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Abstract— The detection of small metallic objects buried in
mineralized soil poses a challenge for metal detectors, especially
when the response from the metallic objects is orders of mag-
nitude below the response from the soil. This article describes
a new, handheld, detector system based on magnetic induction
spectroscopy (MIS), which can be used to detect buried metallic
objects, even in challenging soil conditions. Experimental results
consisting of 1669 passes across either buried objects or empty
soil are presented. Fourteen objects were buried at three different
depths in three types of soil including nonmineralized and
mineralized soils. A novel processing algorithm is proposed to
demonstrate how spectroscopy can be used to detect metallic
objects in mineralized soils. The algorithm is robust across all
types of soil, objects, and depths used in this experiment and
achieves a true positive rate over 99% at a false-positive rate
of less than 5%, based on just a single pass over the object.
It has also been shown that the algorithm does not have to be
trained separately for each soil type. The data gathered in the
experiment are also published to enable more research on the
processing algorithms for MIS-based detectors.

Index Terms— Landmines, magnetic induction spectroscopy,
metal detection, mineralized soil, minimum metal,
multifrequency.

I. INTRODUCTION

M INERALIZED soils pose a challenge for the detection
of buried objects with small metallic contents, such

as minimum-metal antipersonnel (AP) landmines, using tradi-
tional metal detection. The conductivity and/or permeability of
these mineralized soils influence the metal detector in a similar
way a metallic object would. Consequently, distinguishing
between the mineralized soil and the small metallic objects
is difficult; as a result, the rate of false alarms increases in
mineralized soils [1]–[3].

Das [4] demonstrated that the magnetic properties of soil
can negatively affect the metal detectors, by both masking
and altering the signal produced by a buried target. The
electromagnetic properties of the soil and the effects on the
metal detectors have been widely investigated [5]–[8]—see
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also [13]–[21] in [4]. Soil-distribution models [7], [8] have
been proposed to allow for the simulation of soils with spacial
variations and magnetic properties, which may be encountered
in the field.

Processing techniques have also been proposed [7], [8] to
separate the responses due to magnetic soils and buried metal-
lic objects. In both these cases, the algorithms were developed
for the detection of buried unexploded ordnances (UXOs),
not minimum-metal AP landmines. These algorithms are also
designed for use in postprocessing, requiring the full data set
to estimate the power spectral densities of the soil and the
buried objects. It was also found that these algorithms are
susceptible to errors in the position data associated with the
electromagnetic data.

Other models aim to predict the magnetic properties of the
soils based on the factors such as rock type, geochemistry,
soil age, and annual rainfall [5], and models linking the
magnetic properties of the soil and the performance of the
metal-detection equipment [6]. While these models provide
useful information for the planning stages of demining cam-
paigns, they are not directly applicable to the processing
algorithms used in the landmine-detection equipment.

A recent study has shown that the effect of soil min-
eralization can still be noted when the target objects only
contain very small amounts of metal, such as in the case of
minimum-metal AP landmines [1]. Therefore, the effect of soil
mineralization and the effectiveness of ground compensation
are still an important consideration for metal detectors in use
in the demining operations [1].

Landmines and other forms of explosive remnants of war
pose a lingering threat to communities long after the original
conflict is over. In 2017, at least 4795 casualties (deaths and
injuries) due to the landmines of all types were recorded,
in which 87% were civilians and 47% of those civilian casual-
ties were children [9]. Factory-made AP landmines accounted
for at least 748 casualties spread across 23 countries. In the
same year, at least 128 km2 of the previously contaminated
land was cleared and at least 168 000 AP landmines were
destroyed [9].

As in previous years, landmines remain a serious problem
faced by many countries around the world. Metal detection is
still the most commonly used tool by the deminers. However,
a major difficulty with the clearance of landmines using metal
detectors is the false-alarm rate (FAR), which often exceeds
100 false alarms per landmine [10], [11]. This is due to the
small amounts of metal present in the modern minimum-metal
AP landmines, which is often around 1 g or less [12], and the
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presence of metallic clutter in the minefields [10]. As a result,
it has been estimated that the cost of landmine clearance falls
in the range of 300–1000 USD per landmine [13].

A potential solution to the FAR problem is the use
of dual-modality detectors, such as MINEHOUND [14],
HSTAMIDS [15], and ALIS [16], which integrate metal
detection with the ground-penetrating radar (GPR). With these
detectors, it has been demonstrated that it is possible to reduce
the rate of false alarms by 77%–95% [14], [16], [17]. Another
dual-modality detector system is the Geophex GEM-3M [18],
which is based on the Geophex GEM-3 [19] sensor, which
is a metal detector based on magnetic induction spectroscopy
(MIS).

A new dual-modality detector based on the combination
of MIS and GPR, specifically developed for humanitarian
demining, is under development at the University of
Manchester. Early results of data fusion using both sensor
modalities, together with an in-depth description of the overall
system, have been reported in previous work [20]. To improve
the results of the sensor fusion in the dual-modality detector
system, it is first necessary to improve the output from
the individual sensor components. Therefore, this article will
report solely on the latest progress in the development of
the MIS component of this dual-modality system. A novel
data-processing algorithm for the detection of metallic objects
under adverse soil conditions, which has been tested in mul-
tiple soils, will be presented in this article. This algorithm
offers good rejection of false alarms due to mineralized soil
and can be used in both dual-modality and stand-alone metal
detectors. Therefore, this algorithm may be of interest to the
wider magnetic induction-sensing community.

II. BACKGROUND THEORY

A metal detector works by generating an ac magnetic field
in the area close to the detector. If a metallic object is present
inside this primary field, a small secondary magnetic field is
generated because of the eddy currents circulating within the
object. This secondary field can be measured using a coil,
which can be the same coil used to transmit the primary
field or a separate coil. If the measured disturbance exceeds a
predefined threshold, an alarm can be triggered.

In the pulsed-induction metal detection, a pulse is trans-
mitted and the decay of the pulse is measured. The shape of
the decay depends on the secondary magnetic field caused by
nearby metallic objects. This broadband time-domain signal
can be used to perform target detection and classification by
fitting the measured decay against the libraries of the known
targets [21], [22].

Alternatively, a frequency-domain approach may be
employed using single- or dual-frequency detectors [23], [24].
In these systems, the in-phase and quadrature responses of the
object are recorded at a given frequency and used for discrim-
ination purposes. Kruger and Ewalt used phase loops, plotting
the in-phase and quadrature components against each other,
which are the characteristics of different objects [2], [23].

MIS extends the frequency-domain approach beyond the
dual-frequency systems to use multiple excitation frequencies
across a wide bandwidth. It has been shown already that

MIS can be employed successfully in an industrial setting
to classify nonferrous metals in recycling plants [25]. It has
also been used to perform measurements of the impedance
of biological tissues, for example, to assess the quality of
the agricultural produce such as apples, pears, and other
fruits [26]. In this biological application, it is possible to place
coils around the object, giving multiple simultaneous views of
the target. A challenge remains to translate successfully this
technology to the handheld systems and buried targets, where
the coils of the MIS system are located on only one side of
the object [3].

It has previously been shown that, in general, the spectro-
scopic response of an object depends on its size, conductivity,
and permeability [27]. In addition, more specifically, it has
been shown previously that landmines have spectroscopic
signatures that are distinct from common types of clutter.
Different types of landmines also have unique spectra, with
distinguishing features, that could be used to discriminate
between different mine types [3], [27], [28].

The detector prototype under development at the University
of Manchester [28] uses multifrequency excitation to exploit
the spectroscopic response of the objects. This technique is
known as (electro)magnetic induction spectroscopy (MIS or
EMIS). A similar approach has been used by Geophex in their
GEM-3 sensor [19], which has been used to characterize the
buried UXO [29]. The GEM-3 sensors have also been used to
explore the possibility of identifying landmines based on their
spectroscopic signature [30].

The work presented in this article builds upon, and extends,
the work previously published by the Geophex team. Huang
and Won [30] showed that MIS could be applied to the
detection of landmines. A digital balancing circuit is added to
make better use of the available dynamic range, across a wider
band of frequencies. The total signal bandwidth is extended
by doubling the maximum frequency in the excitation signal,
which is important for soil rejection and the characterization
of minimum-metal landmines [30].

The work presented by Huang and Won [29], [30] does
not explicitly study the effects of soil mineralization on the
performance of the MIS sensor. Soil mineralization is known
to have an impact on the performance of the metal detec-
tors [1], [2], and therefore, the spectroscopic response of the
soil is analyzed in this article. A novel processing algorithm
for the detection of the buried metallic objects is presented
here, and the performance is analyzed over three different
soil types, including heavily mineralized soil. Furthermore,
the MIS sensor formed part of a dual-modality sensor, which
creates additional complexity due to the presence of large
GPR metallic components in the middle of the coils [31]. The
signals captured by the sensor used in this experiment are also
being released alongside this article.

III. MATERIALS AND METHODS

A. MIS Sensor System

A field-deployable, multifrequency MIS system has been
developed, consisting of two concentric rings of coils potted
within epoxy, which are arranged in a planar configuration.
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Fig. 1. Geometry of the MIS sensor coils.

Fig. 2. Geometry of the GPR antennas with respect to the MIS coils shown
in the left-hand-side figure. Photograph of the combined sensor head shown
on the right-hand side.

The transmit and receive coils are encapsulated inside the
epoxy for increased rigidity and durability. The transmit coil
is placed in the outer ring, while the receiver coil is split into
two components that are placed in both the outer and inner
rings. The geometry is shown in Fig. 1.

The spectroscopic metal detector described here is part of
a dual-modality detector system, integrating MIS with GPR.
The antennas for the GPR system are placed inside the inner
receiver coil, as shown in Fig. 2. The GPR feed structure
and backing foam (radar-absorbing foam) are placed inside
a 3-D printed structure that covers the inner receiver coil.
A photograph of the combined MIS–GPR sensor head is also
shown in Fig. 2.

The MIS system reported here uses a receiver-bucked con-
figuration, so the two parts of the receive coil are connected
in series opposition such that the net induced voltage on the
receive coil is as close to zero as possible in free space, and
the turns ratio of the two parts of the receive coil is chosen
to aid in this. The position of the coils inside the sensor head
is designed to achieve the best possible null in the system.
In practice, it is difficult to achieve a perfect null across a wide
range of frequencies, because the two elements of the receiver
coil have different transimpedance characteristics with respect
to the transmitter coil. As a result, it is difficult to achieve a
perfect subtraction of these two coil elements.

To improve the balance between the coils and move the
net induced voltage closer to zero, an electronic nulling signal
can be injected into the receiver signal conditioning chain to
remove any induced signal that could not be removed using the
inductive balancing. Furthermore, this final step can also be
used to subtract the influence of the metallic components near
the MIS coils, such as mounting hardware and printed-circuit
boards with the first-stage amplifiers. This is especially useful
when developing a dual-modality detector system, as the

Fig. 3. High-level block diagram of the MIS electronics.

integration of the GPR component necessitates the introduc-
tion of the metallic components, such as antennas and feed
cables, near the MIS coils.

The electronics in the MIS system have been developed
around the Red Pitaya STEMlab 125-14 and are capable of
measuring up to 16 frequencies simultaneously. The exact fre-
quency content of the transmitted signal can be varied, which
allows fine control over both the relative phase and magnitudes
of the individual harmonics. The electronics provide two
high-speed (125 MSPS) input channels and two high-speed
(125 MSPS) output channels, both of which are 14 bits wide.
The two input channels are used to measure the voltage across
the receive coil and the current through the transmit coil,
respectively. The first output channel is used to drive the
transmit coil, while the second channel is used to generate
the electronic nulling signal described previously. A block
diagram of the MIS electronics system is shown in Fig. 3.
After digital signal processing on the system-on-chip, the final
output sample rate of the demodulated transimpedance values
is approximately 120 Hz. Each of the components in the
output data is 22-bit-wide signed integers and is sign-extended
to 32 bits for ease of use.

The phase and quadrature-phase components of the MIS
response are calibrated using a small piece of ferrite. Complex
calibration factors are calculated such that the response of
the ferrite at a distance of 7 cm has a unit magnitude along
the in-phase axis. The ferrite piece is a cylindrical piece of
type 4B1 Ferroxcube with a length of 16 mm and a diameter
of 5 mm.

B. Position Tracking

A machine-vision-based tracking system has been devel-
oped to log the position of the sensor head, as it is moved over
the ground. This system can be used to validate the response
of the MIS system by comparing the position of the sensor
response with the known position of the buried object(s), thus
improving the confidence that the sensor response corresponds
to the real objects. In future, the position-tracking system
may also be used to improve the data-processing algorithms.
The tracking system is based on a universal serial bus (USB)
camera system, through which the sample rates of 30–50 Hz
can be achieved using a 1280 × 1024 pixel image resolution.

A small printed chessboard sheet is mounted on the top of
the sensor head and the camera is placed on a tripod to the side
of the test area. The position of the sensor head is determined
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Fig. 4. Test objects used during the trial. (a) PMA3 (left) and PMA2 (right)
landmines. (b) Metallic objects. (c) Nonmetallic objects.

from the position of the chessboard sheet in the camera image
using OpenCV [32] and the known pose of the camera with
respect to the test lane. The pose of the camera is determined
separately by calibration.

C. Experimental Methodology

The experiment described in this article was carried out
in May 2018 in Benkovac, Croatia, at a test site run by
HCR-CTRO. A set of objects consisting of different metallic
objects, or objects with metallic components, as well as
common nonmetallic clutter objects, was chosen to cover a
range of object shapes, sizes, and materials. The spectroscopic
response of these objects was first measured in air, and
subsequently, the objects were buried in soil. The objects
were buried at the end of the test lanes, and the ground
was not specially prepared or flattened. Therefore, the surface
roughness is typical of that found at the Benkovac testing
facility.

Two minimum-metal landmines were used: PMA3 and
PMA2 [shown in Fig. 4(a)]. The other items were a 12-mm

TABLE I

SUSCEPTIBILITY VALUES OF THE SOIL TYPES IN BENKOVAC;
VALUES ARE TAKEN FROM [33]

Fig. 5. Illustrative example of the comparison between the soil spectrum
and a landmine signature.

ball bearing, a 10 Eurocent coin, an approximately
80-mm-long bullet and casing, the tail of a mortar bomb,
a 55-mm-long bullet and casing, a ring pull from a drinks
can, and a 1 Euro coin. These objects are shown in Fig. 4(b).
Finally, four nonmetallic objects were also buried. These
consisted of two rocks and two wooden cylinders, as shown
in Fig. 4(c).

There are three types of soil available at the test location in
Benkovac: a homogeneous mineralized soil (labeled “Uncoop-
erative”), a homogeneous nonmineralized soil (“Cooperative”),
and a heterogeneous mineralized soil (“Rocky”). The sus-
ceptibility values of these types of soil were measured by
Mueller et al. [33] and are repeated in Table I. Each object
was buried at three depths (flush, 5 and 10 cm; measured to
the top of the objects) in each of the three types of soil.

Fig. 5 shows an illustrative example, demonstrating the
highly uncooperative nature of the mineralized soil in
Benkovac. In the bottom quadrants of Fig. 5, the average
spectrum from the uncooperative ground is shown in blue.
The spectrum of the PMA2 landmine, measured in air (7.5-cm
distance), is shown in orange, added on the top of the soil
spectrum. The inset image shows a close-up of the end of
the vectors. The second inset image shows the spectrum of
the PMA2 landmine. It can be seen that the spectrum of the
landmine is significantly smaller than that of the uncooperative
soil. These frequencies were chosen to capture the typical
response curves from the AP landmines, based on prior
work [20], [27].
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Fig. 6. Spectra of the objects, as measured in air, at a distance of 7.5 cm. Error bars indicate one standard deviation. (a) In-phase component. (b) Quadrature
component.

For each of these test conditions, the handheld sensor was
swept across the buried objects and results were recorded for
further processing. At least 12 passes over the object were
recorded for each of the test conditions.

Due to the presence of large rocks in the “Rocky” soil,
similar in shape and color to one of the test rocks, it was
decided not to bury this rock at a depth of 10 cm in the
“Rocky” soil. The concern was that it would not be possible
to locate the rock again afterward for testing in the other soils.

IV. RESULTS

A. Spectroscopy Measurements

Fig. 6(a) and (b) shows the result of the experiment, where
the objects were measured in front of the detector, at a distance
of 7.5 cm. This distance corresponds approximately to the
distance between an object buried at 5-cm depth and the
detector, once the liftoff of the sensor head over the ground is
considered. It should be noted that the quadrature components
of the response of the landmines should tend to zero for
the highest frequencies. There is a small deviation from this
pattern in the spectra shown here, which falls within the
standard deviation of the measurements. This is likely due to
noise in either the object or the calibration measurement [20].
The objects are grouped together based on the magnitudes of
their spectra. The magnitude of the spectra of the landmine is
at least an order of magnitude smaller than that of the coins,
the ring pull, and the ball bearing. The spectra of the bullets
are approximately double in magnitude compared with those
objects, and the spectrum of the mortar tail is another order
of magnitude larger.

Fig. 7(a) and (b) shows the in-phase and quadrature com-
ponents of the three different types of soil used in this

experiment, as measured by the experimental MIS sensor.
The magnitude of the response from the uncooperative soil
is approximately double that of the magnitude of the response
from the large metallic objects such as the bullets and the ball
bearing. This is more than two orders of magnitude larger than
the response from the PMA2 and PMA3 landmines at 7.5-cm
distance.

B. Signal Preprocessing

A first-order model of the signals received from the metal
detector can be constructed by considering the measurements
to be a superposition of the background coupling between the
coils, the response of the soil, the drift in the system, and the
noise in the system. If an object is buried near the detector,
its response would also form part of the superposition. This
superposition is shown in the following equation:

�x[n] = �b + �s[n] + �o[n] + �v[n] + �w[n]. (1)

Here, n = 0, 1, . . . , N − 1 corresponds to the N discrete-
time samples collected during the scan, where �x[n] = [x1[n],
. . . , xk[n]]T is a vector representing the measured signal
at sample n, at each of the K harmonics h1, . . . , hk of
interest, and �b = [b1, . . . , bk]T the time-invariant background
residual coupling, �s[n] = [s1[n], . . . , sk[n]]T the signal from
the soil underneath the sensor at time t , and �v[n] =
[v1[n], . . . , vk[n]]T and �w[n] = [w1[n], . . . , wk[n]]T rep-
resent the drift and the noise in the system, respectively.
Finally, the object response �o[n] is described as �o[n] =
[o1[n], . . . , ok[n]]T , where �o[n] = [0, . . . , 0]T when no object
is present. All of these vectors are complex-valued.

In practice, the drift in the system, �v[n], occurs primarily
due to a change in the residual coupling signal b due to
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Fig. 7. Spectra of soils, measured approximately 2–3 cm away. Mean of 0.5 s of data. Error bars indicate one standard deviation. (a) In-phase component.
(b) Quadrature component.

Fig. 8. Magnitude and phase response of the mineralized soil—no object
present.

the changes in the temperature of the sensor, which cause
expansion and contraction of the coils. Therefore, these two
signals can be considered as a single time-varying background
coupling signal b[n]. This leads to a simplification of the
superposition, as shown in the following equation:

�x[n] = �b[n] + �s[n] + �o[n] + �w[n]. (2)

Fig. 8 shows the magnitude and phase of the measured
signals at all frequencies from a scan over empty, mineralized,
soil. From these data, it can be seen that the soil response is
not constant across a scan. However, most of the soil variation
is due to changes in magnitude, which varies at least ±20%,
while the phase angle of the response stays mostly constant,
varying less than ±1% across all samples. The changes
in magnitude are likely due to the changes in the distance
between the sensor head and the ground due to the surface

undulation and movement by the operator. Another reason
could be due to the changes in the local mineral content of
the soil.

A detection algorithm can be applied to the raw data to
determine the likelihood of an object being present. A number
of assumptions are made to simplify the processing algorithm.

1) The phase response of the spectrum of the soil stays the
same throughout the scan, so that � �s[n] = �α[n] = �α.

2) An assumption is made that �b[0] = 0 and that the drift
is slow, so that it can be ignored for small values of n.

3) It is assumed that there are no objects under the detector
at the start of each scan, so that �o[0] = 0; this is
guaranteed through the experimental procedure.

Using these assumptions, the algorithm works as follows:
first, a 20-point moving average filter (corresponding to
approximately 0.1667 s) is applied to the time sequence
�x[n] to smooth the measurements. Next, the phase response
of the spectrum of the soil, �α, is estimated using the
mean of the initial data. Since �x[n] is complex-valued, let
�x[n] = �X[n] + j �Y[n]. Then, �α is

�α = � �s = arctan

��M
i=0

�Y [i]
M�M

i=0
�X[i]
M

�
(3)

where M = 60, corresponding to half a second of data. The
complex-valued points at each time step in the sequence x[n]
are then rotated such that the ground response is entirely
in-phase

�xr[n] = �x[n]e− j �α. (4)

It can be seen that the rotated signal �xr[n] will contain a
rotated view of the spectrum of the object �o[n]. In the case of
object detection, this is not an issue, since there is no attempt
being made in this article to identify or recognize the spectra
of the objects.

The next step of the preprocessing algorithm is to extract the
quadrature, or imaginary, component of each element in �x[n].
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This step essentially removes the ground response, �s, from the
signal, due to the rotation performed previously

�z[n] = Im( �xr[n])
= sin( �γ [n] − �α)|o[n]|

+ sin( �β[n] − �α)|b[n]| + �w′[n] (5)

where w′[n] = Im( �w[n]), �β[n] = � �b[n], and γ [n] = � �o[n].
It can be seen that �z[n] contains the projection of �o[n] and
�b[n] onto the axis perpendicular to the soil spectrum �s. An
unfortunate side effect of this processing step is that any part
of the object response along the axis of the soil spectrum
is disregarded. The background signal �b[n] varies slowly
compared with the object signal �o[n], when an object is within
the sensitive region of the sensor. Therefore, the projection of

�b[n] can be removed using a high-pass filter. This high-pass
filter is implemented by subtracting the output of a long
moving average (300 points, corresponding to 2.5 s), which is
easily implemented in an embedded system.

C. Real-Time Object Detection

For object detection, the feature vector �z[n] is reduced
to a single scalar corresponding to the likelihood (λ) that
a metallic object is present. The real-time object-detection
algorithm performs a weighted sum, as shown in the following
equation:

λ[n] =
k=K∑

k=0

|zk[n]|a ∗ wk . (6)

This algorithm can also be viewed as a modification on the
traditional linear-regression model. In this case, the elements
of �z[n] are first raised to the power of a. This either reduces
or magnifies the effect of large variations in zi [n], depending
on whether a < 1 or a > 1, respectively.

The coefficient a and weights wi were optimized using the
differential evolution strategy in SciPy [34], [35]. The goal
function for the optimizer was to minimize the area outside of
the receiver operating characteristic (ROC) curve or, in other
words, to maximize the area under the ROC curve. For the
calculation of the true-positive rate, only positive detection
in the vicinity of the buried targets is considered, while the
false-positive rate is calculated based on the scans containing
no object or a nonmetallic object.

Binary classification is performed using the following
equation:

�yp[n] =
�

0, if x < T

1, if x ≥ T
(7)

where �yp is the predicted set of labels and T is the threshold.
Label 0 corresponds to no metal being present and label
1 corresponds to metal being present. The ROC curves are
computed by varying the value of T .

An example of the optimal values found using this approach
is

a = 0.5270363

Fig. 9. Family of ROC curves showing the performance across all data sets
and the individual combinations of soil type and depth. (a) Full ROC curves.
(b) Close look at the top-left corner of the ROC curve.

and

�w =

�
�����

0.1128332
3.0140624
1.3885450

−1.4922703
−0.1157962

�
				
.

The ROC curves can be calculated by characterizing each
scan in the data set based on the values of λ[n]. The data set
was divided into a training set used to optimize a and �w, and
a test set used for calculating the ROC curves.

The ROC curves can be calculated separately for each
combination of soil and depth, which means there will be
different thresholds for each soil and depth. Alternatively,
the ROC curve can be computed for the entire test data set at
once, corresponding to a single, global, threshold used across
all soil types and depths. Fig. 9(a) shows the resulting ROC
curves for individual soils and depths, and one curve using all
data at once. Fig. 9(b) shows a close-up of the top-left corner
of the plot.

It can be seen that the algorithm works as a perfect classifier
for all three soils for the depths of 0 and 5 cm. For a
depth of 10 cm, the classifier is no longer perfect; however,
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Fig. 10. ROC curve with cross-validation using fivefolds. (a) Full ROC curve,
with the mean and individual folds shown. (b) Close look at the top-left corner
of the ROC curve.

the algorithm still performs well. It can also be seen that using
a single, global, threshold results in a good performance as
well.

To ensure that the algorithm is robust with respect the choice
of test and training data, another family of ROC curves was
constructed using cross-validation. In this test, the ROC curves
are computed using a single threshold across all combinations
of depth and soil. The Stratified K-Fold algorithm from
scikit-learn [36] was used for cross-validation purposes.

This algorithm divides the full data set into k subsets. The
assignment of samples into the subsets is done randomly, but
in such a way that each subset is the representative of the
original data set. All but one of the subsets is then used to
train the model, in this case by optimizing the values of a
and w, and the final subset is used to validate the model by
calculating the ROC curve. This process is repeated until every
subset has been used once to validate the model.

At this point, care must be taken that the subsets are truly
representative of the whole data set. In this study, the data
are divided into two classes: no metal and metal. However,
the samples in these classes can be further divided into
subclasses. For the no-metal class, the subclasses are empty

scans and the four nonmetallic objects, while the metal class
contains subclasses for each of the metallic objects.

If the Stratified K-Fold algorithm is applied using the
two-class model, it is possible that the subsets become skewed.
For example, one subset may contain the correct number of
samples from the metal class, but all these samples could be
coins; or all of the metal class samples might be small objects,
such as the PMA2 and PMA3 landmines. This kind of skew
could cause a potential problem when evaluating the results
of cross-validation.

To avoid this problem, the data set is labeled twice. The first
set of labels uses the two-class model (metal and no metal),
while the second set of labels uses 14 classes (one for each
object type). The second set of labels is used only for the
Stratified K-Fold algorithm to ensure that the subsets are truly
representative of the source data set. The first set of labels is
subsequently used for both training and validation.

Fig. 10(a) shows the ROC curve for each fold from the
Stratified K-Fold algorithm (with fivefolds), as well as the
mean ROC curve and the standard deviation of the ROC
curve. Fig. 10(b) shows the top-left corner in more detail.
These figures show that the algorithm is robust to different
selections of the training and testing data. The mean ROC
curve in Fig. 10(a) shows that the proposed algorithm achieves
a true-positive rate of over 95% with a false-positive rate
of less than 1%, across a range of soils and target depths.
A true-positive rate of 99% is achieved with a false-positive
rate of less than 5%. This is using just a single pass over the
buried object. In practice, it is likely that the operator would
use multiple passes over an object to discount spurious false
alarms and improve the probability of detection for a given
FAR.

V. CONCLUSION

A new MIS metal-detector system, which is part of a wider
project to develop a new dual-modality landmine detector,
has been introduced. The system is receiver-bucked and uses
inductive and active balancing to minimize the net induced
voltage in free space. The active balancing is also used to
subtract the response from the GPR components near the coils,
such as the antennas. It has been shown the MIS detector can
be used successfully to detect metallic objects, including small
quantities of metal such as those found in the minimum-metal
AP landmines. MIS can be used even in heavily mineralized,
highly uncooperative soils, where the mineral content in the
ground can increase the rate of false alarms. These experi-
ments were performed alongside the GPR component of the
dual-modality detector, showing that the presence of the GPR
does not compromise the MIS performance.

The response of mineralized has been investigated, and it
has been shown that the magnitude of the soil response is
at least two orders of magnitude greater than that of the
minimum-metal AP landmines at moderate depths (5 cm).
Furthermore, it was shown that the magnitude of the soil
response can vary significantly (at least ±20%) due to the local
soil conditions and changes in the sensor liftoff, as the sensor
is swept over the ground. As a consequence, the changes in
soil response are much larger than the response of the buried
objects.
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The analysis of the soil response also revealed that variation
in the soil response is largely in the magnitude of the spectrum,
while the phase angles of the spectrum remain broadly con-
stant, as the sensor is moved across the soil. This finding can
be exploited by processing algorithms to improve the rejection
of false alarms due to soil features.

In this article, a novel algorithm for processing MIS data
has been presented based on extracting the part of the object
response that is perpendicular to the soil response. This makes
the algorithm less responsive to variations in the soil profile,
which can have magnitudes 10–100 times larger than that of
the target response. The proposed algorithm works well for
all soil conditions and targets used in this experiment, and
achieves a rate of true positives of 99% with an FAR of less
than 5%, with only a single pass over a buried object. The
prototype detector, with the proposed algorithm, can perfectly
detect all objects in this data set buried at 5 cm or less. The
algorithm did not have to be trained separately for each soil
type.

Research on processing algorithms for MIS data has been
limited in the past, at least partly due to the difficulty
with accessing handheld MIS detector systems. Therefore,
the measurements taken during this experiment are being made
publicly available to aid in the development of processing
algorithms for metal detection and characterization systems
by other groups.

VI. DATA SET

The data set described here is published alongside this
article, through IEEE DataPort (DOI: 10.21227/dr68-9t61),
to encourage the further development of the processing
algorithms by third parties. Every sweep over an object is
contained in a different file, with the following file-naming
convention being used: <ID>_<Soil Type>_<Object Depth>_
<Object>.h5, where <ID> is the globally unique identifier for
the file.

Each file is an HDF5 file generated using Pandas [37],
containing a single DataFrame. The DataFrame contains
eight columns. The first three correspond to the x-, y-, and
z-positions (in cm) relative to the arbitrary data.

The arbitrary data stay constant for all sweeps over all
objects in a given combination of soil and depth. The other
five columns contain the complex transimpedance values as
measured by the MIS system, after calibration against the
ferrite piece.

As explained in the main body, there are no data for one of
the rocks buried at 10-cm depth in “Rocky” soil.
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