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Abstract— Persistent scatterers (PS) interferometry tools are
extensively used for the monitoring of slow, long-term ground
deformation. High spatial resolution is typically required in
urban areas to cope with the variability of the signal, whereas
in rural regions, multilook shall be implemented to improve the
coverage of monitored areas. Along this line, SqueeSAR and
later Component extrAction and sElection SAR (CAESAR) were
introduced for the monitoring of both persistent and (decorrelat-
ing) distributed scatterers (DS). Multilook generalized likelihood
ratio test (MGLRT) is a detector derived in the context of
tomographic SAR processing that has been investigated for
a fixed multilook degree. In this work, we address MGLRT
and CAESAR in the multiresolution context characterized by a
spatially variable multilook degree. We compare the two schemes
for the multiresolution selection of PS and DS, highlighting the
pros and cons of each scheme, particularly the peculiarities of
CAESAR that have important implications at the implementation
stage. A performance analysis of both detectors in case of model
mismatch is also addressed. Experiments carried out with data
acquired by the COSMO-SkyMed constellation support both the
theoretical argumentation and the results achieved by resorting
to Monte Carlo simulations.

Index Terms— Detection, generalized likelihood ratio test
(GLRT), persistent scatterers (PS), SAR tomography.

I. INTRODUCTION

METHODS for the coherent, that is interferometric,
processing of multitemporal SAR data handle the

detection of persistent scatterers (PS) via the measurement of
the degree of correlation between the (complex) data stack and
a proper parametric model, so to extract reliable information
from the estimated parameters [1], [2]. The latter, typically
consists of the elevation (or height) associated with the residual
topography (RT), the deformation mean velocity (DMV), and
seasonal or thermal deformation coefficient [3], [4].

The matching, in the complex domain, to a model presumes
the compensation of several disturbing sources (data cali-
bration), especially those directly affecting the phase signal,
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as well as of signal components that are not encompassed in
the model, such as nonlinear deformations. Beside the noise,
additive but also associated with radar echo decorrelation,
the atmospheric phase delay/screen (APD/S) introduces in
fact a spatially correlated error source, which is of nontrivial
compensation in the interferometric processing chain.

The available literature reports two main classes of process-
ing algorithms [5] referred to as persistent scatterer interfer-
ometry (PSI) and stacking of coherent interferograms (SCI).
Beside the different strategies for interferometric coupling,
a key difference between the two classes is related to the use of
the multilook operation. The former, with the PSInSAR [1], [6]
that was actually pioneer of the development of multitemporal
interferometry, operates at full resolution and is particularly
suitable for the monitoring of the built environment. The
latter, proposed after PSI [7], [8] and originated from a
previous work, published later in [9], makes extensive use of
the multilook to improve the monitoring capabilities in areas
characterized by the presence of weaker (distributed) scattering
[7], such as rural zones.

On the wave of the development of tomographic processing
for the analysis of the vertical distribution of the backscattering
from natural scenes [10], PSI processing for urban areas
monitoring has been extended by tomographic methods. Dif-
ferently from PSI, which exploits only the phase information,
tomographic method uses the whole complex measurement
and performs a multidimensional imaging [11]–[13]. The
tomographic-based PS selection [14] has been framed in the
context of radar detection involving the generalized likeli-
hood ratio test (GLRT) [15]. The GLRT detector assumes
the probability of false alarm (PFA) as a design feature,
which must be controlled, and aims to improve, according to
maximum likelihood (ML) estimation criteria, the probability
of detection (PD). Beside the capability of detecting also
possible PS interfering in the same SAR image pixel, even for
classical (single) PS detection, the GLRT approach has shown
better detection performances for a fixed PFA [15]–[17].

Regardless of the class to which any algorithm belongs, PSI
or SCI, the processing approaches may be roughly schematized
in a sequential scheme comprising two main steps. The first
step, carried out either with or without the use of multilook,
aims at estimating the low spatial-frequencies signal compo-
nents, mainly the APD and a small-scale (typically at low

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2569-1429
https://orcid.org/0000-0001-7027-5227
https://orcid.org/0000-0002-1679-607X


VERDE et al.: MULTIRESOLUTION DETECTION OF PS: PERFORMANCE COMPARISON BETWEEN MGLRT AND CAESAR 3089

resolution) deformation signal. Such estimates are used for the
phase calibration of the data, which are then fed to the second
step involving an analysis at high-spatial frequencies, generally
carried out at full or close-to-full resolution. This second step
allows hence “zooming” the scale of analysis for a more
detailed (large-scale) monitoring.

Recently, the multilook operation has been further inves-
tigated as an operation that allows advanced statistical inter-
ferometric SAR data processing that can be implemented at
both stages of low- and high-spatial frequency analysis. In the
line of the PSI processing, SqueeSAR was proposed as a
method able to perform the monitoring of rural areas [18],
which are characterized by the presence of typically weak
and decorrelating scattering mechanisms, that is distributed
scatterers (DS). SqueeSAR performs the DS monitoring via
the ML estimation of the phase of an “equivalent” PS (ePS).
More specifically, assuming the classical zero-mean Gaussian
data distribution, the sample data covariance matrix of the
interferometric acquisitions is first estimated through a spatial
multiresolution multilook. By extracting the phase of the
ePS, SqueeSAR [18] performs a (multibaseline) data filtering
that leads to a general improvement of the quality of the
interferograms, and, eventually, of the monitored point density.
This multibaseline filtering is implemented in [18] since the
early stage of the low-frequency analysis in the interferometric
processing chain, prior any phase calibration. Both PS and
ePS identified by SqueeSAR on the (registered, i.e., spa-
tially aligned) stack of interferometric images follow then
the classical PS processing chain. Being, hence, SqueeSAR
implemented before the data calibration, no investigations have
been carried out from the PS/ePS detection point of view,
neither with respect to the PFA, nor for the specific effects of
the multilook on the PFA and PD.

The idea of SqueeSAR has been later revisited in the
context of SAR Tomography. An approach named CAESAR,
i.e., Component extrAction and sElection SAR [19], allows
operating a decomposition of the covariance matrix into
orthogonal (uncorrelated) components: the components, once
sorted into decreasing magnitude order, allow isolating the
principal component/components in the measured data. The
singular value decomposition (SVD) is in this case exploited:
CAESAR performs, therefore, the ePS extraction in the context
of principal component analysis (PCA) widely used in many
other research areas. Similar to SqueeSAR, CAESAR can be
exploited to perform the filtering of the interferometric stack
since the stage of low-spatial frequency processing for the
APD and small-scale deformation estimation [19]. CAESAR
has been applied as well as at the stage of large-scale analysis,
after the APD calibration, to operate a detection (CAESAR-D),
via the above mentioned GLRT for PS detection, so to trade
off the spatial resolution and the density of monitored areas at
close-to-full resolution [20]. On one hand, SqueeSAR has the
advantage with respect to CAESAR to perform, in principle,
an optimal, in the ML sense, estimation of the multibaseline
interferometric phase signal. On the other hand, with respect
to SqueeSAR, CAESAR does not require the implementation
of specific iterative optimizations. This feature applies also to
the estimator proposed in [21], which combines the advantages

of both techniques. However, it is worth to point out that
iterative operations could be anyway hidden in all the avail-
able eigenvector-based tools, somewhere in the linear algebra
library. Another peculiar advantage of CAESAR is that it can
cope with the presence of multiple interfering components,
as those associated with the layover phenomena affecting tar-
gets with vertical development (f.i., buildings) [19], [20]. Inter-
ference separation/cancellation can improve the small-scale
[22], as well as the large-scale analysis in urbanized areas [11].

Finally, still in the framework of SAR Tomography,
a multilook GLRT (MGLRT) [23] approach, based on the
use of the sample covariance matrix, has been introduced and
studied for the detection and monitoring of weak scattering
at close-to-full resolution. In this case, the detection approach
is somehow complementary: instead of extracting an ePS,
which is treated with a detector tailored to a (single-look) PS,
the multilook detection scheme (for weak scatterers) acts by
reducing the PFA with respect to the single-look case (for a
given testing threshold), or equivalently by increasing the PD
for a fixed PFA.

The above description provides a summary of the “implicit
or explicit” detection steps implemented in the available
interferometric processing algorithms. While at full resolu-
tion comparison of specific detection schemes, including the
method of PSInSAR can be found in the literature [15], open
questions still exist for the comparison of multilook detectors,
as well as for the selection of the multilook degree and for
the flexibility with respect to a possible adaptive choice of the
number of exploited pixel.

In this work, we perform a comparison of the MGLRT and
CAESAR-D, multilook-based detection of PS/ePS, that allows
highlighting the advantages and disadvantages of each of the
two approaches. We limit the analysis to single, i.e., nonin-
terfering scattering, thus neglecting the case of possible inter-
ference of scattering mechanisms located at different heights
[16], because of the interest in increasing the capabilities of
monitoring of rural areas.

We specifically focus on the study and comparison of the
detection performances of CAESAR-D and MGLRT. This
study encompasses the analysis of the PFA and PD as a
function of the number of looks. A main contribution is
the (analytical) demonstration that CAESAR-D has a PFA
independent of the number of looks and equal to the one of
single-look GLRT (SGLRT). This feature has important impli-
cation from the application point of view, especially in the
case of implementation, as of main interest in this work, of a
spatially adaptive multilook detection of PS/ePS, characterized
by a constant (over the image) PFA level. We resort to the
Monte Carlo method to compare the detection performances of
CAESAR-D and MGLRT under the same PFA level. A strat-
egy for the implementation of MGLRT, which is known to
have PFA curves depending on the number of exploited looks
[23], is therefore derived to compare the two detectors also on
real data. The two detectors are in this way compared in terms
of detection performances, so to highlight the favorable aspects
of CAESAR-D related to the independence of the PFA curves
from the multilook degree. The analysis highlights for the first
time, the problems related to the control of PFA, the possible
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solution, and the available choices for the exploitation of
adaptive multilook in multiresolution PS/ePS detection.

The work is organized as follows. Section II describes the
GLRT and CAESAR-based multilook detection, Section III
analyzes the detection performances on simulated data via the
Monte Carlo method. Section IV presents the results of the
application of the two detection schemes to data collected by
the COSMO-SkyMed sensors to corroborate the theoretical
findings and the outcomes of the Monte Carlo simulation.
Section V analyzes the behavior of both detectors in the
presence of model mismatches, with a particular emphasis to
the presence of residual (uncompensated) atmospheric contri-
butions, including a performance analysis on simulated data.
Conclusions are then drawn in Section VI.

II. MULTILOOK DETECTION FOR SINGLE SCATTERERS

Let us consider a stack of N range-azimuth focused SAR
images, coregistered with respect to a given (master) image.
For each range-azimuth pixel, the vector collecting the N
images is assumed to be a realization of a complex zero-mean
circular Gaussian random vector, whose covariance matrix C
in the absence (hypothesis H0) and the presence (hypothesis
H1) of a single, possibly decorrelating, scatterer is given by

C = σ 2
w I N (1)

and

C = a( p)aH ( p) � (
� + σ 2

w I N
)

(2)

respectively, being � and (·)H the Hadamard (elementwise)
matrix product and the conjugate and transpose operator. In (1)
and (2), a( p) is the unit norm (i.e., �a( p)� = 1) steering
vector, whose nth component is given by

{a( p)}n = 1√
N

exp
(− j2πζ T

n p
)

(3)

(·)T being the transpose operator, where p is the unknown
parameter vector, that is the scatterer position in the space
spanned by the elevation direction (related to the RT) in the
3-D imaging (tomography), along with the DMV (4-D imag-
ing) and possible seasonal/thermal deformation coefficient
(5-D imaging) in the differential tomography [11], [24]; ζ n is
the vector collecting the frequencies (Fourier mate variables)
associated with the parameters in p. Such frequencies depend
on the adopted system parameters, such as the transmitted
wavelength, the spatial baseline distribution, the acquisition
epochs, possibly the temperatures, and so on [11]. It should
be remarked that (3) imposes a structure on the phase signal
that relies on the compensation of the APD: this is a standard
assumption in the context of detection of PS. Alternative
strategies, not requiring APD/S calibration are also viable:
this is, for instance, the case of detectors based on the
sole exploitation of the eigenvalues of the sample covariance
matrix [25]. However, if on one hand they do not require
any phase model as in PS detectors, on the other hand the
exploitation of the structure in (3) allows generally improving
the detection performances thanks to a coherent integration
along the acquisitions. Furthermore, � is the covariance matrix

of the backscattering distribution (along the antennas) of the
target, which accounts for possible sources of decorrelation.
Hereafter, to avoid further complications related to variations
of correlation properties, we assume that the target is a
PS, thus characterized by a backscattering covariance matrix
given by

� = σ 2
γ 1N (4)

where, with reference to the imaged PS, σ 2
γ is the variance of

the backscattering coefficient and 1N is the all-ones structure
matrix [26]. Finally, σ 2

w is the power spectral density (PSD)
of the unavoidable noise corrupting the signal and I N is the
N × N identity matrix.

Multilook schemes for the detection of single PS solve,
pixel by pixel, the binary test of hypotheses H0 versus H1 by
exploiting a set of L (usually less than N) properly selected
looks, included the one relevant to the pixel under test. Among
them, both MGLRT and CAESAR-D can be analyzed in a
common framework by resorting to the sample covariance
matrix

Ĉ = 1

L
X X H (5)

where X = [x1, . . . , xL ] is the N × L complex data
matrix collecting the L processed looks. It is worth noting
that the matrix in (5) can be considered a reliable estimate of
the statistical covariance matrix of the look associated with
the pixel under test if the exploited looks are statistically
independent and identically distributed (i.i.d.). More precisely,
under the assumed Gaussian distribution, (5) turns out to be the
ML estimate of the (statistical) covariance matrix; alternative
estimators, able to trade off the accuracy and robustness, may
be found in [27]. Finally, in writing the sample covariance
matrix as in (5), we are implicitly assuming that, according to
the adopted statistical model, the looks are realizations of a
zero-mean random process: should this assumption be unreal-
istic, the subsequent discussion is still valid provided that the
covariance matrix is substituted by the correlation matrix.

It is now useful to decompose the matrix in (5) as

Ĉ =
min{L ,N}∑

k=1

yk yH
k (6)

where yk is the kth most powerful component of the processed
looks. According to the PCA [28], it is given by

yk = √
λk uk (7)

where λk and uk are the kth highest eigenvalue and the
corresponding eigenvector of Ĉ , respectively.

Detection rules implemented by CAESAR-D and MGLRT
can be thus expressed in the unified form

max
ξ

∑K
k=1| yH

k a(ξ )|2∑K
k=1�yk�2

H1

≷
H0

T (8)

where T is a threshold belonging to the interval (0, 1), set
according to the desired PFA, and K is the number of
involved (principal) components. CAESAR-D is obtained by
setting K = 1, exploiting just the dominant (most powerful)
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component extracted from the looks: in this case (8) special-
izes to

max
ξ

| yH
1 a(ξ )|2
�y1�2

H1

≷
H0

T . (9)

MGLRT, instead, assumes K = min{L, N}, which, after
some trivial algebra handling, allows rewriting (8) as

max
ξ

tr
[
Ĉa(ξ )aH (ξ)

]
tr
[
Ĉ

] H1

≷
H0

T (10)

thus showing that MGLRT exploits the whole sample covari-
ance matrix.

The detector in (9) was firstly empirically introduced in [25]
with a different normalization factor which impacted the false
alarms characteristics.

It is worth underlining that MGLRT has been derived
according to the well-known tools of the detection theory
whereas CAESAR-D stems from empirical considerations
[20]. In particular, CAESAR-D applies to the dominant com-
ponent provided by the PCA (which is in general no more
Gaussian distributed), and the same detection rule applied by
the SGLRT (i.e., the MGLRT for L = 1) to the (Gaussian
distributed) data look under testing.

Some summarizing considerations are finally in order.

1) Both MGLRT and CAESAR-D account for the matrix
in (5): the first one exploits the whole sample covariance
matrix (basically, all the components provided by the
PCA); the latter, just its dominant component y1.

2) CAESAR-D decision statistic, for each value of L,
is linked to the (non-Gaussian) dominant component
y1 through the same functional relationship linking, for
L = 1 (single-look case), the MGLRT decision statistic
to the (Gaussian) look x relevant to the pixel under
test. In other words, the (multilook) CAESAR-D can be
seen as a two-stage scheme: the first one is a multi-
input single-output (MISO) filter, which extracts the
dominant component from the data matrix; the second
one is the normalized matched-filter, which represents
the SGLRT only when the processed data follow the
classical Gaussian distribution.

3) In the single-look case (L = 1), (9) and (10) became
the same decision rule and, thus, CAESAR-D turns out
to be the SGLRT scheme.

As for the performances of the analyzed detectors, they are
measured by PFA and PD, which are defined as

Pfa = P(D1|H0) (11)

and

Pd = P(D1|H1) (12)

respectively, being P(Di |H j) the probability of deciding for
the i th hypothesis when the j th is true. Sections III–V are
devoted to compare, for a given value of PFA, the PD of
MGLRT and CAESAR-D on simulated and real data.

Fig. 1. Pfa versus T of (Top) MGLRT and (Bottom) CAESAR-D, for N = 16
(solid curves) and N = 32 (dashed curves) images and for L = 1 (black
curves), L = 9 (red curves), and L = 25 (green curves) looks.

III. PERFORMANCE ASSESSMENT

In this section, we compare the performances of MGLRT
and CAESAR-D for the detection of single scatterers in the
RT and DMV space (4-D case). The analysis is carried out
in terms of PFA and PD, which are evaluated by resorting
to Monte Carlo techniques over 106 simulated data realiza-
tions. Two stacks of N = 16 and N = 32 images have
been generated according to the fluctuating model (see [23,
Section IV]). The system parameters are the same of the real
X-band data stack of 32 images analyzed in Section IV. In the
case N = 16, the spatial and temporal baseline distributions
have been achieved by distributing uniformly the acquisitions
on the spans of the real baselines. We have assumed the
presence of a scatterer with parameter vector p = [0, 0]T

under H1. The detectors have been applied to the simulated
data sets with three values of L, i.e., L = 1, which corresponds
to the single-look case, L = 9 and L = 25. Finally, the RT
interval [−50, 50] m and the DMV interval [−2, 2] cm/year
have been uniformly sampled with a spacing of 1 m and 0.1
cm/year, respectively.

In Fig. 1, MGLRT and CAESAR-D Pfa is plotted versus the
detection threshold T with respect to the exploited number of
images (N) and looks (L). As expected, both the detectors
have a Pfa decreasing with T and, for a fixed Pfa, a T
decreasing with N . Furthermore, the value of T corresponding
to a fixed level of Pfa is a decreasing function of L for MGLRT,
as better highlighted in Fig. 2 where T is plotted versus L for
N = 32 and Pfa = 10−4.

Interestingly, for CAESAR-D Pfa results to be invariant with
the number of looks and therefore coincident with the one of
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Fig. 2. T versus L of MGLRT detector for N = 32 and Pfa = 10−4.

Fig. 3. Pd versus SNR of MGLRT (red curves) and CAESAR-D (green
curves), for (Top) N = 16 and (Bottom) N = 32 images and for L = 1
(black curves), L = 9 (solid curves), and L = 25 (dashed curves) looks.

the SGLRT (L = 1). This result, which can be also proved
from a theoretical point of view (see Appendix A for some
guidelines), has important consequences for the applicability
of the detector to real data in the presence of a variable number
of looks, as also shown in Section IV. Additionally, it allows
to conclude that CAESAR-D, similar to MGLRT, ensures the
constant false alarm rate (CFAR) property with respect to the
noise level σ 2

w .
Fig. 3 shows the MGLRT and CAESAR-D Pd plotted versus

the signal-to-noise ratio (SNR), defined as

SNR = σ 2
γ

σ 2
w

(13)

for the same values of N and L as in Fig. 1 and for
Pfa = 10−4. For both detectors, the plots show a gain of
Pd associated with an increase in the number of images
and/or looks (see [23], Section V-A for a depth description).
Moreover, under the same conditions, MGLRT always

performs slightly better than CAESAR-D, although the higher
N , the smaller the difference of Pd .

The above analysis has shown two main differences between
MGLRT and CAESAR-D:

1) Given a value of Pfa, the detection threshold T decreases
with the number L of looks for MGLRT, whereas is
independent of L for CAESAR-D

2) Given a value of SNR, Pd of MGLRT always overcomes
that of CAESAR-D.

In processing real SAR data, point 1) makes the setting
of the detection threshold a much more complex issue for
MGLRT with respect to CAESAR-D. To better understand this
aspect, it is useful noting that both the detectors assume the
exploited looks to be i.i.d. However, for real data, the degree of
correlation introduced by the acquisition system and classical
interferometric SAR processing for data calibration, makes
the selected looks, which are typically close to the tested
pixel, to be unavoidably statistically dependent. Hence the
“effective” number of independent looks, referred to as equiv-
alent number of looks (ENL) and indicated in the following
as Leq, is usually lower than L [23]. As a consequence,
to properly set the MGLRT detection threshold guaranteeing
the desired PFA level, Leq shall be evaluated, which can be not
a simple task [29], and exploited in place of L. Additionally,
the value of L (and therefore the corresponding Leq) shall
be selected pixel-by-pixel to operate multilook of data that
are as much as possible homogeneous, thus leading to a
multiresolution approach. As a consequence, for MGLRT,
the pixel-dependent value of Leq requires the use of pixel-
dependent threshold. Contrarily, for CAESAR-D, thanks to the
independence of Pfa curves from L, neither the evaluation of
Leq nor a pixel-dependent setting of the detection threshold is
required. This aspect along with the fact that, as highlighted in
point 2), MGLRT achieves a gain (although small) of detection
performances with respect to CAESAR-D, makes necessary a
comparison of the two detectors in terms of both detection
capabilities and implementation issues related to the PFA
control on real SAR data, which generally involve areas with
different characteristics in terms of scattering and noise levels.

IV. RESULTS ON REAL DATA

A performances comparison of MGLRT and CAESAR-D
for the detection of single scatterers has been carried out
on a real SAR data set composed by 32 images acquired
from December 7, 2011 to January 13, 2014 by the COSMO-
SkyMed constellation operating in H-Image mode (spatial
resolution of ∼ 3m) on ascending orbits over the northern
surroundings of the city of Naples (South Italy).

The distribution of the acquisitions in the tempo-
ral/perpendicular baseline domain is provided in Fig. 4.

The acquisitions have been preliminary phase-calibrated
with respect to the contributions associated with the
atmospheric propagation and large-scale deformations, which
are estimated using the processing algorithm in [30] working
at a low resolution, derived from the original small-baseline
subset (SBAS) method [7]. In Fig. 5 it is shown the azimuth
(vertical)-range (horizontal) map of the DMV corresponding
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Fig. 4. Distribution of N = 32 acquisitions, depicted as diamonds, in the
temporal/spatial baseline domain.

to the estimated large-scale deformation, evaluated along the
line-of-sight (LOS) oriented toward the sensor and represented
in the north-oriented SAR geometry. In this figure the well-
known deformation phenomena, reported also in other studies,
are well recognizable, that is to say the uplift phenomenon
in the Campi Flegrei area [31] close to Naples city and
the widespread subsidence phenomenon close to the Volturno
estuary [32] in the North-West part of the image. On the top
of Fig. 5 a close-up view of the test area investigated in the
following, evidenced by a red square, is provided. The area is
interested by a landslide approximately moving in East-West
direction, as it can be noticed in the close-up view by the slight
movement of the ground surface toward the sensor. The top
image in Fig. 6 shows the amplitude image of the investigated
site at the full spatial resolution achieved by averaging all
the available images (multitemporal averaging). It is evident
that both rural/sparsely vegetated scenarios as well as a built
environment are present.

Multilook detection performances on the real data set have
been evaluated by applying the tests in (9) and (10) for two
different look selection strategies: plain boxcar and adaptive
multilook. First, MGLRT and CAESAR-D detectors have been
compared with respect to a fixed-resolution multilook strategy,
by considering all the boxcar pixels for two different window
sizes. Subsequently, the analysis has involved a multireso-
lution multilook strategy based on the adaptive selection of
the looks, within the boxcar windows, characterized by a
variable number of selected pixels. The latter is based on
the use of the Kolmogorov–Smirnov (KS) test [18], [33],
which is specifically designed to select a set of neighboring
pixels sharing similar amplitude statistical characteristics. This
allows exploiting, for each image pixel, only those pixels
exhibiting homogeneous amplitude backscattering properties,
thus performing an effective adaptive multilook with variable
shape and multilook degree. It should be, however, noticed that
the KS test is just a possible choice among other amplitude-
based adaptive multilooking strategies [34], [35]. As already
pointed out in Section III, due to the acquisition system
(e.g., data oversampling, intrinsic and/or intentional spectral
weighting, interpolation during the coregistration, and so on)
adjacent looks turn out to be typically partially correlated
even in areas with uncorrelated scattering, such as areas
characterized by a fully developed speckle. As a consequence,

setting the detection threshold exploiting L instead of Leq

would lead to a level of PFA higher than the desired one,
see the top plot in Fig. 1. Leq has been estimated, on each
of the amplitude SAR images of the data set, over selected
regions characterized by homogeneous scattering located in
the half-right portion of the top image in Fig. 6. The estimation
has been carried out by varying the number of looks ranging
from 2 to 25. The final ENL has been estimated by averaging
the results over all the images of the stack. The result is
shown in Fig. 7 and highlights that the estimated ENL has
almost a linear trend with respect to the number of looks. It is
interesting to note the significant reduction of the number of
equivalent looks with respect to L for large values of selected
looks: this fact reflects in a significant increase of the detection
threshold.

In all the experiments, the parameter space spanned by the
RT and the DMV has been discretized as in Section III and
Pfa = 10−4 has been set. The map of the detected PSs for
the single-look case, which is used as a reference for the
subsequent multilook experiments, is reported in the bottom
image in Fig. 6. The detection threshold for the assumed
Pfa is T = 0.428, see also the top plot in Fig. 1. The
colormap is set according to the estimated component of the
residual (with respect to the calibrated large-scale deformation)
DMV that, for sake of simplicity, is still referred to as DMV.
The colorbar has been halved with respect to the whole
DMV span (±1 cm/year over two years of observation) so
to better appreciate the possible presence of outliers typically
corresponding to false detections.

A. Boxcar Multilook

The fixed-resolution analysis has been carried out using a
boxcar multilook with a 3 × 3 and 5 × 5 moving window,
resulting in L = 9 and L = 25 number of looks, respectively.

Concerning the CAESAR-D detector, according to the fact
that the PFA is independent of L, a detection threshold
corresponding to the one of the single-look case (i.e., T =
0.428), has been fixed for both the multilook cases. As for
MGLRT detection, according to Fig. 7, Leq = 4 and Leq = 10
has been set for L = 9 and L = 25, respectively. The
resulting (constant) detection thresholds are T = 0.183 and
T = 0.112, respectively.

The maps of detected ePS for CAESAR-D (top) and
MGLRT (bottom) are given in Fig. 8 for the cases L = 9
(left column) and L = 25 (right column). The increase of the
detection performances with respect to the single-look case is
evident, but results in a clear spatial resolution loss, especially
on urban area textures, see the images in the right column.

A comment on the comparison of MGLRT and CAESAR-D
results is in order. The shown maps seem to confirm the
capabilities of MGLRT to increase the density of detected
scatterers with respect to CAESAR-D. However, the maps, that
according to the measured ENL should be characterized by the
same Pfa level, show as well as an increased number of outliers
for the MGLRT case, which become even more evident for
the case L = 25. Outliers may denote an increase of the
“real”Pfa level with respect to the one derived by Monte Carlo
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Fig. 5. Map of the LOS DMV on the Naples area and its northern surroundings (South Italy) retrieved downstream of the modified SBAS low-resolution
processing in [30]. The red square and corresponding right zoom image highlight the test area for subsequent detection analysis. Colormaps are set according
to the estimated DMV.

simulations based on the i.i.d. Gaussian looks assumption.
On one hand, no guarantee can be given on the fact that such
outliers in the MGLRT maps correspond to false detections,
which might be generated by either an inexact setting of the
ENL, or by the constraint related to the fixed degree of mul-
tilook choice in the presence of (a few) heterogeneous pixels.
On the other hand, the CAESAR-D detection maps show the
effects, on a real scenario, related to the possibility to select
the threshold independently of the number of exploited looks:
Outliers on CAESAR-D maps appear to be less than those
on MGLRT maps (see top and bottom images in Fig. 8) and
compatible with the ones of the single-look case (see Fig. 6).

B. Multiresolution Processing

A multiresolution detection based on the use of the KS test
for the selection of statistically homogeneous looks has been
analyzed. As already specified previously, for the purpose to
compare the results with those achieved with fixed-resolution
approach, we again use boxcar windows of 3 × 3 and 5 × 5
pixel sizes, but now a search for pixels with similar amplitude
statistics is operated within these boxes. Given the aim of
retaining the lowest possible value of L in urban areas, the KS
test level of significance α = 60% has been set (further details
about the KS test are given in Appendix B). The parameter
α allows trading off the preservation of the resolution and the
effective degree of multilook.

Fig. 9 reports the map of statistically similar pixels (broth-
ers) identified by the KS test for the two cases of search
window size. It can be noticed that, as expected, in areas char-
acterized by the presence of PSs (f.i. urban scenarios) a lower
number of brothers is found, whereas in areas characterized by
a spatially uniform backscattering, typically exhibiting lower
SNR with respect to urban environments and therefore prone
to decorrelation phenomena (rural/sparsely vegetated areas),
the number of brothers increases.

Fig. 9 clearly conveys the information about the capability
of the multiresolution approach to perform an effective mul-
tilook, fitting the scattering variability of the imaged scene,
that is to allow improvements in the ePS detection capabilities
in areas characterized by weak/decorrelating scattering, while
preserving the resolution in urban areas.

An important remark about the detection threshold setting
for MGLRT is now in order. As highlighted by the per-
formances analysis on simulated data in Section III, given
a certain PFA the detection threshold T decreases with the
number L of looks. Since the multiresolution approach implies
the use a pixel-variant number of looks (brothers), for MGLRT
it is necessary to set up a pixel-variant detection threshold
depending on the exploited number of looks. Said differently,
the use of a multiresolution MGLRT with a constant detection
threshold does not allow guaranteeing a constant level of PFA
over the scene.
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Fig. 6. (Top) Multi-image amplitude map of the test site (average of 32 CSK
images). Vertical and horizontal axis corresponds to azimuth (S-N) and range
directions (W-E). (Bottom) Map of the single-look (L = 1) detected (single)
scatterers. Colormap is set according to the estimated DMV.

Hence, to preserve the same level of Pfa imposed for the
single-look case:

1) for CAESAR-D a constant detection threshold corre-
sponding to the one of the single-look case has been
retained;

2) for MGLRT case a pixel-by-pixel detection threshold has
been selected according to value of Leq corresponding
to the pixel-variable multilook degree, which is intrinsic
to the multiresolution approach.

Fig. 10 shows the maps of detected ePS for CAESAR-D
(top row figures) and MGLRT (bottom row figures) resulting

Fig. 7. Estimated ENL for a number of looks L ranging between 1 and 25.

from the multiresolution analysis: left and right column are
associated with the different size windows corresponding to
L ≤ 9 and L ≤ 25, respectively.

The experimental results show that both CAESAR-D and
MGLRT allow achieving a significant improvement with
respect to the single-look, especially in areas characterized by
weak/decorrelating scatterers with low SNR suffering for poor
Pd values. The multiresolution performs a suitable filtering
that preserves the high resolution in urban areas and operates at
the same time an effective multilook in rural areas. Moreover,
differently from the fixed-resolution multilook detection whose
map of detected ePS is shown in Fig. 8, the possibility to
reduce the multilook degree allows preserving the resolution
almost independently of the size of the search window in
urban areas. It should be also remarked that operating on the
parameter α, that is on the level of significance of the test, it is
possible to balance even with an adaptive approach, the degree
of resolution with respect to the density of detected PS, to trade
off the results between the single look case (see Fig. 6) and
the fixed-resolution multilook case (see Fig. 8).

Finally, it is worth to note that a comparable detection
behavior of MGLRT and CAESAR-D is achieved in a mul-
tiresolution context. However MGLRT processing requires
a pixel-dependent detection threshold able to guarantee the
desired PFA on the whole scene. To better highlight the
consequences of a fixed threshold choice for the multires-
olution MGLRT case, Fig. 11 reports the map of detected
scatterers achieved by adaptively selecting the set of brothers
(whose cardinality is shown in the right image in Fig. 9) and
exploiting for the MGLRT test a fixed threshold for the whole
image. More precisely, the threshold has been set to a value
corresponding to Leq = 2 providing almost the same number
of detected pixels as for the variable threshold multiresolution
MGLRT shown in the bottom right part of Fig. 10. To highlight
the increase of the level of outliers, a zoomed-in view of the
selected area is shown for both fixed and variable threshold
processing. The comparison shows rather clearly that, for
a given number of detected ePS, the choice of a constant
threshold for MGLRT provides a higher level of outliers.

V. FURTHER DISCUSSIONS ON PERFORMANCE ANALYSIS

Performance analysis has been carried out by assuming
the selected looks to be perfectly calibrated, with respect to
the phase terms deviating from the assumed structure of the
steering vector in (3), and also homogeneous.
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Fig. 8. Distribution of (a) and (b) CAESAR-D and (c) and (d) MGLRT detected single scatterers for (left) L = 9 and (right) L = 25. The same level of Pfa
imposed for the single-look (L = 1) case has been preserved. Colormap is set according to the estimated DMV. (a) CAESAR-D (L = 9). (b) CAESAR-D
(L = 25). (c) MGLRT (L = 9; Leq = 4). (d) MGLRT (L = 25; Leq = 10).

We start by considering the calibration issue and in par-
ticular we analyze the effects of the presence of possible
residual (i.e., not compensated) APD. The analysis has been
carried out by exploiting the same setup as in Section III
with reference to N = 32 images and for L = 9 looks. The
residual APD has been simulated by adding an unmodeled
phase term to the phase of the PS steering vector. The range
delay (measured in cm) associated with the residual APD

has been generated, at each antenna, as a realization of a
zero-mean Gaussian random variable, with standard deviation
σAPD. Moreover, to account for the spatially low-pass nature
of the APD, the same realization has been exploited on each
processed look.

Fig. 12 shows the Pd plotted versus the SNR achieved by
SGLRT, MGLRT and CAESAR-D for four values of σAPD.
The plots highlight for all the detectors a shift toward higher
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Fig. 9. Map of the number of brothers identified by the KS test. A moving search window of (a) 3 × 3 and (b) 5 × 5 pixels has been used, resulting in a
maximum number L = 9 and L = 25 statistically similar pixels, respectively. KS test level of significance α = 60% has been retained. (a) L ≤ 9. (b) L ≤ 25.

values of SNR as the standard deviation of the residual APD
increases. Moreover, while the MGLRT is able to reach a
Pd = 1 also in the presence of residual APD, provided that
the SNR is sufficiently high, SGLRT and CAESAR-D have
both a maximum value of Pd < 1, as small as high is the
APD standard deviation.

To better understand such a behavior, it would be interesting
to analyze the analytical expressions of the detection rules of
both MGLRT and CAESAR-D under H1 and in the presence
of a residual APD. To this aim, we assume that the exploited
looks are independent realizations of a complex zero-mean
circular Gaussian random vector, whose covariance matrix can
be achieved by the one in (2), with � given by (4), provided
that the following substitution is made:

a( p) → aϕ = a( p) � aAPD. (14)

The unmodeled complex phase-only vector aAPD accounts for
the residual APD: it randomly changes the structure of the
steering vector a( p), leading to the unmodeled unit norm
direction aϕ . The sample covariance matrix is thus

Ĉ = σ̂ 2
γ aϕ aH

ϕ + Ĉw + 2�{
Ĉ sw

}
(15)

where σ̂ 2
γ is the sample variance of the PS backscattering

coefficient γ , Ĉw is the sample covariance matrix of the
additive noise w, and Ĉ sw is the sample mutual correlation
between the signal s = γ a( p) and noise w. Accordingly,
the MGLRT and CAESAR-D detection rules are

σ̂ 2
γ |aH aϕ |2 + aH N̂a

trace
(
Ĉ

) H1

≷
H0

T (L) (16)

and

|aH u1|2
H1

≷
H0

T (17)

respectively, where, for sake of simplicity, we have denoted by
a the steering vector corresponding to the (estimated) vector
parameters maximizing the statistic of the tests. In (16), N̂ =
Ĉw + 2�{Ĉ sw} accounts for the overall noise effect and the
dependence of the detection threshold on the number of looks
has been explicitly highlighted. In (17), u1 is the eigenvector
associated with the highest eigenvalue of Ĉ . The comparison
between (16) and (17) provides suggestion on the interpreta-
tion of the asymptotic (with SNR) differences in the perfor-
mances shown in Fig. 12, as well as on the different approach
exploited by two detectors in revealing the presence of a PS.

With a finite number L of looks, when SNR → ∞
the test statistics of both the detectors reduce to |aH aϕ |2,
which measures the maximum match between the structured
direction a( p) and the unstructured direction aϕ . Such a
match can assume even very low values in case of high
residual APD, according to its standard deviation. However,
while the CAESAR-D has the highest and invariant with L
detection threshold (equal to the one of the SGLRT), the
MGLRT can lower its threshold by increasing the number of
looks. Accordingly, depending on the standard deviation of
the APD, the same (low) value of the match can stay always
below the CAESAR-D threshold independently of L, while
for the MGLRT the match could be above the threshold, thus
providing the detection of the scatterer. A remark however is
in order. Although the MGLRT can, in principle, achieve the
maximum level of Pd , it is also to be noticed that the matching
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Fig. 10. Distribution of (Top) CAESAR-D and (Bottom) MGLRT detected single scatterers for statistical similar pixels selected by the KS test in (a)–(c)
3 × 3 and (b)–(d) 5 × 5 search window. Colormap is set according to the estimated DMV. (a) CAESAR (L ≤ 9). (b) CAESAR (L ≤ 25). (c) MGLRT
(L ≤ 9). (d) MGLRT (L ≤ 25).

between a structured and an unstructured direction leads to the
impossibility of estimating the scatterer parameters. In other
words, with a high residual APD, a possible present PS can
be detected by the MGLRT but cannot be characterized.

The detection approach of the two tests can be more easily
understood by analyzing their asymptotic expression with L.
The case L → ∞ obviously provides σ̂ 2

γ = σ 2
γ , Ĉn = Cw

and u1 = aϕ , so that the detection rules for MGLRT and
CAESAR-D reduces to

σ 2
γ |aH aϕ |2 + σ 2

w

σ 2
γ + Nσ 2

w

H1

≷
H0

T (∞) (18)

and

|aH aϕ|2
H1

≷
H0

T (19)

respectively. Both detectors, as in the case SNR → ∞
discussed above, maximize the scalar product measuring
the match between the structured vector a( p) and the
unstructured vector aϕ . However, while CAESAR-D analyzes
only the scalar product between the steering and, for finite L,
the estimate of aϕ , MGLRT accounts, as evident in (16) and
even more in (18), also for the distribution of the power along
all the eigenvectors, see the total (estimated or statistical)
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Fig. 11. (Left) Map of MGLRT detected single scatterers for statistical similar pixels selected by the KS test in 5 × 5 search window where a constant
detection threshold corresponding to Leq = 2 has been set. The zoomed-in view of the area highlighted by the red box is reported in the top-right image. The
zoom on the same area of the MGLRT detected single scatterers with variable threshold in Fig. 10(d) is reported in the bottom-right image. Colormap is set
according to the estimated DMV.

power at the denominator. The presence of direction in
which the power is larger than an aliquota of the total power
associated with the detection threshold reveals the presence
of an (unstructured) PS.

To conclude, whereas the eigenvalues in CAESAR approach
can be exploited at the interferogram generation stage [19]
(see, f.i, the identification of interfering scatterers over build-
ings for the generation of “building flattened” interferograms
in layover areas, so as to aid also the phase unwrapping (PhU)

procedure [22]), CAESAR-D only tests the structure of the
scattering. Conversely MGLRT, which decreases the threshold
(up to 1/N) according to the exploitation of all eigenvalues,
is more prone to the detection also of unstructured scattering.
While, on one hand, it should be highlighted that a test
for the presence of unstructured scatterers by means of the
eigenvalues distribution extracted by CAESAR is in principle
possible in a separate stage, after the structured detection [25],
on the other hand, the choice of the most appropriate multilook
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Fig. 12. Pd versus SNR of SGLRT (black curves), MGLRT (red curves) and CAESAR-D (green curves), for N = 32 images and L = 9 looks. A residual
APD affects the phase signal, with a standard deviation of (Top-left) 0 cm, (Top-right) 0.19 cm, (Bottom-left) 0.22 cm, and (Bottom-right) 0.25 cm.

detector should account also for the specific peculiarities of
each scheme according to the specific application and to the
need to include or avoid the detection of unstructured scatterers
for which the parametric information, necessary also for the
correct geolocalization, becomes less relevant.

Above analysis and considerations can also guide to fig-
ure out the behavior of the detectors in presence of inhomoge-
neous looks, which may be particularly critical when averaging
pixels in areas characterized by highly variable scattering. This
can be the case of the presence of height dispersion of scatter-
ers, as f.i. in urban areas where layover can lead to the presence
of multiple (generally two or maximum three) components,
see the CAESAR based analysis in [20]. Assuming a perfect
compensation of the APD, the spilling of the power from
the dominant component affects the detection performances of
both detectors. Experimental results, not included for brevity,
confirm the losses as a translation of the curves toward higher
SNR levels with a slight increase of the fork between the

detection curves of CAESAR-D and MGLRT. This behavior
can be explained with the fact that the power decrease on
the principal component affects the estimation of the scatterer
parameters for CAESAR-D [see (17)] whereas for MGLRT
the spilling of power in the noise subspace leads to an
overestimation of the noise level [see (16)]. This behavior
could be one of the reason for which, especially for the case
L = 25 the points detected by MGLRT in the case of a fixed
number of looks is larger than that of CAESAR-D in the urban
area in Fig. 8. No saturation phenomena as those pertinent
to phase miscalibration case are, however, present. Although
better statistically homogeneous pixel selection strategy with
respect to KS could be in principle implemented [35]–[37] it
should be remarked that this problem has a limited relevance in
this work, which is tailored to the analysis of multiresolution
detection schemes able to preserve the resolution in zones,
as urban areas, characterized by a high spatial variability of
the scattering. In these regions the proposed multiresolution
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scheme shall implement a small multilook, at the limit it
shall use a single look. Stated differently, multilook is here
conceived mainly to increase the detection performances in an
unbuilt environment. Finally, it is worth noting that situations
in which multiple components are expected, as for instance
in implementing multilook in urban areas, should be analyzed
by detectors tailored to multiple components (see [16] and
[17] and [23] and [38] for single and multilook solutions,
respectively).

VI. CONCLUSION

The work has addressed the comparison of two multilook
approaches for the detection of ePS introduced in the literature:
CAESAR-D and MGLRT. We have shown that, although
MGLRT has in principle a gain in the detection performance
(under the assumed statistics) with respect to CAESAR-D,
the latter, as exploited in this work, is characterized by the
advantage of having a PFA that is independent on the number
of looks: this feature has important implications from the
implementation point of view. In fact, in the (frequent) case of
the presence of a scenario involving both urban and rural areas,
this allows a straightforward implementation of a detection
based on adaptive, variable number of looks able to effectively
exploit, on one side, the accuracy and resolution of the full
resolution analysis for the spatial localization of the scatterers
in built areas, and, on the other side, the capabilities of
the multilook operation to improve the performances on the
detection and monitoring of weaker scatterers in nonurbanized
regions. To guarantee a constant PFA over the image, differ-
ently from CAESAR-D, MGLRT is shown to require a much
more involved setting of the threshold, spatially variable over
the scene to follow the variations of the multilook degree,
specifically of the ENL. However, as for the detection per-
formances, even on simulated data generated according to the
statistic under which MGLRT has been derived, CAESAR-D
achieves comparable detection performances. Tests on real
data acquired by the COSMO-SkyMed constellation have been
included to verify all aspects investigated in the work from
both the theoretical and simulation point of view that is the
invariance of the CAESAR-D PFA with respect to the number
of looks, as well as the similar detection performances of the
two detectors. Differences in the performances of MGLRT
and CAESAR-D appear more evident in the presence of
model mismatch. A detailed analysis carried out by assuming
uncompensated atmospheric disturbances has highlighted the
deep differences in the detection performances, stemming from
the different strategies in the use of the signal coherence during
the detection. CAESAR-D, similar to the SGLRT detector,
strongly relies on the model matching, whereas MGLRT
allows achieving satisfactory detection performances even in
the presence of large mismatch, provided that the SNR is
high. Advantages and disadvantages of each detection scheme
with respect to the model mismatch depend, however, on the
specific use of the detector when applied to the detection of PS.

APPENDIX A

With reference to a given range-azimuth pixel, let x and y
be the single-look and dominant principal component extracted

from the corresponding multilook sample covariance matrix,
respectively. Moreover, let x̃ = x/�x� and ỹ = y/�y� be
their unitary norm transformation.

SGLRT and CAESAR-D allow testing the presence of a
single PS within the considered pixel by processing x̃ and ỹ,
respectively, with the same test

max
ξ

|̃zH a(ξ )|2 H1

≷
H0

T (20)

where the unit norm vector z̃ should be properly specialized
for the exploited detector. Accordingly, to prove that SGLRT
and CAESAR-D have the same PFA, it is enough to demon-
strate that, under the hypothesis H0, x̃ and ỹ have the same
probability density function.

To this aim, it is worth noting that, independently of its
statistical distribution, a random vector x ∈ CN , C being the
complex numbers field, has always a corresponding x̃ which
is a point belonging to the surface of the unit ray hypersphere
in CN , whose statistical distribution depends only on that of
the phase of x. Accordingly, since under H0 the look x is dis-
tributed as complex circular zero-mean uncorrelated Gaussian
random vector and recalling that each its component has phase
and modulus which are Uniform (in a 2π length interval)
and Rayleigh distributed, respectively, it is straightforward
to show that x̃ is uniformly distributed over the unit ray
hypersphere. Moreover, ỹ is an eigenvector (the one associated
with the highest eigenvalue, although this is not relevant
for our discussion) of the sample covariance matrix of the
exploited looks, which under H0 is a realization of a Wishart
random matrix. In [39] it is shown that all the eigenvectors
of such a matrix are uniformly distributed over the unit ray
hypersphere, which is the same statistical distribution of x̃.

APPENDIX B

With reference to a set of SAR images, let d1 and d2 be the
random variables associated with the amplitude values of two
different looks at the generic acquisition.

The (two-sample) KS test asserts that the looks are drawn
from the same statistical distribution if

δ < c (21)

where δ is the maximum value of the absolute difference
between the empirical cumulative distribution functions (c.d.f)
F̂d1 and F̂d2 of d1 and d2, respectively, that is

δ = max
x

|F̂d1(x) − F̂d2(x)| (22)

and c is the threshold corresponding to the desired significance
level α. The latter is given by

α = 1 − Hδ(c) (23)

where Hδ(t) is the c.d.f of δ, expressed by the KS distribution
[33], [40]–[42]

Hδ(t) = 1 − 2
∞∑

n=1

(−1)n−1e−2n2t2
. (24)

It is worth noting that, according to (21) and (23), the higher
the significance level α, the lower the threshold c, and,
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thus, the lower the probability that the looks under test are
considered statistically homogeneous.
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