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Abstract— Most current semantic segmentation approaches fall
back on deep convolutional neural networks (CNNs). However,
their use of convolution operations with local receptive fields
causes failures in modeling contextual spatial relations. Prior
works have sought to address this issue by using graphical models
or spatial propagation modules in networks. But such models
often fail to capture long-range spatial relationships between enti-
ties, which leads to spatially fragmented predictions. Moreover,
recent works have demonstrated that channel-wise information
also acts a pivotal part in CNNs. In this article, we introduce
two simple yet effective network units, the spatial relation
module, and the channel relation module to learn and reason
about global relationships between any two spatial positions
or feature maps, and then produce Relation-Augmented (RA)
feature representations. The spatial and channel relation modules
are general and extensible, and can be used in a plug-and-
play fashion with the existing fully convolutional network (FCN)
framework. We evaluate relation module-equipped networks
on semantic segmentation tasks using two aerial image data
sets, namely International Society for Photogrammetry and
Remote Sensing (ISPRS) Vaihingen and Potsdam data sets,
which fundamentally depend on long-range spatial relational
reasoning. The networks achieve very competitive results, a mean
F1 score of 88.54% on the Vaihingen data set and a mean
F1 score of 88.01% on the Potsdam data set, bringing significant
improvements over baselines.

Index Terms— Fully convolutional network (FCN), high reso-
lution aerial imagery, relation network, semantic segmentation.

I. INTRODUCTION

THE widely availability of aeroplanes and unmanned aerial
vehicles (UAVs) has generated huge volume of high
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resolution aerial images. Automatic parsing of such images is
a task of primary importance for a plethora of applications,
to name a few, urban and traffic monitoring [1]–[7], map
updates [8], [9], and disaster relief operations [10], [11]. One
crucial step toward understanding an aerial image is to perform
semantic segmentation.

Semantic segmentation of an image refers to the challenging
task of inferring every pixel in the image with the semantic
category of the object to which it belongs. The emergence
of deep convolutional neural networks (CNNs) [12]–[18] and
vast training data have led to significant progress in this
direction. However, although with more training data and with
deeper and more complicated network architectures, there is a
technical hurdle in the application of CNNs to semantic image
segmentation—contextual information.

It has been well recognized in computer vision for years
that contextual information, or relation, is capable of offering
important cues for semantic segmentation tasks [19]–[24].
For instance, given two regions in an image, their relation
can be semantic similarity. In addition, spatial relations also
involve compatibility and incompatibility relationships, for
example, a vehicle is likely to be driven or parked on pave-
ments, and a piece of lawn is unlikely to appear on the
roof of a building. Unfortunately, only convolution layers
cannot model such spatial relations due to their local valid
receptive field.1

Nevertheless, under some circumstances, spatial rela-
tions are of paramount importance, particularly when a
region in an image exhibits significant visual ambiguities.
To address this issue, several attempts have been made to
introduce spatial relations into networks by using either
graphical models [26]–[28] or spatial propagation networks
[29]–[31]. However, these methods seek to capture global
spatial relations implicitly with a chain propagation way,
whose effectiveness depends heavily on the learning effect of
long-term memorization. Consequently, these models may not
work well in some cases like aerial scenes (see Figs. 6 and 7),
in which long-range spatial relations often exist (see Fig. 1).
Hence, explicit modeling of long-range relations may provide
additional crucial information but still remains underexplored
for semantic segmentation.

1Feature maps from deep CNNs like ResNet usually have large receptive
fields due to deep architectures, whereas the study of [25] has shown that
CNNs are apt to extract information mainly from much smaller regions in
receptive fields, which are called valid receptive fields.
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Fig. 1. Illustration of long-range spatial relations in an aerial image.
Appearance similarity or semantic compatibility between patches within
a local region (red–red and red–green) and patches in remote regions
(red–yellow and red–blue) underlines our global relation modeling.

This article is inspired by the recent success of relation
networks in visual question answering [32], object detec-
tion [33], and activity recognition in videos [34]. Being able
to reason about relationships between entities is momentous
for intelligent decision-making. A relation network is capa-
ble of inferring relationships between an individual entity
(e.g., a patch in an image) and a set of other entities (e.g., all
patches in the image) by agglomerating information. The
relations vary at both long-range and short-range scales and
are learned automatically, driven by tasks. Moreover, a relation
network can model dependences between entities, without
making excessive assumptions on their feature distributions
and locations.

In this article, our goal is to increase the representation
capacity of a fully convolutional network (FCN) for seman-
tic segmentation in aerial scenes by using relation modules
to describe relationships between observations in convolved
images and produce Relation-Augmented (RA) feature repre-
sentations. Given that convolutions operate by blending spatial
and cross-channel information together, we capture relations in
both spatial and channel domains. More specifically, two plug-
and-play modules—a spatial relation module and a channel
relation module—are appended on top of feature maps of an
FCN to learn different aspects of relations and then generate
spatial RA and channel RA features, respectively, for semantic
segmentation. By doing so, relationships between any two
spatial positions or feature maps can be modeled and used to
further enhance feature representations. Furthermore, we study
empirically two ways of integrating two relation modules—
serial and parallel. This work’s contributions are threefold
which are as follows.

1) We propose a simple yet effective and interpretable
relational context-aware network that enables spatial and
channel relational reasoning. Learning such a relation
network for semantic segmentation of aerial images has
not been investigated yet to the best of our knowledge.

2) A spatial relation module and a channel relation mod-
ule are devised to explicitly model global relations,

Fig. 2. Illustration of different challenges in high resolution aerial images for
semantic segmentation tasks. Severe visual ambiguities caused by (a) shadows
and (b) tree branches. Big appearance variations within (c) roofs and
(d) roads.

which are subsequently harnessed to produce spatial-
and channel-augmented features.

3) We validate the effectiveness of our relation modules
through extensive ablation studies. Moreover, to fig-
ure out what the spatial relation module has learned,
we study a pure spatial relation network in Section IV-F,
which shows results beyond expected.

This article is organized as follows. After the introductory
Section I, Section II details relevant semantic segmentation
methods and relation networks. Section III is dedicated to
describe details of the proposed network. The experimental
results are provided in Section IV. Finally, Section V con-
cludes this article.

II. RELATED WORK

A. Semantic Segmentation of Aerial Imagery

In comparison with natural images in computer vision and
hyper- and multi-spectral data in remote sensing, aerial images
at high spatial resolution (ground sampling distance (GSD)
5–30 cm) have pretty different characteristics, bringing chal-
lenges for semantic segmentation tasks. For example, intricate
spatial details (e.g., roof-top pipes, tiny windows, and tiles,
road markings, branches of trees, and windows of vehicles)
result in big differences in visual appearance within an object
category. Moreover, shadows of buildings lead to serious
visual ambiguities. Fig. 2 shows some of the challenges.
Earlier studies [35] and [36] have focused on extracting
useful low-level, hand-crafted visual features and/or modeling
mid-level semantic features on local portions of images (e.g.,
patches and superpixels); subsequently, a supervised classifier
is employed to learn a mapping from the features to semantic
categories.

Recent efforts employ deep CNNs and have made a great
leap toward end-to-end aerial image parsing [37]–[41] 2 and
classification [42]–[44]. Sherrah [45] used an FCN trained
on the ImageNet data set as a pretrained model, which is
then fine-tuned on high-resolution aerial images for semantic
segmentation tasks. To make use of both color images and dig-
ital surface model (DSM) data as input, while respecting their
different statistical properties, Marmanis et al. [46] employed
a late fusion approach with two structurally identical, parallel
FCNs. Kampffmeyer et al. [47] focused on small object
(e.g., car) segmentation through quantifying the uncertainty

2This article is an extension of [39].
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at a pixel level for FCNs. By doing so, they could obtain
high overall accuracy (OA) and, at the same time, still achieve
good accuracy for small objects. Recently, Maggiori et al. [48]
introduced a multilayer perceptron (MLP) on the top of a base
FCN to learn how to effectively combine intermediate features
to offer a better segmentation result. Audebert et al. [49]
investigated the use of another network architecture, Seg-
Net [16], [50], for semantic segmentation of aerial images.
In addition, they used a residual correction to perform data
fusion from heterogeneous data (i.e., optical image and DSM).
Later, in [51], they systematically studied different network
architectures for semantic segmentation of multimodal remote
sensing data and, more specifically, they find that late fusion
makes it possible to recover errors streaming from ambiguous
data while early fusion allows for better joint feature learning
but at the cost of higher sensitivity to missing data. In [52],
a SegNet architecture is compared with a standard CNN
performing patch classification for semantic segmentation pur-
poses. Marcos et al. [53] proposed a segmentation network
called Rotation Equivariant vector field Network (RotEqNet),
which is able to be equivariant to rotation by encoding rotation
in the network. By doing so, this network can be faced with an
easier problem, as it does have to learn particular convolutional
kernels that can cope with various rotated versions in the same
object category. Marmanis et al. [54] proposed a two-step
framework that first trains a CNN to produce multiscale edge
likelihood maps from color-infrared and height data. Then,
the object boundaries generated with each source are regarded
as an additional channel and added to each source, and an
FCN or SegNet is trained for semantic segmentation purposes.
The intuition behind this article is that using predicted bound-
aries helps to achieve sharper segmentation maps. Saliency
detection aims to segment primary objects with fine-grained
boundaries from images using useful visual cues, for example,
color, texture, and location [55], which may be beneficial for
semantic segmentation tasks. In addition, there are naturally
the domain shift and small sample problems in remote sensing
data parsing tasks. In these directions, semantic segmentation
of aerial images may benefit from studies in [57] and [58].

Moreover, there are numerous contests aiming at semantic
segmentation from overhead imagery recently, for example,
Kaggle,3 SpaceNet,4, and DeepGlobal.5

B. Context-Aware Modeling

There are many graphical model-based methods being
used to improve the performance of semantic segmentation
[26]–[28], [58], [59]. For example, the work in [26] makes
use of a conditional random forest (CRF) as postprocessing
to refine the final segmentation results. Zheng et al. [27] and
Liu et al. [28] further made the CRF module differentiable
and integrated it as a joint-trained part within networks.
Moreover, low-level visual cues, for example, object contours,
have also been considered structure information [60], [61].
These approaches, however, are sensitive to visual appearance

3https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
4https://spacenetchallenge.github.io/
5http://deepglobe.org/challenge.html

changes and expensive due to iterative inference procedures
required.

Learning spatial propagation with networks for semantic
segmentation have attracted high interests in recent years
[29]–[31], [62]–[65]. Maire et al. [62] tried to predict entities
of an affinity matrix directly by learning a CNN, which
presents a good performance on image segmentation, while
the affinity is followed by a nondifferentiable, independent
solver of spectral embedding and cannot be used for end-to-
end predictions. Liu et al. [30] trained a CNN model to learn
a task-dependent affinity matrix by converting the modeling of
affinity to learning a local linear spatial propagation, yielding
a simple, yet effective approach for the enhancement of
segmentation results. Several recent works [63]–[65] focused
on the extension of this article. In [29] and [31], spatial rela-
tions are modeled and reinforced via interlayer propagation.
Bell et al. [31] proposed an Inside-Outside Net (ION)
where four independent recurrent networks that move in four
directions are used to pass information along rows or columns.
Pan et al. [29] utilized four slice-by-slice convolutions within
feature maps, enabling message passings between neighboring
rows and columns in a layer. The spatial propagation of these
methods is serial in nature, and thus each position could only
receive information from its neighbors.

Recently, a relational reasoning network has been proposed
in [32] for visual question answering with super-human per-
formance. Later, Zhou et al. [34] proposed a temporal relation
network to enable multiscale temporal relational reasoning in
neural networks for videos. Santoro et al. [33] proposed an
object relation module, which allows modeling relationships
among sets of objects, for object detection tasks. Our work
is motivated by the success of these works, but we focus on
modeling spatial and channel relations in a CNN for semantic
segmentation.

Unlike graphical model-based [26]–[28] and spatial
propagation network-based methods [29]–[31], [62]–[65],
we explicitly take spatial relations and channel relations into
account, so that semantic image segmentation could benefit
from short- and long-range relational reasoning.

III. OUR APPROACH

Unlike graphical model-based and spatial propagation
network-based methods, we explicitly take spatial relations
and channel relations into account, so that semantic image
segmentation could benefit from short- and long-range rela-
tional reasoning. In this section, an overview of the pro-
posed relational context-aware network is given to present
a comprehensive picture. Afterward, two key components,
the spatial relation module and the channel relation module,
are introduced, respectively. Finally, we describe the strategy
of integrating these modules for semantic segmentation.

A. Overview

As illustrated in Fig. 3, the proposed network takes
VGG-16 [66] as a backbone to extract multilevel features.
Outputs of conv3, conv4, and conv5 are fed into the channel
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Fig. 3. Overview of the relation module-equipped FCN.

Fig. 4. Diagrams of (a) spatial relation module and (b) channel relation
module.

and spatial relation modules (see Fig. 4) for generating RA fea-
tures. These features are subsequently fed into convolutional
layers with 1 × 1 filters to squash the number of channels to
the number of categories. Finally, the convolved feature maps
are upsampled to a desired full resolution and element-wise
added to generate final segmentation maps.

B. Spatial Relation Module

In order to capture global spatial relations, we employ a
spatial relation module (see Fig. 4), where the spatial relation
is defined as a composite function with the following equation:

SR(xi , x j) = fφs (gθs (xi , x j )) . (1)

Denote by X ∈ R
C×H×W a random variable representing a

set of feature maps. xi and x j are two feature-map vectors
and identified by spatial positions indices i and j . The size
of xi and x j is C × 1 × 1. To model a compact relationship
between these two feature-map vectors, we make use of a dot
production operation as gθs instead of an MLP, and the latter
is commonly used in relational reasoning modules [32], [34].

Particularly, gθs is defined as follows:
gθs (xi , x j ) = us(xi)

T vs(x j ) (2)

where us(xi ) = Wus xi and vs(x j) = W vs x j . Wus and W vs

are weight matrices and can be learned during the training
phase. Considering computational efficiency, we realize (2)
in a matrix format with the following steps.

1) Feature maps X are fed into two convolutional lay-
ers with 1 × 1 filters to generate us(X) and vs(X),
respectively.

2) Then us(X) and vs(X) are reshaped (and transposed)
into H W × C and C × H W , correspondingly.

3) Eventually, the matrix multiplication of us(X) and vs(X)
is conducted to produce a H W × H W matrix, which is
further reshaped to form a spatial relation feature of size
H W × H × W .

It is worth nothing that the spatial relation feature is not fur-
ther synthesized (e.g., summed up), as fine-grained contextual
characteristics are essential in semantic segmentation tasks.
Afterward, we select the ReLU function as fφs to eliminate
negative spatial relations.

However, relying barely on spatial relations leads to a partial
judgment. Therefore, we further blend the spatial relation
feature and original feature maps X as follows:

Xs = [X, SR(X)] . (3)

Here, we simply use a concatenation operation, i.e., [·, ·],
to enhance original features with spatial relations. By doing so,
output features are abundant in global spatial relations, while
high-level semantic features are also preserved.

C. Channel Relation Module

Although the spatial relation module is capable of capturing
global contextual dependences for identifying various objects,
misdiagnoses happen when objects share similar distribution
patterns but vary in channel dimensionality. In addition,
a recent work [67] has shown the benefit of enhancing channel
encoding in a CNN for image classification tasks. Therefore,
we propose a channel relation module to model channel rela-
tions, which can be used to enhance feature discriminabilities
in the channel domain. Similar to the spatial relation module,
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we define the channel relation as a composite function with
the following equation:

CR(X p, Xq) = fφc(gθc(X p, Xq)) (4)

where the input is a set of feature maps X =
{X1, X2, . . . , XC}, and X p as well as Xq represents the pth
and the qth channels of X . Dot production is employed to be
gθc , defined as

gθc(X p, Xq) = uc(GAP(X p))
T vc(GAP(Xq)) (5)

for capturing global relationships between feature map pairs,
where GAP(·) denotes the global average pooling function.
Notably, considering that the preservation of spatial structural
information distracts the analysis of channel interdependences,
we adopt averages of X p and Xq as channel descriptors before
performing dot production. More specifically, we feed feature
maps into a global average pooling layer for generating a set
of channel descriptors of size C × 1 × 1, and then exploit
two convolutional layers with 1 × 1 filters to produce uc(X)
and vc(X), respectively. Afterward, an outer production is
performed to generate a C ×C channel relation feature, where
the element located at (p, q) indicates gθc(X p, Xq).

Furthermore, we emphasize class-relevant channel relations
as well as suppress irrelevant channel dependences by adopting
a softmax function as fφc , formulated as

fφc(gθc(X p, Xq)) = exp(gθc(X p, Xq))
∑C

q=1 exp(gθc(X p, Xq))
(6)

where we take X p as an example. Consequently, a discrim-
inative channel relation map CR(X) can be obtained, where
each element represents the corresponding pairwise channel
relation.

To integrate CR(X) and original feature maps X ,
we reshape X into a matrix of C × H W and employ a matrix
multiplication as follows:

Xc = XT CR(X). (7)

With this design, the input features are enhanced with chan-
nel relations and embedded with not only initial discriminative
channel properties but also global interchannel correlations.
Eventually, Xc is reshaped to C × H × W and fed into
subsequent procedures.

Fig. 4 shows the diagram of our channel relation module.

D. Integration of Relation Modules

In order to jointly enjoy benefits from spatial and chan-
nel relation modules, we further aggregate features Xs and
Xc to generate spatial and channel RA features. As shown
in Fig. 5, we investigate two integration patterns, namely
serial integration and parallel integration, to blend X s and
Xc. For the former, we append the spatial relation module
to the channel relation module and infer X s from Xc instead
of X , as presented in (1) and (7). For the latter, spatial RA
features and channel RA features are obtained simultaneously
and then aggregated by performing concatenation. Influences
of different strategies are discussed in Section IV-B.

Fig. 5. Two integration manners. (a) Serial. (b) Parallel.

IV. EXPERIMENTS

To verify the effectiveness of long-range relation modeling
in our network, aerial image data sets are used in experiments.
This is because aerial images are taken from nadir view, and
the spatial distribution/relation of objects in these images is
diverse and complicated, as shown in Fig. 1. Thus, we per-
form experiments on two aerial image semantic segmentation
data sets, i.e., International Society for Photogrammetry and
Remote Sensing (ISPRS) Vaihingen and Potsdam data sets,
and results are discussed in Sections IV-A–IV-F.

A. Experimental Setup

1) Data Sets: The Vaihingen data set6 is composed
of 33 aerial images collected over a 1.38-km2 area of the city,
Vaihingen, with a spatial resolution of 9 cm. The average size
of each image is 2494 × 2064 pixels, and each of them has
three bands, corresponding to near infrared (NIR), red (R),
and green (G) wavelengths. Notably, DSMs, which indicate
the height of all object surfaces in an image, are also provided
as complementary data. Among these images, 16 of them are
manually annotated with pixel-wise labels, and each pixel is
classified into one of six land cover classes. Following the
setup in [45], [48], and [53], we select 11 images for training,
and the remaining five images (image IDs: 11, 15, 28, 30, 34)
are used to test our model.

The Potsdam data set7 consists of 38 high resolution aerial
images, which covers an area of 3.42 km2, and each aerial
image is captured in four channels [NIR, R, G, and blue
(B)]. The size of all images is 6000 × 6000 pixels, which are
annotated with pixel-level labels of six classes as the Vaihingen
data set. The spatial resolution is 5 cm, and coregistered DSMs
are available as well. Compared to the Vaihingen data set, this
data set is more challenging owing to its finer spatial resolution
(5 versus 9 cm/pixel) and wider area of coverage. To train and
evaluate networks, we utilize ten images for training and build
the test set with the remaining images (image IDs: 02_12,
03_12, 04_12, 05_12, 06_12, 07_12).

6http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
vaihingen.html

7http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
potsdam.html



7562 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 11, NOVEMBER 2020

Vaihingen and Potsdam data sets are public data sets pro-
vided by ISPRS-Commission III. As reported in [69], images
were captured using digital aerial cameras carried out by the
German Association of Photogrammetry and Remote Sensing
(DGPF) [70] and mosaicked with Trimble INPHO OrthoVista.
Void areas in DSMs were filled with a variant of nonlinear
diffusion [71]. In our experiments, we directly train and
evaluate models on these preprocessed images and DSMs.

2) Implementation: The proposed network is initialized
with separate strategies with respect to two dominant compo-
nents: the feature extraction module is initialized with CNNs
pretrained on ImageNet data set [72], while convolutional
layers in relation modules are initialized with a Glorot uniform
initializer. Notably, weights in the feature extraction module
are trainable and fine-tuned during the training phase.

Regarding the used optimizer, we choose Nestrov
Adam [73] and set parameters of the optimizer as recom-
mended: β1 = 0.9, β2 = 0.999, and � = 1e−8. The learning
rate is initialized as 2e−4 and decayed by 0.1 when validation
loss is saturated. The loss of our network is simply defined
as categorical cross-entropy. We implement the network on
TensorFlow and train it on one NVIDIA Tesla P100 16 GB
GPU for 250k iterations. The size of the training batch is 5,
and we stop training when the validation loss fails to decrease.

3) Evaluation Metric: To evaluate the performance of net-
works, we calculate F1 score with the following formula:

F1 = (1 + β2) · precision · recall

β2 · precision + recall
, β = 1 (8)

for each category. In this equation, precision and recall are
calculated as

precision = TP

TP + FP
, recall = TP

TP + FN
(9)

where true positive (TP), false positive (FP), and false nega-
tive (FN) represent TP, FP, and FN, respectively. Furthermore,
mean F1 score is computed by averaging all F1 scores to assess
models impartially. Notably, a large F1 score suggests a better
result. Besides, OA is also calculated for a comprehensive
comparison with different models.

B. Ablation Study for Relation Modules

In our network, spatial and channel relation modules are
employed to explore global relations in both spatial and chan-
nel domains. To validate the effectiveness of these modules,
we perform ablation experiments (see Table I). Particularly,
instead of being utilized simultaneously, spatial and chan-
nel relation modules are embedded on top of the backbone
(i.e., VGG-16), respectively. Besides, we also discuss differ-
ent integration strategies (i.e., parallel and serial) of relation
modules in Table I.

The ablation experiments are conducted on the Vaihin-
gen data set. As can be seen in Table I, relation modules
bring a significant improvement as compared to the baseline
FCN (VGG-16), and various integration schemes lead to a
slight influence on the performance of our network. In detail,
the use of only the channel relation module yields a result
of 87.24% in the mean F1 score, which brings a 3.50%

TABLE I

ABLATION STUDY ON THE VAIHINGEN DATA SET

improvement. Meanwhile, RA-FCN with only the spatial
relation module outperforms the baseline by a 4.62% gain in
the mean F1 score.

Moreover, by taking advantage of spatial RA and channel
RA features simultaneously, the performance of our network is
further boosted up. The parallel integration of relation modules
brings increments of 1.26% and 0.14% in the mean F1 score
with respect to RA-FCN-crm and RA-FCN-srm. Besides,
a serial aggregation strategy is discussed, and results demon-
strate that it behaves superiorly as compared to other models.
To be more specific, such design achieves the highest mean
F1 score, 88.54%, as well as the highest OA, 89.23%. To con-
clude, spatial- and channel-augmented features extracted from
relation modules carry out not only high-level semantics but
also global relations in spatial and channel dimensionalities,
which reinforces the performance of a network for semantic
segmentation in aerial scenes.

C. Comparing With Existing Works

For a comprehensive evaluation, we compare our model
with six existing methods, including FCN [68], FCN with
fully connected CRF (FCN-dCRF) [26], spatial propagation
CNN (SCNN) [29], FCN with atrous convolution (Dilated
FCN) [26], FCN with feature rearrangement (FCN-FR) [48],
and RotEqNet [53].

Numerical results on the Vaihingen data set are shown
in Table II. It is demonstrated that RA-FCN outperforms other
methods in terms of both mean F1 score and OA. Specifically,
comparisons with FCN-dCRF and SCNN, where RA-FCN-
srm obtains increments of 4.98% and 3.69% in mean F1

score, respectively, validate the high performance of the spatial
relation module in our network. Besides, compared to FCN-
FR, RA-FCN reaches improvements of 1.96% and 1.57% in
mean F1 score and OA, which indicates the effectiveness of
integrating the spatial relation module and channel relation
module. In comparison with FCN-FR, although our model
achieves lower performance in identifying impervious surfaces
and buildings, it reaches improvements of 1.96% and 1.57% in
mean F1 score and OA, which demonstrates the effectiveness
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TABLE II

EXPERIMENTAL RESULTS ON THE VAIHINGEN DATA SET

Fig. 6. Examples of segmentation results on the Vaihingen data set. (Left to right) Image, nDSM, ground truth, FCN, FCN-dCRF, SCNN, RA-FCN-srm,
and S-RA-FCN. Legend—white: impervious surfaces, blue: buildings, cyan: low vegetation, green: trees, and yellow: cars.

of integrating the spatial and channel relation module in
semantic segmentation of aerial images. Besides, compared
to dilated FCN and RotEqNet, RA-FCN obtains increments
of 3.26% and 4.36% in mean F1 score, respectively. Fur-
thermore, per-class F1 scores are calculated to assess the
performance of recognizing different objects. It is notewor-
thy that our method remarkably surpasses other competitors

in identifying scattered cars for its capacity of capturing
long-range spatial relation.

D. Qualitative Results

Fig. 6 shows a few examples of segmentation results.
The second row demonstrates that networks with local recep-
tive fields or relying on fully connected CRFs and spatial
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TABLE III

NUMERICAL RESULTS ON THE POTSDAM DATA SET

Fig. 7. Examples of segmentation results on the Potsdam data set. (Left to right) Image, nDSM, ground truth, FCN, FCN-dCRF, SCNN, RA-FCN-srm, and
S-RA-FCN. Legend—white: impervious surfaces, blue: buildings, cyan: low vegetation, green: trees, yellow: cars, and red: clutter/background.

propagation modules fail to recognize impervious surfaces
between two buildings, whereas our models make relatively
accurate predictions. This is mainly because, in this scene,
the appearance of impervious surfaces is highly similar to that
of the right building, which leads to a misjudgment of rival
models. Thanks to the spatial relation module, RA-FCN-srm or
RA-FCN is able to effectively capture useful visual cues from
more remote regions in the image for an accurate inference.

Besides, examples in the third row illustrate that RA-FCN
is capable of identifying dispersively distributed objects as
expected.

E. Results on the Potsdam Data Set

In order to further validate the effectiveness of our net-
work, we conduct experiments on the Potsdam data set, and
numerical results are shown in Table III. The spatial relation
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Fig. 8. Full prediction for the tile ID 4_10 of the Potsdam data set. Legend—white: impervious surfaces, blue: buildings, cyan: low vegetation, green: trees,
yellow: cars, and red: clutter/background. Zoomed-in view for details. (a) Image. (b) Ground truth. (c) FCN. (d) FCN-dCRF. (e) SCNN. (f) RA-FCN.

module contributes to improvements of 2.25% and 2.67% in
the mean F1 score with respect to FCN-dCRF and SCNN,
and the serial integration of both relation modules brings
increments of 1.39% and 1.54% in the mean F1 score and OA,
respectively. Compared to dilated FCN, our network increases
mean F1 score and OA by 5.07% and 4.45%, respectively,
which illustrates the importance of capturing long-range rela-
tions. Moreover, RA-FCN surpasses FCN-FR in recognizing
all six land cover classes in the Potsdam data set and gains
improvements of 1.39% and 1.57% in mean F1 score and OA,
respectively.

Moreover, qualitative results are presented in Fig. 7.
As shown in the first row, although low vegetation regions
comprise intricate local contextual information and are liable
to be misidentified, RA-FCN obtains more accurate results in
comparison with other methods due to its remarkable capacity
of exploiting global relations to solve visual ambiguities. The
fourth row illustrates that outliers, that is, the misclassified
part of the building, can be eliminated by RA-FCN, while
it is not easy for other competitors. To provide a thorough
view of the performance of our network, we also exhibit
a large-scale aerial scene as well as semantic segmentation
results in Fig. 8. As we can see, RA-FCN shows higher
performance in recognizing clutter (see bottom left and central

red regions) compared to other competitors. It is noteworthy
that identifying clutter is challenging owing to its complicated
structures and textures, and thus, leveraging global spatial and
channel relations can yield a better classification accuracy.
Besides, SCNN tends to confuse low vegetation with buildings
(see left blue regions), while for our network, such mistakes
are alleviated.

F. Discussion: Pure Spatial Relation Network?

We study a pure spatial relation network, which uses
only learned spatial relations and does not exploit convolved
feature maps at all to output final segmentation maps. More
specifically, we remove the concatenation operation in the
spatial relation module of RA-FCN-srm and directly employ
SR(X) as the output. We will call the pure spatial relation
network FCN-sr hereafter. Experiments are carried out on
both the Vaihingen and Potsdam data sets, and quantitative
results are reported in Table IV. Before experiments, we expect
that without the help of appearance features produced by
VGG-16, FCN-sr cannot achieve decent results. However,
the performance of FCN-sr is quite better than expected.

It is noteworthy that on the Vaihingen data set, FCN-sr
achieves a comparable OA but a rather low mean F1 score that
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TABLE IV

SEGMENTATION PERFORMANCE OF FCNS AND PURE SPATIAL RELATION NETWORKS ON THE (TOP) VAIHINGEN AND (BOTTOM) POTSDAM DATA SETS

Fig. 9. Comparisons of FCN, pure spatial relation network, and spatial RA-FCN on (top three rows) Vaihingen data set and (bottom three rows) Potsdam data
set. (Left to right) Image, nDSM, ground truth, FCN, FCN-sr, and RA-FCN-srm. Legend—white: impervious surfaces, blue: buildings, cyan: low vegetation,
green: trees, yellow: cars, and red: clutter/background.

is 8.33% lower as compared to FCN. This dramatic decrement
is mainly because of the misdiagnosis of cars, of which the F1

is merely 33.83%, less than half of that achieved by FCN. For
an intuitive illustration, qualitative results are shown in Fig. 9.
It is not difficult to find that contours of cars are obscure
and conflated with their neighbors. In contrast, the use of
appearance information (i.e., FCN) evidently improves the
performance of segmenting cars, and combining both spa-
tial relations and appearance information (i.e., RA-FCN-srm)
is capable of obtaining a better result. Besides, we find that
purely applying learned spatial relations exhibits a superior

performance of differentiating building instances as com-
pared to FCN, where only appearance features are used
(see Fig. 9).

On the Vaihingen data set, FCN-sr achieves both higher
mean F1 score and OA in comparison with FCN on the
Potsdam data set. We believe this is owing to the fact that the
Potsdam data set has a higher spatial resolution. Qualitative
resluts are shown in Fig. 9. From this figure, we note that
the performance of FCN-sr in terms of inferring roads even
surpasses that of RA-FCN-srm, particularly when nDSMs are
inaccurate (see the fifth column).
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V. CONCLUSION

In this article, we have introduced two effective network
modules, namely the spatial relation module and the channel
relation module, to enable relational reasoning in networks
for semantic segmentation in aerial scenes. The comprehensive
ablation experiments on aerial data sets where long-range spa-
tial relations exist suggest that spatial- and channel-augmented
features extracted from relation modules carry out not only
high-level semantics but also global relations in spatial and
channel dimensionalities, which reinforces the performance
of a network for semantic segmentation in aerial scenes.
However, our understanding of how these relation modules
work for segmentation problems is preliminary and left as
future works.
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