmed how the simple model of (12) can
precisely describe the variance that occurs between different
land covers and when the atmospheric parameters change and
how it is modulated by changes in Jr;. Questions as to how
changes in atmosphere parameters (e.g., aerosol optical depth)
will modify the variation observed in an image can, therefore,
be answered directly using (12).

The basic assumption made so far in evaluating the spectral
solar constant models has been that the Landst 8 calibra-
tions for the radiance and reflectance products are accurate.
If this is relaxed, variations in radiance and/or reflectance
calibration will also be present as percentage changes in the
r-values. These perturbations can lead to additional misalign-
ment between the selected and “true” spectral solar constant.
To evaluate the effects of calibration error on the previous
results, it is necessary to establish the relative contributions
to or; from changing spectral solar constant model and from
calibration error.

The calibrations for the radiance and reflectance products in
Landsat 8 are made using multiplicative factors. The delivered
Landsat 8 metadata provides slope and bias factors for each
band and each of two products (reflectance and radiance), for
which one finds

output = slope x DN + bias = slope x (DN — 5000). (13)
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Defining Ci,q for the radiance calibration and Cies for the
reflectance calibration (basically the reciprocal of the panel
reflectance in adjusted DN), then
_ oz 7 Craa X (DN —5000)/Eg, 7 Crag

Proal Cref X (DN - SOOO) Cref E(,)Q

:1+5}";.

Iy
(14)

Equation (14) shows that r, does not depend on the DN.
The result can, therefore, be computed based on the underlying
calibration values or the slopes found in the image metadata
file as well as some knowledge of Sun—-Earth distances. r,
has previously been shown in Table III for each spectral
solar constant model and each spectral band. For Table III,
they were computed as averages over all the images for the
15 selected land cover types shown in Fig. 1. The small
standard deviations (corresponding to about 0.05% coefficient
of variation) show that the underlying calibration coefficients
for radiance and reflectance were very stable in the image
products used in the study period.

Table V shows the analysis of the or, values for the six
spectral solar constant models and the seven Landsat 8 bands
used in this article. The mean r; values are taken from Table II1
and included for reference. In Table V, the column dr, = r, —1
lists the offset of »;, from 1.0 as introduced above. The mean
of the or, values for seven Landsat 8 bands indicates bias,
the standard deviation of the Jr; values indicates the unbiased
variation, and the root mean square (rms) of the Jr, values is
the total variation (including bias and standard deviation).

The most significant bias (the mean dr; in Table V) is for
the Model 2. Model 2 was adjusted by a constant multiplier
to remove the bias and to get the final Model 6 in this article.
The standard deviations of Models 2 and 6 are also effectively
the same. Other models do not have as large bias terms, and
adjusting them as was done for Model 2 does not make a
significant difference. This can be seen from Table V because,
for these models, the standard deviation is approximately equal
to the rms.

The large values of Jr, in specific bands indicate the
potential locations of the problems discussed earlier. The rms
of dr, measures the total rms departure of the given model
from r, of 1.0 in all bands. The order in decreasing magnitude
of overall rms for the choices of spectral solar constant model
is Model 5 (3.56%), Model 4 (2.82%), Model 1 (2.81%),
Model 3 (2.39%), Model 2 (1.62%), and Model 6 (1.01%). The
higher the value, the more variation will be seen in images,
and the less agreement will be between Landsat 8 surface
reflectance values obtained from the radiance product and the
equivalent values from the reflectance product.

If C},4 represents the “true” values for a perfect radiance
calibration, and C,; represents the “true” values for a perfect
reflectance calibration, the ratio due only to the use of different
spectral solar constant models can be written as
Lm‘,iz 1+5l” M-

Cref E 02

In this expression, the “M” indicates the selected model
for E{,. Furthermore, if errors in the radiance and reflectance
calibrations perturb the ratio of the calibration factors by a

5)

ry =
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TABLE V
TOA REFLECTANCE RATIO r; AND ITS VARIATION Jr;

Model 1 2 3 4 5 6
band Mean r, or, Mean r, or; Mean r, or; Mean r, or, Mean r, or, Mean r, or;
1 1.0589  0.0589 0.9949  -0.0051 1.0270  0.0270 1.0470  0.0470 1.0413 0.0413 1.0071 0.0071
2 0.9942  -0.0058 0.9802 -0.0198 09915 -0.0085 1.0218  0.0218 1.0053 0.0053 0.9925  -0.0075
3 09881 -0.0119 0.9850 -0.0151 1.0066  0.0066 1.0038  0.0038 1.0207  0.0207 0.9972  -0.0028
4 1.0028 0.0028 0.9946  -0.0054 09977 -0.0023 09963 -0.0037 1.0117  0.0117 1.0070 0.0070
5 1.0088 0.0088 1.0003 0.0003 0.9604 -0.0396  0.9839 -0.0161 1.0088 0.0088 1.0129 0.0128
6 09776  -0.0224 0.9840 -0.0160 09837 -0.0163 0.9688 -0.0312 0.9634 -0.0366 0.9963  -0.0037
7 09774  -0.0266 09716  -0.0284 09715 -0.0285 09712 -0.0288  0.9378 -0.0622  0.9837 -0.0163
Ave 1.0011 0.0011 09872  -0.0128 09912  -0.0088 0.9990 -0.0010 0.9984 -0.0016 0.9995  -0.0005
STD 0.0281 0.0099 0.0222 0.0282 0.0355 0.0101
RMS 0.0281 0.0162 0.0239 0.0282 0.0356 0.0101
TABLE VI other infrequently to track changes in panel properties. From
APPROXIMATE 07y the stability in reported comparisons of the panel reflectance
using both panels [19], it seems possible that the absolute
Model 1 3 4 5 reflectance performance could be better than the 2%.
band S Srm St Srm If some differences in bands are due to the calibration errors
1 0.0640  0.0321  0.0521  0.0464 (i.e., the dC terms), then, based on the stability reported in [11]
2 0.0140  0.0113  0.0416  0.0251 and [19], the 6C terms must have constant magnitude and
3 0.0032  0.0217  0.0188  0.0357 sign and not change with the different selections of spectral
4 0.0082  0.0031 0.0017 0.0171 solar constant models. Moreover, the variations due to the
5 0.0085 -0.0399 -0.0164  0.0085 calibration error are independent of the spectral solar constant
6 -0.0064 -0.0003 -0.0152  -0.0206 models and the Jry terms that they generate. The spectral
7 0.0018  -0.0001 -0.0004 -0.0338 solar constant models were developed from totally separate

fractional error JC, then the relationship between the above
quantities and calculated r, can be written as r; = ry (146C).
It follows that

(1+0r,) = ru(1 +0C) = (1 + drar)(1 + 6C)
1 + (Ory + 5C).

It

~
~

(16)

The result can be summarized more simply as
ory ory + 6C. That is, to a close approximation
(neglecting second order perturbations), the fractional
differences of r; from 1.0 can be looked at as the sum of a
constant term due to calibration error and a variable term due
to using different spectral solar constant models.

Markham et al. [11] have demonstrated how Landsat
8 has much higher in-orbit SNR and radiometric fidelity
than any previous Landsat instrument. In addition, Mor-
fitt et al. [19] showed that radiometric uniformity and stability
are within 0.5% in position and time. This means that any
present calibration errors are not random variables but rather
stable bias terms. As to the possible magnitude of these bias
terms, Markham et al. [11] quoted it to be 3% in radiance and
2% in reflectance for individual bands. Calibration errors in the
reflectance product come from the SNR of the instrument (the
solar reference is read by the sensor) and changes in the panel’s
properties due to exposure to space. SNR may contribute less
than 0.5%. Landsat 8 uses two panels, one regularly and the

information. They may, therefore, be reasonably assumed to
be not significantly correlated with them. If uncorrelated, then
(approximately) RMS (0r,)* &~ RMS (7 7)>+RMS(5C)?>. That
is, the rms of perturbation due to the calibration error will be
effectively the same and present for each selection of spectral
solar constant model.

It follows that if the rms of the constant 6C values were
large, then no model would align well with the true solar
constant as measured from the panel. However, since Model 2
(even without adjustment) aligns very closely (rms < 2%) with
the panel data, the overall rms of the constant JC values is
presumably no larger than this.

Based on these principals, an estimate for the different
components of the variation in r, can be established. Model 2
is closest to the “true” spectral solar constant having the
smallest rms among the five independent solar irradiance
models. As Model 6 is a fitted model based on Model 2, it is
not included for this analysis. The following relationship holds
for differences between dr; for Model j and Model 2:

Ory; — Ory, = Ory; — OF (17)
where j is the model number, and j can be 1, 3, 4, and 5.
In (17), 6C cancels out as the calibration error is constant
between choices of spectral solar constant model. As Model 2

is close to the “true” solar constant, it will be assumed that
equal to it, then dry, = 0. The estimate for 6C is then 6C =
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ory, (see Table V). For the exact perturbations due to models:

ory; = ory, — ory, = or;, — oC. (18)

This simple solution is approximated as Model 2 is still
likely different from the “true” spectral solar constant.

Based on Table V and the above assumptions, an estimate
for the calibration errors has an rms 1.62% with the largest
band error of 2.84% for band 7. Its size is, therefore, within
the bounds quoted in [11] and [19]. It is conservative because
if Model 6 was used, the rms would be 1% with the largest
band error of 1.63% for band 7. With that choice, the Model 2
rms would be a sum of calibration and solar constant model
variations.

Table VI shows the approximate dry; values based on
Table V and (18). Table VI shows that most of the extreme
values that can be observed in Table V are preserved with
values again between 3% and 6%. These extremes, which
occur in different bands for different models with varying
signs, are the primary causes of the problems that have been
described in this article.

These observations support the conclusion that if cali-
bration variations are bounded by the orders claimed by
Markham et al. [11] and Morfitt et al. [19], the variations
observed between the choices of spectral solar constant model
and the effects they have on surface reflectance are primarily
due to the model differences. Furthermore, the suggestion
that Model 2 aligns best with the reflectance product among
the original selected models is consistent with such levels
of accuracy, and Model 6 shows that it may be possible to
align it even more closely. The results further suggest that the
claims made by Markham et al. [11] and Morfitt et al. [19]
for radiance and reflectance calibration accuracy may be
conservative.

V. DISCUSSION

Adjusting the fit (or reducing the bias) of Model 2 to obtain
Model 6 is similar to modifying the overall TSI of the model.
Renormalization can be applied to any of the models used here,
but only Model 2 is significantly improved. The TSI of the
spectral solar constant certainly will vary with solar activity,
and its specific value is important for scientists estimating
atmospheric heating. It also varies quite widely among options
presented in [7]. In [7], there are seven options (including
Model 1 of this article) using model-based studies of solar
irradiance by Fontenla et al. [3]. These have TSI normalization
ranging from 1358.8 to 1361.6 W/m? depending on solar
activity. The Thuillier-based MODTRAN selection (Model 3
in this article) normalizes to 1376.2 W/m?, and the Kurucz
2005 (Model 2) normalizes to 1400.5 W/m?. The adjustment
by 0.988 reduces it to 1387.7 W/m?. The TSI values associated
with the Models 4 and 5 used here are unknown. Dewitte and
Clerbaux [6] suggested that the long-term observations put the
TSI value in the range from 1362 W/m? to above 1363 W/m?.
It seems that there are some resolutions needed between these
various options. Since the differences may depend more on
other areas of the spectrum (especially the UV) than those
considered in this article, a study of the narrower and less
variable region between 400 and 2600 nm would be useful.
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However, if any adjustments are made to existing models, it is
best if they are made for independent reasons and not by fitting
to the variations in the r-value, as the latter may be “fitting”
to any small but present calibration errors.

This article selects from independently established spectral
solar constant models and determines which is “best” to align
the radiance- and reflectance-based Landsat 8 products. The
models used are all defined at high spectral resolution and
sometimes over all wavelengths. If the only objective was
to equate the two products of a single sensor, it may be
argued that one should confine the solar constant to broadband
values and use the results here to define revised versions of
the (integrated) solar constant as (r; X Epp) in each of the
Landsat 8 bands. The use of this with a broadband atmospheric
correction can certainly make the radiance and reflectance
products identical as the new effective r, = 1.0 in each band.
The problem is that it is only available for a specific sensor as
it uses the sensor bandpass functions, and it cannot generally
be modified for use with another sensor. In addition, it incor-
porates residual calibration errors as they are included in the r,
values. There is no need to use this expression for Landsat 8 as
the reflectance product is already available. For other sensors
of the Landsat series, there are usually enough differences in
bandpass functions between similar bands to make it difficult
to transfer the values. The better situation is to find a “best”
model for the spectral solar constant from among those that
have been defined using independent solar observations at
high spectral resolution. This model can then be used for new
bandpass functions of new sensors and be independent of any
calibration errors in Landsat 8. For scientists who use radiative
transfer at fine spectral or wavenumber levels as the basis for
atmospheric correction, it is much better to have a satisfactory
model defined over all wavelengths involved than only for
the broad bandpass functions of a particular sensor. Progress
to finding this “best” model would be significantly advanced
if hyperspectral sensors with both well-calibrated reference
panels and lamp calibrations are launched into orbit.

It would be ideal if the various groups involved in producing
the currently available spectral solar constant models could
reach a consensus based on the observation data over all of
the period of observations using any other relevant ancillary
information that can be contributed. This article has shown
that, perhaps, the Landsat 8 TOA reflectance estimate based on
the two calibrations can help in this process. In the meantime,
resolving the large differences between the two models that are
(at least in part) based on Thuillier would also be helpful—
especially as one is recommended by CEOS [13] for general
and consistent use in atmospheric correction. The available
models are mostly the composites of different models in
different parts of the spectrum. It is possible that issues with
the different renormalizations and splicing have occurred when
creating the composite models, and this should be investigated
further.

VI. CONCLUSION

When physics-based atmospheric corrections are applied
to Landsat 8 OLI optical TOA radiance data using different
spectral solar constant models, the resulting surface reflectance
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values can vary significantly. Recently, significant variations
have been observed for the blue bands over darker targets.
Assuming the OLI calibrations are accurate to the levels
claimed by Markham et al. [11] and Morfitt et al. [19],
the extent and nature of the variation were measured by com-
paring the surface reflectance results from different spectral
solar constant models with those retrieved from the TOA
reflectance product of OLI. The OLI TOA reflectance product
is referenced directly to the solar radiation by the on-board
solar diffuser panels.

Using the match of the surface reflectance based on TOA
radiance to that based on TOA reflectance as the criterion,
a set of available spectral solar constant models from var-
ious sources was evaluated. It was found that the Kurucz
2005 model [5] performed best as measured by minimum
differences between reflectance- and radiance-based product.
Its performance was further improved by adjusting its TSI
normalization. This choice resulted in the estimated ground
reflectance based on TOA radiance best matching those
derived from TOA reflectance over all models and at all sites
tested. Results for the other models suggest the need for a
serious re-evaluation in a number of cases. Sensitivity analyses
show how the variation due to choice of spectral solar constant
models depends on spectral band, cover type, and atmospheric
conditions. The variations in the radiance product also usually
represent erroneous signatures — especially for dark targets
in the blue bands. The variation only disappears when the
selected spectral solar constant aligns closely with the panel
observations. The differences due to the selection of spectral
solar constant have been shown to be much greater than any
that may be due to calibration error given the current accuracy
of the Landsat 8 radiance and reflectance products.

The results from this analysis are shown to be particularly
relavant for aquatic applications, and especially, to sensors that
do not have the kind of direct TOA reflectance measurements
now available with Landsat 8 OLI. This class includes the
historical collections of Landsat data. With standardized time
series of satellite data from different missions being increas-
ingly developed, it is important for there to be consistency in
preprocessing such as with atmospheric correction. To under-
pin this aim, it is proposed that an accepted common selection
of spectral solar constant should be established and suggested
that the Landsat 8§ OLI instrument provides ideal data sets to
evaluate candidate models.
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