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Deep Learning Applications on Multitemporal SAR
(Sentinel-1) Image Classification Using Confined

Labeled Data: The Case of Detecting Rice
Paddy in South Korea
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Youngjin Ko, Sungeun Cha , Hoonjoo Yoon, and Woo-Kyun Lee

Abstract— The applicability of deep learning to remote sensing
is rapidly increasing in accordance with the improvement in
spatiotemporal resolution of satellite images. However, unlike
satellite images acquired in near-real-time over wide areas, there
are limited amount of labeled data used for model training.
In this article, three kinds of deep learning applications—data
augmentation, semisupervised classification, and domain-adapted
architecture—were tested in an effort to overcome the limitation
of insufficient labeled data. Among the diverse tasks that can be
used for classification, rice paddy detection in South Korea was
performed for its ability to fully utilize the advantages of deep
learning and high spatiotemporal image resolution. In the process
of designing each application, the domain knowledge of remote
sensing and rice phenology was integrated. Then, all possible
combinations of the three applications were examined and
evaluated with pixel-based comparisons in various environments
and city-level comparisons using national statistics. The results
of this article indicated that all combinations of the applications
can contribute to increase classification performance, even though
the uncertainty involved in imitating or utilizing unlabeled data
remains. As the effectiveness of the proposed applications was
experimentally confirmed, enhancement in the applicability of
deep learning was expected in various remote sensing areas.
In particular, the proposed applications would be significant
when they are applied to a wide range of study areas and high-
resolution images, as they tend to require a large amount of
learning data from diverse environments, owing to high intra-
class heterogeneity.
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I. INTRODUCTION

W ITH the advancement in satellite technology, the
increased spatiotemporal resolution of satellite images

is accelerating remote sensing data to become big data [1].
As properties of data are transformed, analytical methods are
also evolving [2], [3], and the massive volume and complexity
of satellite images are increasing the applicability of deep
learning in the remote sensing field. However, because of the
nature of deep learning analysis, which requires vast amounts
of training data for desirable performance, the lack of labeled
data is a prevalent problem in deep learning studies [4].
In particular, the imbalance between labeled and unlabeled
data is extreme in remote sensing, which provides near-real-
time images over wide areas [5]. Therefore, to promote the
applicability of deep learning in remote sensing, techniques to
overcome overfitting on the traits of a confined labeled area
should be developed based on target domain knowledge and
data science approaches.

Among the various classification tasks, the detection of rice
paddy in South Korea, a representative task that is limited in
classical remote sensing analysis, was the focus of this article.
Because many rice paddies in South Korea are fragmented,
as in many Asian countries, reflectance from other objects
may be diluted to the adjacent rice paddy when observed
by midlow resolution satellite imaging [6]. Given that the
state-of-the-art satellites provide more precise observation of
fragmented rice paddies, with high spatiotemporal resolution,
and that the ability of deep learning to simulate both nonlinear
and autoregressive phenomenon is effective for modeling
phenological changes in vegetation [7], the detection of rice
paddy was considered an optimal task for examining diverse
deep learning applications.

Several deep learning models had already been applied to
land cover classification and crop mapping in previous studies,
including rice paddy detection [8], [9]. They experimentally
demonstrated the applicability of deep learning to remote
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Fig. 1. Confined labeled data in Dangjin city, South Korea.

sensing and its comparative advantages over classical machine
learning. However, these studies did not focus on overcom-
ing the limitation of insufficient labeled data nor did they
adapt domain knowledge of the target objects in the design
of deep learning architecture, while using generally known
architectures. Rather, studies using classical machine learning,
in which most of the feature extraction processes rely on
researchers, tend to adapt domain knowledge sufficiently in the
classification model. For example, by considering phenological
patterns into rice paddy detection [10], which most of deep
learning researches have neglected, classical machine learn-
ing could improve its performance. Therefore, even as deep
learning performs end-to-end learning, which automatically
extracts features, it also needs to adapt domain knowledge
in the architecture design process to maximize classification
performance and overcome the limitation of sparse labeled
data [11].

In this article, diverse applications, such as data augmenta-
tion, semi-supervised classification, and domain-adapted archi-
tecture, were examined in the deep learning-based rice paddy
detection model to overcome the limitation of labeled data
established in a confined area. Each application is designed
to adapt domain knowledge, such as rice planting season,
and spatial information that appears in satellite imagery. The
applications were implied to South Korea both independently
and in combination. Based on the results, the effectiveness of
the sets of applications was compared.

II. MATERIALS

A. Study Area

In this article, rice paddy detection was conducted across
all of South Korea by only using labeled data in a confined

area (Fig. 1). Located in the midlatitude region, South Korea
has a temperate monsoon climate with a humid summer
and dry winter [12]. The average annual precipitation is
approximately 1200 mm, with 50%–60% of precipitation
concentrated in the rainy season from June to August. Most
plains are located in the western part of the country, and
the eastern part is mountainous. Rice farming is generally
performed by transplanting in May–June and harvesting in
September–October. In the case of early harvests, other crops
could be cultivated on the harvested rice paddy; however, rice
is mostly cultivated once a year.

B. Remote Sensing Data

In this article, diverse deep learning applications were
examined with time series of Sentinel-1 satellite images as a
major premise of this research is to utilize high spatio-temporal
data set with massive volume and complexity. To detect frag-
mented rice paddies in Asia, satellite images with high spatial
resolution are required [13]. At the same time, high temporal
resolution is also required to reflect rice phenology on the
classification model. Sentinel-1, launched by the European
Space Agency in 2014 and 2016 for each twin satellite,
provides 10-m resolution images with 6 days of revisit time.
With its distinguished spatiotemporal resolution, Sentinel-1
also has the advantage of synthetic aperture radar (SAR),
which collects data in all types of weather using a radar sensor.
The multitemporal backscattering value, which is consistently
observed with SAR, is known to be effective in monitoring
the growing stage of rice, represented as a function of rice
phenology [14]. Between VV and VH polarization, which
Sentinel-1 provides, VH polarization was used in this article
for its superiority over VV in overall land cover separability
including rice paddy [15].
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Time series of Sentinel-1 images were acquired through
Google Earth Engine (GEE) to minimize time and labor
spent on data preprocessing. The area of South Korea
is 100 364 km2, and the cost of collecting, integrating,
processing, and storing a high-resolution time-series data set
from such a large area can be significantly reduced by using
web-based platforms such as GEE. To use an independent
data set in the processes of model production and application,
the 2017 images were used as training and validation data,
whereas the 2018 images were used as test data. Sentinel-1
images from GEE were provided after a series of preprocess-
ing tasks was performed, such as updating orbit metadata,
ground range-detected (GRD) border noise removal, thermal
noise removal, radiometric calibration, and terrain correction
(https://developers.google.com/earth-engine/sentinel1). In the
case of GRD border noise removal, preprocessing was not
applied to the images taken before 2018. Therefore, addi-
tional borderline noise removal was performed by applying
a minimum threshold value of −46 dB. The threshold was
selected by acquiring a natural break point in the histogram
between imagery and noise in the yearly minimum-value
composite image. Then, 46 dB was added to the entire image
for calculating the Paddy rice Mapping Index (PMI), which
will be dealt with at latter part. The addition was intended to
set image not to have negative values while maintaining data
scale and histogram pattern.

C. Labeled Data

To avoid mislabeling high-resolution Sentinel-1 images,
precise labeling data compatible to 10-m resolution should
be acquired. Therefore, in this article, the parcel-level rice
paddy area was extracted from the level-three land cover
map, which has the highest resolution among three different
scales of land cover maps produced by Korean Ministry
of Environment. The minimum classification criteria of the
level-three land cover map are 3-m wide for linear elements
and 10 m × 10 m (100 m2) for plane elements, which
provide compatible or more detailed resolution compared with
Sentinel-1. The land cover map is produced by an on-screen
digitizing method using KOMPSAT-2 and IKONOS satellite
images, orthorectified aerial photos, and an existing domestic
GIS data set [16]. In addition, ambiguous areas that are not
clearly classified in remote sensing data are investigated by
field survey.

Although land cover maps of the entire nation are available,
products for each region have been outdated for several years
as a tradeoff with high quality. Therefore, the labeled data
was confined to the area of Dangjin city, which is the greatest
rice producer in South Korea (Fig. 1). The land cover map
in Dangjin city was produced in 2015; thus, it was updated
to the status of 2017, which is the period of the training
and validation data set. The update was performed by visual
interpretation using Google Earth Pro and domestic street view
services (https://map.kakao.com; https://map.naver.com) with
a cross-validation of three interpreters. In the process of the
update, a small portion of the sea nearby was also labeled
in addition to the administration area of Dangjin city to train
water environments. After the update, it was converted into

Fig. 2. Research flow for application examination.

raster format with a resolution compatible with Sentinel-1. The
labeled area in Dangjin consists of 7 458 996 pixels (745 km2),
among which 2 345 812 pixels (235 km2) are of rice paddy.

III. METHODOLOGY

In this article, a number of deep learning applications are
examined to maximize classification performance using remote
sensing data with a confined labeled area. To compare perfor-
mance, diverse sets of applications were implied based on a
baseline application set that is composed of primary learning
material (PLM), produced with the 2017 data in Dangjin
city, and fully connected recurrent neural networks (FCRNNs)
(Fig. 2). Data augmentation and semi-supervised classifica-
tion were applied to PLM to derive data-augmented learning
material (DALM) and semi-supervised classification learn-
ing material (SSCLM). Domain-adapted RNNs (DARNNs)
is a modified architecture of FCRNNs that considers phe-
nological differences of rice in South Korea. In summary,
the concatenation of three learning materials and two deep
learning architectures were examined. After the models were
produced, they were tested over all of South Korea with the
2018 data. Then, two types of evaluation were performed:
pixel-based comparison was conducted in ten sites using an
updated land cover map, with each site consisting of four
different types of landscapes—agricultural, urban, forestry, and
water—and statistical evaluation was conducted by calculating
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Fig. 3. PLM consisting of 11 time-series images and labeled data.

Fig. 4. FCRNN architecture.

linear regression equation between the classification result and
national statistics.

A. Baseline Application

The baseline application set is a combination of PLM
and FCRNNs that serves as a control group to evaluate the
sets of deep learning application. PLM was produced by
stacking 11 time-series Sentinel-1 images and labeling it with
the level-three land cover map of Dangjin in 2017 (Fig. 3).
Each image is a monthly mean value composite from March
to November, except May and June, which are mean-value
composites of a half-month. May and June have a more
frequent observation interval because they are in the planting
season of rice, which can serve as a significant feature to
improve classification accuracy with a dramatic change in
the backscattering value [17]. Because almost all rice paddies
in South Korea are irrigated in the planting season, low
backscattering values are recorded in the planting season,
reflecting the smooth surface of water, and high backscattering
values are recorded, reflecting the coarse surface of rice as
the grain grows. There is an exception at rice paddies in
which direct dry-seeding is conducted; however, the use of
this method is declining, comprising less than 0.1% of the total
rice paddy in 2016 [18]. The learning material was divided into
60% training area and 40% validation area through a random
sampling method.

FCRNNs architecture is designed to extract high-level
features from rice paddy monitoring data. The architecture
consists of three RNN layers and four fully connected layers,
with one batch normalization layer between them (Fig. 4). The
RNN part was aimed to extract features from the autoregres-
sive pattern of the backscattering values in the growing rice

Fig. 5. DALM: Data augmented data set derived from PLM.

paddy. With a closed-loop structure, outputs of a particular
time series in RNN layers are involved in the function of
the next time-series data and effectively extract features from
autoregressive time-series data [19]. The multiple, fully con-
nected layers are aimed to extract high-level features that could
perform noise-invariant classification through the application
of highly nonlinear functions with deep architecture [20].
The batch normalization layer served to prevent the gradient
vanishing problem that impedes model training, especially in
deep architecture, and reduce overfitting on the limited labeled
data [21].

B. Data Augmentation

Data augmentation techniques are used to acquire a large
number of learning material by transforming data to the
extent that they do not impair the intrinsic attributes of
the classification target. Usually, image deformation, such
as rotation, partitioning, scaling, and brightness adjustment,
are mainly used for many studies [22]. However, the major
differences between the learning area and the entire country
could be explained through temporal differences rather than
spatial differences from the perspective of rice detection. For
example, the optimal rice planting season in South Korea
varies from May 7 to June 21, depending on the latitudinal
temperature gradient, topographical difference, and type of rice
species such as early-, medium-, and late-maturing rice [23].
In addition, trends of backscattering value from planting to
harvesting are very coincident even if diverse parcels have
different sowing date [24], so a shift of time-series backscat-
tering value could minimize the phenological differences in
diverse regions. Therefore, this article tried to simulate the
rice phenology that appears in the multitemporal images by
considering the differences in the growing period depending
on regional and species differences. In summary, data aug-
mentation on the time dimension was applied to the PLM
and produced DALM to simulate diverse rice phenology from
the confined labeled area. In Dangjin, located on the central
west coast, rice is planted from late May to early June, which
is the middle of the national optimal planting period. Thus,
the time-series data of the early- and late-planting areas were
simulated by moving back and forth between the time-series
satellite images of the Dangjin area (Fig. 5).

C. Semisupervised Classification

Semisupervised classification is a technique to exploit the
unlabeled data on supervised learning by clustering data with
unsupervised classification and labeling the clustered data
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Fig. 6. PMI and water threshold selected in the Dangjin area.

thorough existing labeled data. In this article, SSCLM was
produced by applying semisupervised classification to images
of the entire country with reference to PLM. To fully utilize
domain knowledge, object-based classification was applied
to the unsupervised classification process. The concept of
object-based classification considers not only the similarity
of the multitemporal backscattering value but also the spatial
adjacency [25], providing an additional dimension when clus-
tering the spatial data. Object-based clustering was performed
with a multiresolution segmentation algorithm in Definiens
Developer software that produces small homogeneous clusters
by locally minimizing the average heterogeneity [26]. The
clustered objects were labeled with modified PMI classifi-
cation, which is a supplemented version of the PMI-based
classification introduced by Park et al. [27]. Modified PMI
classification was developed to minimize misclassification
between the rice paddy and river side plants by subtracting
the flooded area from the assumed rice paddy area:

Ricepaddy = {PMI,Water|PMI > PMI threshold,

Water<Water threshold} (1)

PMI = SAR (Harvest) −SAR (Transplanting)

SAR (Harvest) +SAR (Transplanting)
(2)

Water = SAR (Rainyseason) (3)

where SAR(x) indicates the mean value composite of the SAR
images in period x .

A national timescale was considered for the selec-
tion of each time parameter—May–June for transplanting,
July–August as the rainy season, and October–November for
harvesting. A PMI threshold and water threshold of 0.0686 and
21.88, respectively, was selected to maximize the classification
accuracy in the Dangjin area (Fig. 6).

D. Domain-Adapted Architecture

When acquiring sufficient learning materials is difficult,
model performance can be alternatively improved by adapting
domain knowledge in the process of model design [11].
In this article, the knowledge of differences in rice phenology,
which were mentioned in the data augmentation application,
was adapted on FCRNNs architecture to produce DARNNs.
DARNNs are the architecture with 1-D convolution and max

Fig. 7. Domain adapted RNN (DARNN) architecture.

pooling layers added to the FCRNNs to extract features
from the computation between adjacent time-series data. The
architecture consists of two 1-D convolution layers, two RNN
layers, one max pooling layer, and four fully connected layers
with one batch normalization layer between them (Fig. 7).
Unlike FCRNNs, two layers of 3 by 1 convolution filters
were introduced to DARNNs, with the effect of reducing the
temporal variability within the window size by applying it
along the time axis [28]. The following max pooling layer
after the RNN structure makes the feature extraction process
invariant to a small time shift [28], [29]. Both types of
additional layers are intended to increase the applicability of
the model over diverse rice phenology.

E. Model Evaluation

Models were produced for the combination of each learning
material and deep learning architecture; then, they were tested
on the time-series images of 2018. For the classification
results, postprocessing for noise reduction was performed with
an adaptive filter that operates as follows.

Let rice paddy be 1 and others be 0:

ixy =

⎧⎨⎨⎨⎨
⎨⎨⎨⎩

1,
y+1�

h=y−1

x+1�
w=x−1

ihw ≥ 4

0,
y+1�

h=y−1

x+1�
w=x−1

ihw < 4
(4)
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TABLE I

RESULTS OF PIXEL-BASED EVALUATION

where x and y are column- and row-wise coordinates each
and ixy indicates the classification result in pixel (x , y).

To evaluate model performance in diverse environment,
ten evenly distributed evaluation sites were selected in
South Korea, with each site consisting of four plots from
agricultural, urban, forestry, and water landscapes. The size
of each plot varies a little from 6 to 6.4 km2, according
to its location under the projection of the Korean Central
Belt (EPSG: 5186), which consists of a GRS80 spheroid
and Transverse Mercator projection with a central meridian
of 127◦. The evaluation plots were labeled by updating the
level 3 land cover map to 2018, with the visual interpretation
and cross-validation of three interpreters in the same method
as that of labeling learning materials. With a pixel-based
comparison, the classification accuracy was calculated for each
site and plot, whereas Cohen’s kappa value was calculated only
for the sites. This is because plots other than the agricultural
area have few or no rice paddies, causing difficulties in the
interpretation, which results in inharmonicity between the low
kappa value and high rate of concordance.

Furthermore, additional evaluation was performed by com-
paring the classification result with the national city-level sta-
tistics for the rice paddy area provided by Statistics Korea [30].
The statistical data is produced by a “crop production survey”
on the basis of a field survey of 32 000 sample areas to
confirm agricultural land use and 22 000 sample areas to

confirm rice planting [31]. In the statistical evaluation, a linear
regression was calculated between the statistics and the rice
paddy area gathered from the pixels to the city boundaries.
Among the 162 cities, 160 cities were compared, omitting
Ulleung and Taean, since the former that consists of islands
in the far East Sea with no rice paddy increased computational
inefficiency and the latter contains parts with no imagery.
At this step, the overall trend in model performance was
identified, such as whether the result represented over- or
underestimation.

IV. RESULTS AND DISCUSSION

A. Pixel-Based Model Comparison

Table I shows the pixel-based evaluation results of six mod-
els, composed of data augmentation, semisupervised classifi-
cation, and domain-adapted architecture, for ten sites which of
geographical information are introduced at Table II. To avoid
the randomness of deep learning in the process of parameter
initialization [32], the result on the table was selected from
the median accuracy model for the seven times training was
performed for each application set. The effect of randomness
to the accuracy was not significant, as 0.003169 was recorded
by averaging the accuracy variances of the seven training runs
for each application set.
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TABLE II

GEOGRAPHICAL INFORMATION OF EACH SITES AND PLOTS

According to the result, the overall performance was best
for the models of “DALM + DARNNs” and “DALM +
FCRNNs,” recording an accuracy of 96.42% and kappa

value of 0.86. This was followed by “SSCLM + FCRNNs”
and “SSCLM + DARNNs,” recording similar accuracies of
95.93% and 95.92%, respectively, with the same kappa value
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of 0.83. In sequence, “PLM + DARNNs” recorded 95.45%
accuracy and 0.81 kappa value, and “PLM + FCRNNs,” a
baseline application set, recorded the lowest performance with
94.91% accuracy and a kappa value of 0.79. Considering
the margin of accuracy remaining up to 100% is less than
6%, an increase in accuracy of approximately 1% is very
significant. In the same context, the general classification
patterns are similar in most properly trained models as a great
part of the image is in a clearly separable area. The value
of a sophisticated model comes from classifying the obscure
area accurately, and it is expressed as a small but consistent
increase in accuracy. Given that the accuracy variance among
the application sets is recorded as 0.3387 which is relatively
huge compared with that of the repeated training in the same
application, the effect of the applications is meaningful.

Although there are some variances from the models, in gen-
eral, sites A, B, C, and H represented high performance
compared with all models, as most of them recorded over
97% accuracy, whereas sites D, F, and G represented low
performance with most of them recording under 95% accuracy
or 0.80 kappa value. According to the landscape type in each
plot, every model recorded a mean accuracy of over 97% for
urban, forestry, and water, whereas the accuracy varies from
approximately 83% to 90% for the agricultural landscape.

Fig. 8 shows the change in accuracy at each site comparing
the application sets to the “PLM + FCRNNs,” which is the
baseline application set. In site E, which is adjacent to the
labeled area in Dangjin, the effects of the applications were
not significant. However, as the distance from the labeled
area increases, the effects of the applications for improving
accuracy tend to increase as well, which suggest that the
use of domain-adapted applications is effective in improving
classification performance, particularly in areas with different
environmental conditions from a confined labeled area.

Therefore, the advantage of using such applications is max-
imized when the intraclass heterogeneity of the classification
target is high, which usually occurs with a study area that has
a wide range and high spatial resolution, with a pixel size
smaller than the target objects [33]–[35]. In the meantime,
with the advancement in information and communications
technology and data processing techniques, analyzing high-
resolution images over the large area is facilitated by the
use of web-based platforms. Recently, platforms, such as
opEn interOperable Platform for unified access and analysis
of Earth observatioN data (EOPEN), are under development
to enable deep learning analysis on such big and complex
data (https://eopen-project.eu) [36]. The combination of the
aforementioned applications and the platform is expected to
promote the applicability of deep learning to remote sensing.

Comparing the effectiveness of each application through
the evaluation indices, the data augmentation has the great-
est effect on the performance improvement. Applying only
data augmentation on the baseline application set, “DALM
+ FCRNNs” recorded the best performance. Semisupervised
classification also improved the classification performance by
improving the kappa value and more than 1% of accuracy from
that of baseline application set in both models using SSCLM.
In summary, it is experimentally found that classification

Fig. 8. Change in accuracy at each site compared to the baseline application.

performance is improved in order of DALM, SSCLM, and
PLM when it comes to the use of learning materials. However,
it should be noted that the degree of performance improvement
may vary depending on how well the domain knowledge is
adapted. In particular, the effect of semi-supervised classifica-
tion varies significantly depending on the process of utilizing
the unlabeled data [37].

Model performance was also improved when the domain
knowledge was adapted to the process of deep learning
architecture design. Improvement was observed when it was
solely applied to the baseline application set with an accuracy
improvement of 0.54%. However, the effect of domain-adapted
architecture was hard to recognize when it was accompanied
with data augmentation or semisupervised classification. There
was no synergistic effect but rather only the recording of
better performance of the application among the combination.
It is assumed that the improvement in the performance was
limited because the same type of domain knowledge has been
considered in both simultaneously applied applications, which
is the difference in rice phenology.

To identify the factors affecting classification performance,
the rice paddy detection patterns on agricultural plots were
analyzed. The biggest differences identified by visual analy-
sis on site A and G, which are the typical high- and
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Fig. 9. Rice paddy detection results of “PLM + DARNNs” in agricultural
plots at (a) sites A and (b) site G.

low-performance areas, were the degree of rice paddy frag-
mentation and the presence of artificial structures adjacent to

the paddies. Whereas, the agricultural plot of site A consists
of large patches, that of site G consists of a number of small
fragmented patches with agricultural facilities nearby (Fig. 9).

According to the analysis, the types most commonly mis-
classified were small objects below the resolution of satellite
images, radar shadows due to artificial structures, and river
side plants that shows similar phenological patterns to rice
paddies (Fig. 10). Whereas the first two types are caused by
the limitations in the process of satellite image acquisition,
the misclassification of the river side plants is likely to be
improved by further development in the methodology. Accord-
ing to the feature extraction processes, the river side plant can
be more similar to rice than the other land covers because it
shares a unique time-series image pattern with rice paddy as
they are sometimes flooded, and the texture became coarse
as they grow. Therefore, creating an independent label for the
river side plant by subdividing the class of others can minimize
the confusion between them. At the same time, the process
of adapting domain knowledge to deep learning applications
requires more careful consideration, as broad interpretations
of the adjacent time series could have contributed to further
obscure the distinction between rice paddy and river side plant.
Furthermore, since it is hard to consider every environmental
or phenological difference in domain adaptation process, using
confined training area could result in low performance at dif-
ferent sites. As a result, proper range of application area should
be determined in consideration of the regional specificity of
the training area and the extent to which the adapted domain
knowledge could widen model’s applicability.

B. Statistical Evaluation on City Level

Fig. 11 shows the results of linear regression between the
detected rice paddy area and city-level statistics provided by
Korean Statistics. All of the models had a relatively high
correlation with the statistical data; however, the difference
in the trend of the linear equation was identified according to
the learning material. The trend of the linear equation from
the models using PLM was well matched with the statistics,
whereas the models using DALM tended to overestimate
the rice paddy area, and models using SSCLM tended to
underestimate it. The R2 value was highest for the models
using DALM, followed by the models using PLM, and the
models using SSCLM.

Considering that all of the application sets have improved
classification performance in most of the sites, data augmen-
tation was effective in increasing recall, as the trend line indi-
cates overestimation compared with the baseline application
set. Meanwhile, semisupervised classification was effective in
increasing specificity, which is the recall of the negative class,
as the trend line indicates underestimation. Compared with
the applications on learning materials, domain adaptation in
deep learning architecture had a minimal impact on the trend
line and R2. On the one hand, both of the deep learning
architectures used in this article seem to be complex enough
to extract sufficiently abstract features from the Sentinel-1
time-series data. Therefore, other types of domain adapta-
tion strategies or applications on more complex data with
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Fig. 10. Major factors causing misclassification. (a) Small objects. (b) Artificial structures. (c) River side plants.

Fig. 11. Linear regression for rice paddy area between national statistics and model classification. (a) PLM + FCRNNs. (b) DALM + FCRNNs. (c) SSCLM
+ FCRNNs. (d) PLM + DARNNs. (e) DALM + DARNNs. (f) SSCLM + DARNNs.

higher resolution should be examined for more clarification
on the effect of domain-adapted architecture. On the other
hand, considering that the domain-adapted architecture almost
maintained the trend line with somewhat increasing accuracy
in pixel-based evaluation, it has the effect of both increasing
recall and specificity.

Meanwhile, it should be noted that even though the
slope can be an indicator for describing relative over- or
underestimation, comparing pixel-based classification and sta-
tistical data on the same line is difficult. Because of the
differences in the rice paddy estimation method between the
land cover map and city-level statistics, judging the quality
of classification performance by slope is challenging. The

existence of any bias based on the extent of the inclusion of
paddy levee into the rice paddy should be verified.

Therefore, focusing on R2 rather than slope to estimate
the performance, DALM which was found to be the best
performing learning material in the pixel-based evaluation,
also showed remarkably high R2 in the statistical evaluation,
compared with the others. To fully utilize the result with high
explanatory power, developing a slope-based constant calibra-
tion coefficient for converting pixel-based classification to the
national standard of rice paddy estimation is recommended.
In that case, the reduction in cost by substituting the field
survey intensive statistics with a remote sensing model would
be a benefit. Recently, Korean governmental agencies, such as
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the Korea Forest Service, Rural Development Administration,
and Korea Aerospace Research Institute, have been planning
to launch an agro-forestry satellite, which will provide high
spatio-temporal resolution with 5-m resolution and 1–3 days
revisit time, in 2023. Promoting the applicability of deep
learning to remote sensing and developing a postprocessing
technique will maximize the use of such newly launched
satellites by producing or substituting national information
with remote sensing data.

V. CONCLUSION

Deep learning is an emerging technology in the remote
sensing field as a method for fully utilizing big data, which
is generated by increasing the spatio-temporal resolution of
satellite images. However, although the applicability of deep
learning is experimentally verified in various studies, the
relative insufficiency of labeled data in the remote sensing
field is a significant factor that impairs the usability of deep
learning. In this article, diverse deep learning applications,
such as data augmentation, semi-supervised classification,
and domain-adapted architecture, were examined to overcome
the insufficiency of labeled data by integrating the domain
knowledge of remote sensing and the classification target.
As a result, it was found that each combination of those
applications slightly or dramatically improved the classifi-
cation performance in rice paddy detection. Among them,
data augmentation considering the differences in rice phe-
nology had the greatest effect on improving classification
performance, and this improvement was confirmed in both
pixel-based and statistical evaluation. Improving the nation-
wide paddy detection performance was made possible by
simulating the condition of various planting periods from a
confined rice-growing area. Semisupervised classification also
improved the accuracy and Cohen’s kappa value in overall
evaluation plots, even though identifying explicit performance
improvement in the statistical evaluation was difficult. Because
of the uncertainty of exploiting unlabeled data, the applica-
tion should be carefully adapted with sufficient verification
processes to confirm its positive impact. The domain-adapted
architecture had the least effect on performance compared with
the other applications. Considering that the domain-adapted
architecture clearly increased accuracy and kappa value when
it was applied to PLM without other applications, the low
effect on the other cases can partially come from the dupli-
cation of adapted domain knowledge in both the architecture
and learning material. The combination of applications did not
significantly increase the performance, but at least, it followed
better performance among the combination, demonstrating that
combination of diverse applications would be optimal when
neither of them is committed to a practical task. All the
examined applications above were focused on describing the
overall data distribution of the classification target with a
confined labeled area. Therefore, this method can be used
to generalize classification algorithms and would be more
meaningful when the classification target has high intraclass
heterogeneity due to the use of high-resolution images and
the study of a wide-ranging area with diverse environment.

In this context, our future study will be conducted on the entire
Korean peninsula including North Korea which shares similar
agricultural pattern with South Korea with having latitudinal
differences in environment. Since the spatial information is
extremely limited, North Korea is expected to be an ideal
testbed for the proposed applications to overcome limited
labeling data.

Although the examined applications generally increased
classification performance by overcoming the limitation of
insufficient labeled data, they should be carefully used as they
may increase obscurity in some particular cases by imitating
or utilizing unlabeled data. In addition, even though an effort
was made to perform evaluation in diverse environments with
two different approaches, further examination on these appli-
cations in even more diverse classification targets with other
satellite images, especially with more high-resolution data sets,
should be performed. In addition, it is necessary to determine
whether additional performance improvements or reduction
occurs when different types of domain knowledge are adapted
in combination. For example, it should be confirmed whether
there are any negative aspects to combining different domain
knowledge for each application method.

APPENDIX

See Table II.
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