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Abstract— Building footprint maps are vital to many remote
sensing (RS) applications, such as 3-D building modeling, urban
planning, and disaster management. Due to the complexity of
buildings, the accurate and reliable generation of the building
footprint from RS imagery is still a challenging task. In this
article, an end-to-end building footprint generation approach
that integrates convolution neural network (CNN) and graph
model is proposed. CNN serves as the feature extractor, while
the graph model can take spatial correlation into consideration.
Moreover, we propose to implement the feature pairwise
conditional random field (FPCRF) as a graph model to preserve
sharp boundaries and fine-grained segmentation. Experiments
are conducted on four different data sets: 1) Planetscope satellite
imagery of the cities of Munich, Paris, Rome, and Zurich;
2) ISPRS Benchmark data from the city of Potsdam; 3) Dstl
Kaggle data set; and 4) Inria Aerial Image Labeling data of
Austin, Chicago, Kitsap County, Western Tyrol, and Vienna.
It is found that the proposed end-to-end building footprint
generation framework with the FPCRF as the graph model can
further improve the accuracy of building footprint generation
by using only CNN, which is the current state of the art.

Index Terms— Building footprint, conditional random field
(CRF), convolution neural network (CNN), graph model, seman-
tic segmentation.

I. INTRODUCTION

BUILDING footprint generation is an active field of
research with the domain of remote sensing (RS). The

Manuscript received June 18, 2019; revised September 25, 2019; accepted
February 3, 2020. Date of publication April 29, 2020; date of current
version October 27, 2020. This work was supported in part by the European
Research Council (ERC) under the European Union’s Horizon 2020 Research
and Innovation Programme under Grant ERC-2016-StG-714087 (acronym:
So2Sat, www.so2sat.eu), in part by the Helmholtz Association under the
framework of the Young Investigators Group “SiPEO” under Grant VH-
NG-1018 (www.sipeo.bgu.tum.de), and in part by the Helmholtz Excellent
Professorship “Data Science in Earth Observation—Big Data Fusion for Urban
Research.” (Corresponding author: Xiao Xiang Zhu.)

Qingyu Li is with Remote Sensing Technology Institute (IMF), German
Aerospace Center (DLR), 82234 Weßling, Germany, and also with Signal
Processing in Earth Observation, Technische Universität München (TUM),
80333 Munich, Germany (e-mail: qingyu.li@dlr.de).

Yilei Shi is with the Chair of Remote Sensing Technology, Tech-
nische Universität München (TUM), 80333 Munich, Germany (e-mail:
yilei.shi@tum.de).

Xin Huang is with the Department of Remote Sensing, School of Remote
Sensing and Information Engineering, Wuhan University, Wuhan 430079,
China (e-mail: xhuang@whu.edu.cn).

Xiao Xiang Zhu is with Remote Sensing Technology Institute (IMF),
German Aerospace Center (DLR), 82234 Weßling, Germany, and Signal
Processing in Earth Observation, Technische Universität München (TUM),
80333 Munich, Germany (e-mail: xiaoxiang.zhu@dlr.de).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2020.2973720

established building footprint maps are useful to understand
urban dynamics in many important applications, and also
facilitate the assessment of the extent of damages after natural
disasters such as earthquakes. OpenStreetMap (OSM) can
provide manually annotated building footprint information
for some urban areas; however, it is not always available
in many parts of the world. Therefore, high-resolution RS
imagery, which covers global areas and contains huge potential
for meaningful ground information extraction, is a reliable
source of data for building footprint generation. However,
automatic building footprint generation from high-resolution
RS imagery is still difficult because of variations in the
appearance of buildings, complicated background interference,
shooting angle, shadows, and illumination conditions. More-
over, buildings and the other impervious objects in urban areas
have similar spectral and spatial characteristics.

Early studies of automatic building footprint generation
from high-resolution RS imagery rely on regular shape and
line segments of buildings to recognize buildings. Line seg-
ments of the building are first detected and extracted by
edge drawing lines (EDLines) [1], and then hierarchically
grouped into candidate rectangular buildings by a graph
search-based perceptual grouping approach in [2]. Some stud-
ies also propose some building indices to identify the presence
of a building. The morphological building index (MBI) [3],
which takes the characteristics of buildings into consideration
by integrating multiscale and multidirectional morphological
operators, can be implemented to extract buildings automat-
ically. The most widely used approaches are classification-
based approaches, which make use of spectral information,
structural information, and context information. The pixel
shape index (PSI) [4], a shape feature measuring the gray
similarity distance in each direction, is integrated with spectral
features to extract buildings by using a support vector machine.
However, the main problem with these algorithms is that mul-
tiple features need to be engineered for the proper classifier,
which may consume too much computational resources and
thus preclude large scale applications.

Based on learning data representations, deep learning is the
state-of-the-art method for many big data analysis applications
[5]–[7]. Deep learning architectures such as convolutional
neural networks (CNNs), which is an artificial neural network
based on multiple processing layers, have been extensively
employed in many computer vision tasks. A major advan-
tage of CNN is its independence from prior knowledge and
hand-crafted features, which has supported its more powerful
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generalization capability. CNN is superior to other approaches
with respect to accuracy and efficiency. In particular, many
CNN models have been proposed and applied in semantic
segmentation with quite promising results, such as the fully
convolutional network (FCN) [8], U-Net [9] SegNet [10],
ResNet [11], ENet [12], DenseNet [13], PSPNet [14], and
DeepLabv3+ [15]. Recently, the generative adversarial net-
work (GAN) [16] has shown the potential in solving such
problems.

In fact, the task of building footprint generation belongs to
the branch of semantic segmentation in computer vision. In the
RS community, recent research has also made an effort to
improve building footprint generation through the application
of the aforementioned CNN models. In order to perform build-
ing segmentation, a multiconstraint FCN (MC-FCN) model is
proposed in [17], which consists of an FCN architecture and
multiconstraints. In [18], a modified and extended architecture
of both ResNet and U-Net, named Res-U-Net, is proposed to
improve the accuracy of building segmentation results from
RS imagery. A comparatively simple and memory-efficient
model, SegNet, is used for a multitask (a shared representa-
tion for boundary and segmentation prediction) learning for
building footprint generation in [19]. A conditional GAN
called cwGAN-gp [20], whose loss function is derived from
the Wasserstein distance and an added gradient penalty term,
is proposed to improve the building footprint generation
results.

However, there are usually nonsharp boundaries and visually
degraded results in CNN-based semantic segmentation tasks,
which results from the inherent invariant to spatial transforma-
tions of CNN architectures. In this case, the common approach
to improving the accuracy of pixel-level segmentation is to
adopt a graph model such as conditional random field (CRF)
as a postprocessing step. Fully connected CRF [21] is applied
to accurately localize segment boundaries and assign the
most probable label to each pixel after the training based on
FCN in [22]. In this case, the CRF inference is used as a
postprocessing step, which is not integrated with the training
of the CNN. In this article, we propose an accurate and reliable
building footprint generation framework, which makes three
contributions.

1) Since each existing CNN model also has its own limi-
tations, achieving more accurate segmentation results is
still critical for automatic building footprint generation.
The use of a graph model enables the combination of
low-level image information such as the interactions
between pixels, which is especially important for captur-
ing fine local details. Therefore, in order to achieve more
accurate segmentation results, we propose to combine
CNN and a graph model in an end-to-end framework
for building footprint generation, which has not been
adequately addressed in the current literature.

2) In addition, it should be noted that, in this research,
we propose a graph model called feature pairwise
CRF (FPCRF) to be exploited in the building foot-
print generation framework. Specifically, we design a
pairwise potential term with localized constraints in
CRF. This term combines feature kernels extracted from

CNN, which allows more complete feature learning than
other traditional graph models. Moreover, the localized
processing facilitates the efficient message passing oper-
ation.

3) Recently, there has been some development of deep
learning methods in the computer vision community that
seek to enhance the results of semantic segmentation;
this development offers the RS community an opportu-
nity to investigate the application of building footprint
generation using deep learning methods. However, there
is still a lack of a comprehensive investigation into the
state-of-the-art CNN models in the tasks of automated
building footprint generation from RS imagery. With the
aim of better understanding the usability and generaliza-
tion ability of the state-of-the-art approaches, we com-
pare and analyze the performances and characteristics of
different CNN models for building footprint generation.

This article is organized as follows. In Section II, a brief
review of related works is presented. Then, the proposed
framework is introduced in Section III, followed by experi-
ments in Section IV and results in Section V. Next, a dis-
cussion is provided in Section VI, leading to conclusions in
Section VII.

II. RELATED WORK

A. Semantic Segmentation

Deep learning methods have been commonly used in the
field of computer vision, from coarse-to-fine inference. Clas-
sification is the coarse inference, which makes a prediction
for a whole input. Semantic segmentation is the fine-grained
inference, which assigns a label to each pixel. CNN can learn
an enhanced feature representation end to end for solving the
semantic segmentation problems. FCN or encoder–decoder-
based architectures have been successfully implemented to
produce spatially explicit label maps efficiently.

FCN is a forerunner of semantic segmentation, which
transforms popular classification models to fully convolutional
ones, and replaces the fully connected layers with transposed
convolutions to solve pixel labeling problems. Apart from the
FCN architecture, the performance of other variants such as
encoder–decoder based architectures is also remarkable. The
spatial dimension has been gradually reduced with pooling
layers in the encoder, while the local detail and spatial dimen-
sion are recovered in the decoder. Moreover, there are skip
connections from encoder to decoder in U-Net, which makes
the compensation from low-level details to high-level semantic
information. In SegNet, the max-pooling indices are reused in
the decoding process, which results in a substantial reduction
in the number of parameters. ResNet-DUC [23] is similar to U-
Net, but uses a ResNet block instead of a normal block. In the
ResNet block, the layers are reformulated as learning residual
functions of the input layer, which is easier to optimize [11].
ENet consists of a large encoder and a small decoder, where
the large encoder can be operated on smaller resolution data
and contributes to efficient information processing. The poten-
tial of GAN is also investigated in the semantic segmentation
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domain. GAN comprises two networks: a discriminator and
a generator. The discriminator learns the boundary between
classes, while the generator learns the distribution of individual
classes. The two networks play a two-player min-max game
to optimize both of their objective functions. The PSPNet is a
typical example of the multiscale processing network, which
first generates a feature map from a feature extraction network
(ResNet, DenseNet, and so on), and then utilizes a pyramid
pooling module to combine multiscale feature maps. DeepLab
[24] is a state-of-the-art semantic segmentation model, which
now already have four versions with different improvements
over time: DeepLab V1, DeepLab V2, DeepLab V3, and
DeepLab V3+. Both DeepLab V1 and DeepLab V2 use CRF
as a postprocessing step, where the prediction could be refined
both qualitatively and quantitatively. DeepLabv3 improves
over previous DeepLab versions without CRF postprocessing.
This is due to the fact that a better way is designed to encode
multiscale context in its network architectures. DeepLabv3 is
a network that does multiscale processing, and by using
altrous convolution it can achieve satisfactory results without
increasing the number of parameters. The DeepLabv3+ model
is a quick extension of DeepLabv3 that proposes to add an
intermediate decoder module to the DeepLabv3, could recover
object boundaries better. Currently, FC-DenseNet has shown
superior results on terrestrial scene interpretation tasks. FC-
DenseNet extends the DenseNet architecture to FCNs in pixel-
level labeling tasks. In the DenseNet block, all preceding
features are taken as input, and then its output features are
transferred to all subsequent layers [13]. Through this feature
reuse, the potential of the network can be utilized to improve
the ease of training and parameter efficiency.

The development of CNN has rapidly improved the perfor-
mance of semantic segmentation algorithms, which has elicited
an increasing interest in the RS domain. Many research works
have transferred these common CNN models and adapted them
for RS imagery, which has already achieved good perfor-
mance. An efficient multiscale approach is implemented for
CNN in [25], leveraging both a large spatial context and high-
resolution data to allow better semantic segmentation results.
In [26], a multitask learning method for semantic segmentation
is proposed that learns the semantic class likelihoods and
semantic boundaries across classes by CNN simultaneously.
The spatial relation and channel relation modules are com-
bined with CNN in [27], which has achieved competitive
semantic segmentation results.

B. CNN for Building Footprint Generation

In RS domain, semantic segmentation is often referred to
in numerous applications, such as change detection [28], land-
cover classification [29], road extraction [30], and building
footprint generation [31], and so on. Since the building is
an important object among various terrestrial targets in RS
imagery, the task of building footprint generation has been
heavily studied in the RS community.

One of the CNN models commonly used for building
footprint generation is FCN, which has showed superiority
in accuracy as well as computational time. When applied

with RS data, FCN is usually adapted. In [32], a multiscale
neuron module is designed in FCN, which is able to provide
fine-grained building footprint maps. A multilayer perceptron
(MLP) network is derived on top of the base FCN in [33],
which extracts intermediate features from the base FCN to
provide finer results. In [34], three parallel FCNs are first
implemented to combine different data sources, and then
merged at a late stage to automatically generate a more
accurate building footprint map. A variant of FCN, which
introduces an additional higher resolution skip connection,
is adopted in [21] in order to preserve consistently improved
results. The proposed method in [35] employs a similar
strategy by adding skip connections, which can minimize
information loss from downsampling.

Apart from FCN, other encoder–decoder-based architectures
such as SegNet are also preferred in building footprint gen-
eration, because its memory requirements are significantly
lower than FCNs. In this regard, larger scale problems can
be solved in parallel more efficiently at the inference stage.
In [36], the building footprints across the entire continental
United States are generated by SegNet with better fulfillment
of the quality and computational time requirements. However,
SegNet has a low edge accuracy, since it only uses a part of the
layers to generate predicted output. Another encoder–decoder-
based architecture, U-Net, which combines both the low and
high layers, is widely exploited to generate building footprint
maps with their edges preserved. A Siamese U-Net [37], where
original images and their downsampled counterparts are taken
into the network separately, is proposed to improve the final
results, especially for large buildings. Currently, some newly
proposed networks, such as FC-DenseNet and GAN, have also
demonstrated promising performances in building footprint
generation. In [38], a generator using FC-DenseNet and an
adversarial discriminator are jointly trained for the building
footprint generation from RS imagery.

C. Graph Model

Exploiting CNN for semantic segmentation tasks is still a
significant challenge. The convolutional layer of CNN is a
weights sharing architecture. Hence, shift invariant and spatial
invariant characteristics limit spatial accuracy for segmenta-
tion tasks [39]. The convolution filters with large receptive
fields and max-pooling layers in CNN also lead to coarse
segmentation output, such as a nonsharp boundary and blob-
like shapes [40]. Moreover, CNN fails to refine local details
without taking the interactions between pixels into considera-
tion. Graph models enable modeling of interactions between
pixels, which can integrate more elaborate terms to preserve
the sharp boundary. Therefore, graph models can be utilized to
enhance the semantic segmentation results from CNN, which
has the ability to capture fine-grained details.

A graph model is a probabilistic model that encodes a
distribution based on a graph-based representation. In a graph
model, conditional dependencies are expressed between ran-
dom variables. There are two categories of graphical repre-
sentations of distributions, Bayesian networks and Markov
random field (MRF), which are distinguished by their encoded
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Fig. 1. Flowchart of the proposed approach.

set of independence and induced factorization of the distri-
bution. In the Bayesian networks, the network structure of
the model is based on a directed acyclic graph, where the
joint distribution is represented as a product of conditional
distributions. MRF is an undirected graph, which is described
by random variables with a Markov property. In the Markov
property, only the present state contributes to the conditional
probability distribution of future states of the process. CRF is
a notable variant of MRF, in which each random variable is
conditioned upon some global observations. FullCRF [40] is
a notable example of CRF, which is regarded as a recurrent
neural network (RNN) that forms a part of a deep network for
end-to-end training. However, FullCRF is based on a complex
data structure and does not allow efficient GPU computation.
Recently, there are some researches focused on the improve-
ment of CRF. The work in [41] proposes to use bilateral
convolution layers (BCLs) built inside CNN architectures for
efficient CRF inference, where the receptive field of filters
could change. ConvCRF [42] is a recently proposed CRF
algorithm that adds a conditional independence assumption
to supplement FullCRF, and such an adjustment reduces the
complexity of the pairwise potential. A recent example is
pixel-adaptive convolution (PAC)-CRF [43], propose a PAC
for efficient inference of CRF to alleviate the computation,
whose filter weights depends on a spatially varying kernel
utilizing local pixel features.

Some researchers have tried to implement both CNN models
and graph models for building footprint generation. The results
have shown that combining graph models and CNN models
can lead to better results, especially along the boundaries of
buildings. In [44], MRF is integrated as a postprocessing stage
after the training of CNN, which has ameliorated the final
building footprint generation map. The CRF is exploited in
[45] and [46] to smooth the final pixel labeling results from
CNN, which can respect the edges present in the imagery.

However, the graph models are exploited only as postprocess-
ing steps in these studies. In [47], the FullCRF is plugged
in at the end of the FCN for end-to-end training, which has
preserved sharp boundaries, but requires longer training time
and greater efforts to find optimal parameters.

III. METHODOLOGY

In this section, the proposed building footprint genera-
tion framework is first described. Then, we introduce the
proposed FPCRF, which has a designed pairwise potential
term for complete feature learning and efficient computation.
The experiment design for detailed investigation of FPCRF
parameters is provided in Section IV-C.

A. Proposed Building Footprint Generation Framework

The building footprint generation in this article is actu-
ally a semantic segmentation task in the computer vision
field. Recently, CNN has achieved great success in semantic
segmentation tasks, as it is able to learn a strong feature
representation instead of hand-crafted features. However, there
are also some problems with CNN models, such as limited
spatial accuracy, nonsharp boundaries, and so on. Parallel
with CNN models, graph models, which enable interactions
between pixels to be modeled, have also been shown to be
effective methods to improve semantic segmentation results.
For example, sharp boundaries and fine-grained details can be
preserved by graph models. In order to harness the strengths of
both models, we propose to integrate CNN and a graph model
in the framework of building footprint generation. However,
it should be noted that although the results could be improved
by simply including graph models after learning from CNN,
an end-to-end training scheme that fully integrates the graph
models with CNN is preferred in our research. The end-to-
end approach can provide more replicable and stable building
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footprint maps, especially for large scale applications. In this
regard, we propose to utilize FPCRF as the graph model in the
end-to-end framework, as it is superior to other graph models
in terms of computation efficiency and completeness in feature
learning.

In our proposed approach, CNN and FPCRF are inte-
grated in an end-to-end framework, where the gradients are
propagated through the entire pipeline. In this case, CNN
and FPCRF can coadapt and therefore produce the optimal
output. Fig. 1 shows the overall architecture of the proposed
approach. It has two major components: CNN and FPCRF.
The output of the CNN consists of two parts. One output is
the segmentation probability obtained from the last softmax
layer of CNN, which predicts labels for pixels. This segmen-
tation probability obtained from CNN is utilized as the unary
potential [40]. The other output is extracted features from
CNN, which encodes each pixel as a fixed-length vector rep-
resentation (i.e., embedding). This feature embedding is used
for pairwise potential calculation, which encourages assigning
similar labels to pixels with similar properties. The FPCRF
component is utilized as the graph model to complement
the results obtained from CNN. FPCRF takes the patch of
feature embedding and unary potential as input and models
their spatial correlations. The final output from FPCRF is
the marginal distribution of each pixel, which represents the
different class label when the patch embedding is given.

B. Data Preprocessing

Since the ground truth of the building footprint is generated
using OSM with different data sources from satellite images,
the inconsistencies between data sets need to be resolved by
the preprocessing steps, including coregistration and truncated
signed distance labels.

1) Coregistration: One inconsistency is the misalignment
between OSM building footprints and satellite imagery, which
is caused by different projections and accuracy levels from
data sources. This misalignment leads to inaccurate training
samples, which need to be corrected. In this regard, we make
an assumption that after translation the building footprint
from OSM will be aligned with satellite imagery content
within a local neighborhood [48]. Between the building foot-
print and gradient magnitude of satellite imagery, a cross
correlation is calculated, where the maximum of the cross
correlation corresponds to the estimated alignment location.
In this regard, the offsets in both row and column direction
can be derived, which are corresponding to the translation
coefficients. An example of satellite imagery overlaid with the
OSM building footprint is presented in Fig. 2(a). There are
noticeable misalignments between the building footprint and
the satellite imagery. The local neighborhood size is selected
as 7. Fig. 2(b) illustrates the coregistration result.

2) Truncated Signed Distance Label: In order to incorporate
both semantic information and geometric properties of the
buildings during training [19], the distances from pixels to the
boundaries of buildings are extracted as output representations.
In our experiment, the signed distance from a pixel to its
closest point on the boundary is calculated with positive values

Fig. 2. (a) Before coregistration. (b) After coregistration.

Fig. 3. (a) Binary label. (b) Truncated signed distance label. (c) Colorbar
for the class label.

indicating building interior and negative indicating building
exterior. Then we truncate the distance at a given threshold
to only incorporate the pixels closest to the border [19].
Finally, the distance values are categorized into a number
of class labels [19]. The advantage of this truncated signed
distance mask is that the location of the boundary and implicit
geometric properties of each pixel can be captured. In addition,
different buildings can be distinguished based on their between
distance and labels.

Given that J is the set of pixels on the object boundary and
Ll is the set of pixels with class label l, the truncated distance
D(i) for every pixel i is calculated as

D(i) = δpmin(min∀ j∈J deu(i, j), T )

δp =
{

1 if p ∈ Lbuilding

−1 if p ∈ Lnon-building
(1)

with deu(i, j) being the Euclidean distance between pixels i
and j and T is the truncated threshold. The sign function δp

is used to weigh the pixel distances to represent whether the
pixels are inside or outside the building masks. To facilitate
training, the continuous distance values are then uniformly
quantized.

In this article, we use 11 classes with the labels L =
{0, 1, 2, . . . , 10}. Class 5 represents the building boundary and
when the class label is greater than 5, this pixel belongs to the
building. Similarly, the non-building pixel has a class label
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smaller than 5. Fig. 3 illustrates the binary label and truncated
signed-distance label of a building footprint, which are used
in the network training. Based on the raw output (multiclass)
from a trained network, we simply select a threshold to classify
the class labels as a final binary building footprint result: a
pixel is considered as building if l >= 5; otherwise it is
considered as non-building when l < 5.

C. FPCRF

An image can be regarded as a graph, where every pixel
is a vertex, and there are edges between each pair of pixels.
FPCRF provides a probabilistic model for an image that is
both local and modular.

In FPCRF, the joint probability for the random variables is
implied as functions over cliques

P(X = x | I ) = 1

Z(I )
exp

�
−
�
c∈CG

φc(Xc | I )

�
(2)

where X is a field defined over a set of variables {X1, . . . , X N }
with N being the number of pixels, where the domain of each
variable is a set of labels L = {l1, l2, . . . , lc} with c being the
number of classes. The expression G = (V , ε) denotes a graph
where V = {X1, X2, . . . , X N }. The term I = {I1, I2, . . . , IN }
is a global observation (image). The term φc is a potential
induced by the clique CG (each two vertices are linked) in the
graph G. The function Z(I ) = �

exp(−�c∈CG
φc(Xc | I ))

is a partition function. The energy of a labeling is E(x | I ) =�
c∈CG

φc(Xc | I ). Gibbs distribution is a probability distribu-
tion that measures a system with a certain state as a function
of that state’s energy. CRF explicitly gives a representation of
the conditional independence between nodes of a graph. CRF
and Gibbs distribution are proved to be equivalent with regard
to the same graph from the Hammersley–Clifford theorem
[49], which indicates that when the Gibbs distribution is given,
the conditional independence specified by the corresponding
CRF will be satisfied by all of the Gibbs joint probability
distributions. Therefore, the Gibbs distribution characterized
by FPCRF can thus be expressed as

P(X = x | I ) = 1

Z(I )
exp(−E(x | I )). (3)

In order to take: 1) the interactions between pixels and 2) the
approximation inference into consideration during learning,
the Gibbs energy is expressed as

E(x | I ) =
�
i≤N

ψu(xi | I )+
�

i �= j≤N

ψp(xi , x j | I ) (4)

and i and j range from 1 to N . The term ψu(xi | I ) is the
unary potential, which is independent for each pixel. Unary
potential is a distribution over the label assignment xi from
the classifier. The term ψp(xi , x j | I ) is a pairwise potential
function that is determined based on the compatibility among
pairs of pixels. This pairwise potential term can overcome
the drawbacks of the noisy and inconsistent labeling from the
unary potential alone.

In FPCRF, the pairwise potential ψp(xi , x j | I ) is defined
by the expression as follows:

ψp(xi , x j | I ) = μ(xi , x j)

M�
m=1

w(m)k(m)( fi , f j )� �� 	
k( fi , f j )

(5)

where w(m) are learnable parameters, and M is the number
of kernels, which is determined by the selected kernels. The
terms fi and f j are feature vectors for pixels i and j and
may depend on the input image I . The function μ(xi, x j ) is
the compatibility transformation and captures the compatibility
between labels xi and x j .

However, FullCRF and ConvCRF only use shallow
features—the color and position of the pixel for kernels
in pairwise potential term, which have not fully harnessed
the complete features extracted from CNN. In this regard,
we propose FPCRF as a graph model to be exploited in the
building footprint generation framework.

Inspired by the fact that ConvCRF is based on localized
processing, we design a pairwise potential term with localized
constraints in FPCRF that allows complete feature learning.
The kernel utilized for pairwise potential in FPCRF is a
Gaussian kernel, which is defined by the feature vectors
f1, . . . , fB , where B is the number of feature vector types.
The kernel k(m) is defined as

k(m)( fi , f j ) = exp

�
−

B�
b=1

| fb,i − fb, j |2
2θ2

b

�
(6)

where θb is a learnable parameter.
The labeling of the random field is derived by the maximum

a posteriori (MAP) method

x∗ = argmaxx∈L N P(X = x | I ). (7)

The most probable label x can be yielded by the mini-
mization of the Gibbs energy in FPCRF. However, the exact
minimization is intractable. In this regard, the mean-field infer-
ence is utilized for the approximation of FPCRF distribution.
A distribution Q(X) that tries to minimize the KL-divergence
D(Q||P) from exact distribution P(X) is computed by the
mean-field approximation

D(Q||P) =
�

x

Q(x)log



P(x)

Q(x)

�
(8)

where the approximated distribution Q(X) can be represented
as a product of independent marginal distributions

Q(X) =
�

i

Qi (Xi ). (9)

The combined message passing result Q of all kernels is
expressed as

Qi (xi = l)

= 1

Zi
exp


− ψu(xi | I )−

�
l�∈L

μ(l, l �)

×
M�

m=1

w(m)
�

dma(i, j)<r

k(m)( fi , f j )Q j(l
�)

⎫⎬
⎭. (10)
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TABLE I

STEPS OF THE MEAN-FIELD ALGORITHMS IN FPCRF

Fig. 4. True color Planetscope satellite images and building footprint of Munich, Rome, Paris, and Zurich.

The steps of the mean-field algorithms are presented
in Table I.

The steps of the mean-field inference algorithm of FPCRF
are reformulated as a network layer, where the error dif-
ferentials in each layer with respect to its inputs are sent
to previous layers by back propagation during training [40].
FPCRF exploits a 1 × 1 filter to assign the different penalties
for all different pairs of labels.

To implement the efficient computation of the convolution,
the input is first tiled into the specific shapes, which are related
to the filter size r . An efficient message passing operation in
FPCRF can be implemented analogously to 2-D-convolution
[42]. Then, the message passing step is reformulated to be a
convolution with a truncated Gaussian kernel.

IV. EXPERIMENTS

A. Study Area and Data Set

In this article, the study sites cover four cities (see Fig. 4):
1) Munich, Germany; 2) Rome, Italy; 3) Paris, France; and 4)
Zurich, Switzerland. We use Planetscope satellite imagery [50]
with three bands—red, green, blue (RGB)—and 3-m spatial
resolution to validate our proposed method. The imagery is
processed using a 256 × 256 sliding window. The corre-
sponding building footprint (stored as polygon shape files) is

TABLE II

ACCURACY OF DIFFERENT FEATURE EXTRACTORS COMBINED WITH
FPCRF

downloaded from OSM, where the detailed building footprints
around these four cities are publicly released. Some patches
are mismatched, which result from the time difference between
OSM building footprints and satellite imagery. For example,
a building might appear in the OSM building footprint, while it
is missing in the corresponding satellite imagery, or vice versa.
To limit such patches, we have manually selected 3000 pairs of
proper patches. The selected pairs are then separated into two
parts, where 80% of the sample patches are used for training
the network and 20% are used for model validation.

B. Experiment Setup

In this article, all networks were investigated within a
Pytorch framework on an NVIDIA Titan X GPU with 12 GB
of memory [51]. For all networks, a stochastic gradient descent
(SGD) optimizer with a learning rate of 0.0001 was utilized
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Fig. 5. Predicted results (in red) obtained from different feature extractors. (a) FC-DenseNet. (b) FCN-8s. (c) U-Net combined with FC-DenseNet. (d) Ground
truth.

Fig. 6. Predicted results (in red) obtained from FC-DenseNet combined with FPCRF from different kernels. (a) a + s. (b) a + s + fd. (c) s + fd. (d) a + fd.
(e) fs. (f) fd. (g) fc. (h) Ground truth. (a: appearance kernel, s: smooth kernel, fd: feature difference kernel, fs: feature spatial kernel, and fc: feature cosine
kernel.)

Fig. 7. Predicted results (in red) obtained from FC-DenseNet combined with FPCRF within different filter size. (a) FC-DenseNet + FPCRF (r = 5).
(b) FC-DenseNet + FPCRF (r = 7). (c) FC-DenseNet + FPCRF (r = 9). (d) Ground truth.

and negative log likelihood loss (NLLLoss) was taken as loss
function. The batch size of all networks was 4.

In our proposed end-to-end approach, CNN and FPCRF are
two vital parts in the framework, where the CNN component

acts as a feature extractor, and the FPCRF models their
pixel correlations by using pairwise potential. Hence, we first
investigate which CNN model has better feature extraction
capability. Then, the feature kernels that are taken in pairwise
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TABLE III

ACCURACY OF FC-DENSENET COMBINED WITH FPCRF FROM DIFFER-
ENT KERNELS. (A: APPEARANCE KERNEL, S: SMOOTH KERNEL, FD:

FEATURE DIFFERENCE KERNEL, FS: FEATURE SPATIAL KERNEL,
AND FC: FEATURE COSINE KERNEL)

TABLE IV

ACCURACY OF FC-DENSENET COMBINED WITH FPCRF WITHIN DIFFER-
ENT FILTER SIZE. r IS FILTER SIZE

Fig. 8. Aerial imagery in ISPRS data set (spatial resolution: 5 cm).

potential calculation of FPCRF are also carefully studied to
find the optimal feature embedding. Moreover, the sensitivity
of the filter size r , being the only hyperparameter of FPCRF,
is analyzed. Additionally, to prove the superiority of our
proposed framework, we train the following networks for
comparison.

1) FCN-8s is based on VGG16 as the encoder and an
upsampling layer and convolutional layer as the decoder.

2) ResNet-DUC, which has [3, 4, 6, 3, 3, 6, 4, 3] convo-
lutional layers in each ResNet block.

3) SegNet, which attaches a reversed VGG16 as a decoder
to the encoder.

4) U-Net, which has a depth of five with a feature channel
in each depth [64, 128, 256, 512, 1024].

5) ENet, which consists of five stages, where the first three
stages act as the encoder, while the last two stages
belong to the decoder.

6) cwGAN-gp which also has five depth U-Net in the
generator.

Fig. 9. WorldView 3 imagery in Dstl data set (spatial resolution: 1.24 m).

Fig. 10. Aerial imagery in Inria data set (spatial resolution: 30 cm).

7) FC-DenseNet, with each dense block having [5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5] convolutional layers.

8) PSPNet starts off with a standard feature extraction
network (ResNet101).

9) DeepLabv3+ utilizes the Xception model [52] as the
feature extractor.

V. RESULTS

The three metrics in the following experiments selected
to evaluate the results are overall accuracy, F1 score, and
intersection over union (IoU), which are used widely to
evaluate building footprint generation results:

Overall accuracy = TP + TN

TP + FP + FN + TN
(11)

precision = TP

TP + FP
(12)

recall = TP

TP + FN
(13)

F1 score = 2 ∗ precision ∗ recall

precision + recall
(14)

IoU = TP

TP + FP + FN
(15)

where TP is the number of building pixels correctly detected,
and FN denotes the missed building pixels. FP and TN are the
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TABLE V

NUMBERS OF TRAINING AND VALIDATION PATCHES OF THREE ADDITIONAL DATA SETS

TABLE VI

COMPARISON OF ACCURACY INDEXES AMONG DIFFERENT MODELS OF

PLANETSCOPE DATA SET (SPATIAL RESOLUTION: 3 m)

TABLE VII

COMPARISON OF ACCURACY INDEXES AMONG DIFFERENT MODELS OF
ISPRS DATA SET (SPATIAL RESOLUTION: 5 cm)

numbers of non-building pixels in the ground reference, but
detected as buildings and non-buildings in the result, respec-
tively. The F1 score indicates a balance between precision and
recall.

A. Feature Extractor Combined With FPCRF

Fig. 5 and Table II list the results of the different CNN
models combined with FPCRF. The results of FC-DenseNet
combined with FPCRF are more accurate than the other two
CNN models combined with FPCRF. This is due to the supe-
riority of FC-DenseNet, which extends the DenseNet archi-
tecture to FCN for semantic segmentation. In the DenseNet
block, through feature reuse, there are shorter connections
within the layers close to the input or output, which strengthen
the learning of the discriminated features. Moreover, features
are combined by iterative concatenation, which contributes
to the improved flow of information. In addition, a standard
skip connection between the encoder and decoder is used to
pass higher resolution information, which can help the encoder
recover spatially detailed information from the decoder.

TABLE VIII

COMPARISON OF ACCURACY INDEXES AMONG DIFFERENT MODELS OF

DSTL DATA SET (SPATIAL RESOLUTION: 1.24 m)

TABLE IX

COMPARISON OF ACCURACY INDEXES AMONG DIFFERENT MODELS OF
INRIA DATA SET (SPATIAL RESOLUTION: 30 cm)

B. Kernel Selection in FPCRF

FullCRF and ConvCRF only utilize the pairwise potentials
from shallow features, which include only appearance and
smooth Gaussian kernels. In the implementation of ConvCRF,
the unary potential is obtained from CNN, and only the smooth
kernel and appearance kernel are utilized for the calculation
of the pairwise potential term. FPCRF is able to reduce the
complexity of the pairwise potential greatly, which makes the
exact message passing and complete feature learning possible.
In this regard, we can use the features extracted from CNN
models to calculate pairwise potentials, which may facilitate
training. The results for the FC-DenseNet combined with
FPCRF from the different kernels k(m)( fi , f j ) are presented
in Table III and Fig. 6. The appearance kernel (a) and the
smooth kernel (s) are the same as FullCRF and ConvCRF. The
feature difference kernel (fd) represents the CNN extracted
feature difference calculated with a Gaussian function, and the
feature spatial kernel (fs) is the feature difference combined
with position difference calculated with a Gaussian function.
In the feature cosine kernel (fc), the cosine distance between
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Fig. 11. Predicted results (in red) obtained from (a) ResNet-Duc, (b) SegNet, (c) ENet, (d) U-Net, (e) FCN-8s, (f) cwGAN-gp, (g) PSPNet, (h) DeepLabv3+,
(i) FC-DenseNet, (j) FC-DenseNet + FullCRF, (k) FC-DenseNet + FPCRF, and (l) ground truth from Planetscope data set (spatial resolution: 3 m).

feature vectors is implemented as pairwise potential [53]. The
detailed formulas of the different kernels are listed in the
following.

1) Appearance Kernel (a):

k(a)( fi , f j ) = exp

�
−| f p,i − f p, j |2

2θ2
α

− | f I,i − f I, j |2
2θ2
β

�
(16)

where f p is the feature of position, f I is the feature of
color, θα and θβ are learnable parameters.

2) Smooth Kernel (s):

k(s)( fi , f j ) = exp

�
−| f p,i − f p, j |2

2θ2
γ

�
(17)

where θγ is a learnable parameter.
3) Feature Difference Kernel (fd):

k( fd)( fi , f j ) = exp



−| f f,i − f f, j |2

2θ2
δ

�
(18)

where f f is the feature extracted from CNN and θδ is a
learnable parameter.

4) Feature Spatial Kernel (fs):

k( fs)( fi , f j ) = exp

�
−| f f,i − f f, j |2

2θ2
ζ

− | f p,i − f p, j |2
2θ2
η

�
(19)

where θζ and θη are learnable parameters.
5) Feature Cosine Kernel (fc):

k( fc)( fi , f j ) =



1 − | f f,i · f f, j |2
� f f,i �� f f, j �

�
. (20)

“FC-DenseNet + FPCRF (a + s)” is corresponding to the
“ConvCRF,” which means that unary potential is the segmen-
tation probability obtained from FC-DenseNet, but for the
calculation of the pairwise potential term only the smooth
kernel and appearance kernel are utilized. It should be noted
that in our proposed method “FC-DenseNet + FPCRF (fd),”
FC-DenseNet not only provide the segmentation probability as
unary potential, but also extracts features for the calculation
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Fig. 12. Predicted results (in red) obtained from (a) ResNet-Duc, (b) SegNet, (c) ENet, (d) U-Net, (e) FCN-8s, (f) cwGAN-gp, (g) PSPNet, (h) DeepLabv3+,
(i) FC-DenseNet, (j) FC-DenseNet + FullCRF, (k) FC-DenseNet + FPCRF, and (l) ground truth from ISPRS data set (spatial resolution: 5 cm).

of the pairwise potential term. FC-DenseNet combined with
FPCRF using the feature difference kernel (fd) outperforms
other kernels in terms of their high F1 score and IoU. There
are several reasons for this. The smooth kernel (s), which
removes small isolated regions, is not useful in our case. Since
the spatial resolution of satellite imagery is coarse, we can
preserve isolated small buildings by removing smooth kernel.
The feature spatial kernel (fs) controls the degree of nearness
that neighboring pixels having similar features may belong to
the same class. However, since we have already used filter size
to add a locality by filter size, we want the pixels within the
filter to contribute equally to the centered pixel. In addition,
the appearance kernel (a) has not shown any improvements
to the results. This may result from the fact that the RGB
information in the appearance kernel (a) is not sufficient to
distinguish the buildings from other non-building areas (some-
times roads and buildings have similar RGB information). The
feature cosine kernel (fc) shows very low accuracy, which can
be explained by the fact that a Gaussian function in feature
difference (fd) can remove the noise, but cosine distance
can be largely affected by the noise. In this case, when the

cosine distance between feature vectors is implemented as
a pairwise potential, the final results will suffer from great
instability.

C. Hyperparameter Analysis in FPCRF

The hyperparameter filter size r in FPCRF implies that
the pairwise potential is zero when the Manhattan distance
between the pairs of pixels exceeds r . In order to better
understand the influence of the various filter sizes r for build-
ing footprint generation, the visual results of FC-DenseNet
combined with FPCRF within different filter size r, as well
as their accuracy indexes, are shown and compared in Fig. 7
and Table IV. From the visual results, we can observe that
when the filter size is not optimal, there are more non-building
areas wrongly detected as building areas, and some small
buildings are not detected. This can be explained by the fact
that filter size is related to the quantity of the most useful
neighboring pixels, which contributes to the improvement of
the segmentation results.
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Fig. 13. Predicted results (in red) obtained from (a) ResNet-Duc, (b) SegNet, (c) ENet, (d) U-Net, (e) FCN-8s, (f) cwGAN-gp, (g) PSPNet, (h) DeepLabv3+,
(i) FC-DenseNet, (j) FC-DenseNet + FullCRF, (k) FC-DenseNet + FPCRF, and (l) ground truth from Dstl data set (spatial resolution: 1.24 m).

VI. DISCUSSION

A. Additional Data Sets

Another three data sets, ISPRS Benchmark data, Dstl Kag-
gle data set, and Inria Aerial Image Labeling data are used
to test the performance and characteristics of the different
networks for building footprint generation.

The first data set is ISPRS Benchmark data [54], shown
in Fig. 8. The data set covers the city of Potsdam, which
contains 38 aerial images with pixel size 6000 × 6000 and
four channels: RGB and near-infrared bands with 5-cm spatial
resolution. The corresponding ground truth is also available
from the ISPRS benchmark data, which includes six cate-
gories. In this article, we take the building class as building
and other five classes as non-building; traditional natural color
aerial imagery is utilized. The images 7-07, 7-08, 7-09, 7-10,
7-11, 7-12, and 7-13 are used as the validation set, and the
remaining images are exploited for training.

Dstl Kaggle data set [55] is the second data set, which
provides 57 satellite images with a region of 1 km × 1 km
in both 3-band RGB and 16-band multispectral formats. Here,

we use three-band images with the spatial resolution 1.24 m.
In this data set, ten different classes have been labeled within
some images. In this research, the pixels of building are from
building class, and those of non-building are the remaining
pixels. Ten satellite images with pixel size 3348 × 3348,
which has corresponding building class in the ground truth,
are exploited for this experiment, which includes eight images
with ID (6100-2-3, 6100-1-2, 6100-3-1, 6110-4-0, 6120-2-0,
6120-2-2, 6140-1-2, 6140-3-1) for training, and two images
with ID (6100-1-3, 6100-2-2) for validation. Fig. 9 illustrates
one satellite imagery sample.

The third data set is Inria Aerial Image Labeling data [33].
This data set contains 360 aerial images of size 5000 × 5000
(at a 30-cm spatial resolution), which have three bands: RGB.
In this article, 36 tiles of aerial imagery and their correspond-
ing ground truth (building and non-building) are selected for
each of the following five regions: Austin, Chicago, Kitsap
County, Western Tyrol and Vienna, where dissimilar urban
settlements are covered. The sample data are shown in Fig. 10.
To split the training set and test set, we used the first eight
images of every city for validation.
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Fig. 14. Predicted results (in red) obtained from (a) ResNet-Duc, (b) SegNet, (c) ENet, (d) U-Net, (e) FCN-8s, (f) cwGAN-gp, (g) PSPNet, (h) DeepLabv3+,
(i) FC-DenseNet, (j) FC-DenseNet + FullCRF, (k) FC-DenseNet + FPCRF, and (l) ground truth from Inria data set (spatial resolution: 30 cm).

In order to get more training data, satellite imagery and
their corresponding ground truth from Dstl Kaggle data set
are cut into small patches of size 256 × 256 pixels with
overlap of 64. However, since the numbers of samples from
ISPRS benchmark data and Inria Aerial Image Labeling data
are enough for network training, aerial imagery and their
corresponding ground truth from both data sets are cut into
nonoverlapping patches with size 256 × 256 pixels. The
numbers of training and validation patches for the additional
three data sets are listed in Table V.

B. Comparison With Other Models

In this article, several popular semantic segmentation neural
networks from four different data sets were also investigated
for comparisons of the proposed method. Their performance
in building footprint generation such as accuracy indexes is
presented in Tables VI–IX. Moreover, the visual results of
different networks are also illustrated in Figs. 11–14. The

training and inference time costs of the different methods from
Planetscope data set are listed in Fig. 15, where the training
time measures the whole training patches for 100 epochs, and
inference time refers to the time cost for each patch.

DeepLabv3+ and PSPNet, which are the state-of-art net-
works for semantic segmentation tasks in computer vision,
achieved satisfactory accuracy. These two networks are
multiscale processing techniques, which not only allow the
refinement of details, but also retain high-level semantic infor-
mation. They can also take global structure into consideration
when making local predictions. ENet is highly superior with
respect to both training time and inference time, due to its
specific architectures. First, the decoder uses max-pooling
indices to produce sparse upsampled maps, which can reduce
training time requirements. The input size can also be reduced
heavily by the first two blocks, which adopt only a small
number of features. Moreover, in the first stage, a max-pooling
operation is performed in parallel with a strided convolution,
and the resulting feature maps are concatenated, which speeds
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Fig. 15. Comparison of training time and inference time among different models from Planetscope data set (spatial resolution: 3 m).

up inference process of the initial block. Compared to other
CNN models, cwGAN-gp, which is a newly proposed network,
also shows promising results for building footprint genera-
tion. The generator of cwGAN-gp exploits skip connection,
which is helpful for retaining the boundary of the buildings.
Moreover, the generator and discriminator of the GAN are
both improved by the min-max game. However, the difficulty
of training of GAN also leads to the longest training time
among all the CNN models. Among all CNN models, FC-
DenseNet is a superior network with respect to the numerical
accuracy and visual results. On one hand, feature maps pro-
duced from different layers are concatenated in the DenseNet
block, which can improve variation in the input of subsequent
layers. On the other hand, high-frequency information can be
transferred by a standard skip connection between the encoder
and the decoder, which contributes to the recovery of spatial
details.

The architectures of the network, such as the feature
extractor, decoder, and skip connection, have different signif-
icance when applied with satellite imagery of diverse spatial
resolution. On one hand, for the higher spatial resolution
satellite imagery (ISPRS data set), the feature extractor is
rather important. For instance, the accuracy indexes of PSPNet
are much higher than those of DeepLabv3+, which means
that the ResNet101 in PSPNet has a better feature extraction
capability than the Xception in DeepLabv3+. On the other
hand, the decoder plays an important role in other data
sets, including lower spatial resolution satellite imagery.
DeepLabv3+ achieves much better results than PSPNet when
applied in lower spatial resolution satellite imagery (Plan-
etscope data set, Dstl data set, and Inria data set), This is

owing to the decoder module on top of the encoder output
in DeepLabv3+, which contributes to sharper segmentation
results. The skip connection in the networks (e.g., U-Net) is
also vital to lower spatial resolution satellite imagery, as it
is able to concatenate feature maps from both low-level and
high-level layers. Hence, it can create a more efficient path for
information propagation. However, it consumes more training
and inference time, due to the fact that the feature maps
from the encoder are transferred and concatenated to the
decoder.

However, there are still some problems with CNN-based
results such as weak boundaries and coarse pixel-level pre-
diction. Therefore, graph models can be implemented to
overcome the drawbacks of exploiting CNN for building
footprint generation. CRF is a popular graph model with wide-
spread success in solving semantic segmentation problems.
The CRF inference can be used as a postprocessing step,
which is not integrated with the training of the CNN. However,
in this case, the strength of CRF cannot be fully harnessed.
Therefore, we adopt an end-to-end deep learning network
to produce sharp boundaries and fine-grained segmentation.
FullCRF and FPCRF are combined with CNN models in one
unified framework. When connected with CRF-based graph
models, the results can be improved as wrongly detected
non-building pixels are removed. FC-DenseNet combined
with FPCRF has achieved higher IoU and F1 scores than
that combined with FullCRF, and can also better preserve
the details and sharper boundaries. Moreover, FPCRF can
substantially reduce the time needed for the training and
inference stages. This superiority can be attributed to two
reasons. First, FPCRF uses exact message passing, which
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avoids the approximation errors resulted from the permutohe-
dral lattice approximation [56] in FullCRF. Second, localized
processing in FPCRF can implement the feature learning more
efficiently.

VII. CONCLUSION

Considering that there are weak boundary and coarse pixel-
level label predictions in CNN-based results, we have pro-
posed an end-to-end building footprint generation framework
integrating CNN and a graph model in this article. Moreover,
a number of state-of-the-art CNN models for semantic seg-
mentation are selected to generate building footprints from
high-resolution RS images for comparison. The effectiveness
of CNN models and the proposed end-to-end CNN-graph
model building footprint generation approach is validated on
four different data sets: 1) Planetscope satellite imagery of
the cities of Munich, Paris, Rome, and Zurich; 2) aerial
imagery of the City of Potsdam (North Germany) from ISPRS
benchmark data; 3) WorldView3 satellite imagery from Dstl
Kaggle data set; and 4) aerial imagery of the city of Austin,
Chicago, Kitsap County, Western Tyrol, and Vienna from Inria
Aerial Image Labeling data. The experimental results show
that building footprint generation based on CNN-graph model-
based methods can obtain more accurate results than CNN-
based methods alone. Furthermore, FPCRF as the graph model
in our proposed framework is effective in producing sharp
boundaries and fine-grained segmentation results. On one
hand, the completeness of the buildings can be preserved.
On the other hand, some non-buildings, which are wrongly
detected as buildings by CNN models, can be removed by
graph models. Thus, we believe the proposed CNN-graph
model method will be of practical value for the monitoring of
fast-growing urban areas. In the future, we plan to extend our
work to instance segmentation. More types of graph models
will also be investigated.
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