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Physics-Constrained Deep Learning of
Geomechanical Logs

Yuntian Chen and Dongxiao Zhang

Abstract— Geomechanical logs are of ultimate importance for
subsurface description and evaluation, as well as for the explo-
ration of underground resources, such as oil and gas, groundwa-
ter, minerals, and geothermal energy. Together with geological
and hydrological properties, low-cost and high-accuracy models
can be generated based on geomechanical parameters. However,
it is challenging to directly measure geomechanical parameters,
and they are usually estimated based on other measured quan-
tities. For example, geomechanical logs may be obtained with
certain empirical models from sonic logs together with prior
information such as rock types, which are not readily available.
Finding a way to directly estimate geomechanical logs based on
easily available conventional well logs can result in significant cost
savings and increased efficiency. In this article, we showed that
deep learning via the long short-term memory network (LSTM)
is effective in constructing an end-to-end model that takes the
spatial dependence in well logs into consideration. We further
proposed a physics-constrained LSTM, in which the physical
mechanism behind the geomechanical parameters is utilized as
a priori information. This state-of-the-art model is capable to
directly estimate geomechanical logs based on easily available
data, and it achieves higher prediction accuracy since the domain
knowledge of the problem is considered.

Index Terms— Geomechanical parameters, long short-term
memory network (LSTM), physics-constrained, physics-
informed, well logs.

I. INTRODUCTION

WELL logging is an essential tool for formation descrip-
tion and resource evaluation for exploration of oil

and gas, groundwater, mineral and geothermal energy, and
environmental and geotechnical studies [1]–[3]. Obtaining
geomechanical logs is extremely important for building an
accurate model, improving formation evaluation accuracy, and
optimizing well drilling and completion strategies. Since accu-
rate measurement of geomechanical logs relies on expensive
and time-consuming operations, such measurements are often
lacking in actual resource recovery processes.
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In practical applications, geomechanical logs are gener-
ally predicted based on sonic logs with a certain empirical
model or the first principle model to establish the geome-
chanical model [4], [5]. However, sonic logs are not always
available, and extra costs are incurred to acquire them in
addition to conventional logs. Therefore, for most wells, some
conventional logs are measured and only a few wells have
sonic logs (especially the shear wave velocity log), which
greatly limit the accuracy of geomechanical modeling. The
absence or poor quality of these log records brings great
challenges for subsurface studies, which, in turn, affects
numerous aspects of engineering problems, such as the design
of hydraulic fracturing strategies in petroleum exploitation [3].
In shale oil and shale gas development, well completion
constitutes a significant portion of the total cost, whereas
approximately 30%–50% of the fracturing clusters do not
contribute to production, partly due to poor completion design
because of the paucity of accurate geomechanical models [6].
A common remedy is to relog the well, but this is either usu-
ally impractical or results in extremely high costs, especially
when the well has been cased. Therefore, if a method for
directly predicting geomechanical logs and sonic logs based
on easily available conventional logs (e.g., density log and
resistivity log) can be found, the cost of constructing the geo-
mechanical model can be greatly reduced, and its accuracy can
be improved. In this article, we demonstrate that an end-to-end
machine learning model for directly predicting geomechanical
logs based on conventional well logs can solve this problem.
In this end-to-end model, neither prior information such as
lithology and mineralogy nor sonic logs are required, which
improves the efficiency of well log interpretation. This is an
advantage over empirical models or first principle models.
In addition, the physics-constrained model achieves higher
accuracy by combining the physical mechanisms behind the
geomechanical parameters with machine learning models.

Many researchers have attempted conventional methods to
synthesize well logs, and a straightforward idea is to inspect
the underlying and implicit correlations between different well
logs. Certain approaches, such as cross-plot and multiple
regression techniques, can be applied [7], [8]. Researchers
have shown that these conventional methods are capable of
predicting and synthesizing the well logs such as gamma
ray (GR) [9], compensated neutron log [9], [10], density
log [10], [11], and sonic logs [12]. Nevertheless, when it
comes to geomechanical logs, an extremely complicated map-
ping exists between the nonlinearly linked input and output
well logs due to the heterogeneity and complex conditions
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underground [3]. Thus, conventional approaches are incapable
of constructing such sophisticated relationships since they are
linearly derived and naïve.

With the advent of machine learning applications in various
fields of science and engineering in recent years, many
researchers suggested utilizing data-driven methods, e.g.,
information fusion, supported vector machine (SVM), fuzzy
logic models (FLMs), and artificial neural networks (ANNs),
to deal with geological problems, e.g., well log estima-
tion [13], [14], geophysical parameter estimation [15], [16],
lithology characterization [1], [2], [17], [18], stratigraphic
boundaries determination [19], [20], and reservoir estima-
tion [21]. Specifically, ANN is able to discover sophisticated
relationships between inputs and outputs, which is suitable
for describing highly complex mappings for geomechani-
cal log generation problems. Such merit of ANN has been
acknowledged by numerous researchers, and thus, a substantial
number of successful attempts have been made in the last
few years. Rolon et al. [22] utilized the general regression
neural network (GRNN) to generate synthetic well logs, and
the results were compared with multiple regression. ANN
and cluster analysis (CA) techniques have also been applied
for well log data to estimate organic facies and burial his-
tory [23]. The genetic neural network (GNN) for wire-line
log reconstruction has been presented [24], in which optimiza-
tion is accomplished by a genetic algorithm instead of the
traditional backpropagation (BP). Long et al. [25] combined
a data-mining process with synthetic density log generation
by ANN and demonstrated the approach with a realistic field
case study. He and Misra [26] used ANNs to generate dielec-
tric dispersion logs. Density and resistivity logs were also
predicted from conventional wire-line logs by the multilayer
perceptron (MLP) network [27]. However, the abovementioned
neural networks may not be directly applicable to generating
geomechanical logs.

The fully connected neural network (FCNN) is the most
commonly used ANN, and it has been broadly applied to
solving real-world engineering problems. However, the FCNN
constructs a point-to-point mapping, which limits its appli-
cation, especially to problems with sequence data [28]. The
point-to-point mapping means that the curvilinear trend and
the context information in the reservoir are neglected. How-
ever, in geological studies, the output is related to not only
input at the same depth but also input that is deeper and
shallower. This reflects the intuition of sequence stratigraphy.
As such, the commonly used FCNN is unsuitable for the
problem of log generation. A need exists for a method that
can process sequence data to incorporate those geological
theories into mathematical models. The recurrent neural net-
work (RNN) is a method whose output is determined by not
only the input of the current step but also the history of inputs.
Thus, RNN considers the influence of the former step to the
current step, and this chain-like nature of RNN constitutes its
advantage in sequence data analysis over other fixed networks.
RNN is the natural network architecture to use with sequence
data, such as well logs.

However, the standard RNN tends to achieve poor perfor-
mance when the gap between the relevant information in the
previous step and the present step becomes very large [29],

and long-term (spatial) dependencies exist in well logs, since
the sampling intervals are relatively small and there may
be a thick formation resulting from long-term deposition.
Moreover, there may be a gradient vanishing problem in the
standard RNN for memorizing long-term information. To solve
this problem, we decide to use the long short-term memory
network (LSTM), which is a particular type of RNN, which
is designed to learn long-term dependencies. The LSTM has
been used in the field of geoscience, such as generating nuclear
magnetic resonance (NMR) distributions [30].

In [3], we demonstrated that the LSTM can learn the inter-
action between the upper and lower strata in the generation
and autocompletion of conventional well logs and achieves
superior performance over the traditional FCNN. However,
generating geomechanical logs is more challenging since geo-
mechanical logs are much more complex than traditional well
logs. This problem indicates that modeling directly from the
data is no longer sufficient. Therefore, we need to improve
the model to better conform to physical reality. This calls for
consideration of the physical mechanism behind the geome-
chanical logs. In this article, a two-way model is constructed,
which means that the model is not a simple application of
machine learning methods but rather utilizes the physical
mechanism behind the engineering problem as a priori infor-
mation. The physics-constrained neural network can directly
generate geomechanical logs based on conventional well logs
with higher accuracy than the traditional LSTM model. This
article verifies the performance of the physics-constrained
LSTM (PC-LSTM) through computational experiments based
on the actual well logs from the North Dakota Williston
Basin.

II. METHODOLOGY

A. Long Short-Term Memory Neural Network

An extremely complex mapping relationship exists between
conventional well logs (such as GR, resistivity, and den-
sity) and geomechanical logs. To the best of the authors’
knowledge, there is still no physical model that can accu-
rately describe this mapping relationship. ANNs are capable
of approximating nonlinear functional relationships between
variables and can model any function up to any given precision
with a sufficiently large number of basis functions [31], [32]
from a mathematical perspective. This feature means that ANN
possesses the potential to solve the problem of predicting
geomechanical logs from conventional well logs. As discussed
in Section I, RNN is more suitable for solving sequence data
problems than most commonly used FCNN. At the same
time, as a special RNN, LSTM is especially suitable for
solving sequence data problems with long-term dependencies.
Therefore, this article builds a model based on the LSTM
architecture and predicts the geomechanical well logs.

The main difference between the LSTM and the standard
RNN is the structure of the repeating network. The repeating
network in the standard RNN is very simple, while the LSTM
has four interacting layers in its repeating network, which
is illustrated in Fig. 1. The top half of Fig. 1 shows the
architecture of the LSTM model. The loop in the LSTM makes
the model capable of remembering inputs from previous steps
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Fig. 1. Illustration of the repeating network of the LSTM.

and processing sequential data. In order to better demonstrate
the architecture of LSTM, the unrolled version of this loop is
also shown in Fig. 1. The bottom half shows the interacting
layers in the repeating network of the LSTM.

The gates in the LSTM are used to remove or add infor-
mation to the cell state, according to the hidden state of the
previous step and the input of the current step. Specifically,
the first gate is called forget gate, and it determines how
much of the information (Ct−1) from the previous step should
be removed (forgotten) according to (1). The input gate (2)
determines what new information in the candidate (C̃t ) should
be added in the cell state. The outputs of the following
equations are numbers between zero and one, which will be
multiplied with the cell state from the previous step and the
candidate from the current step:

ft = σ(W f [ht−1, xt ] + b f ) (1)

it = σ(Wi [ht−1, xt ] + bi ) (2)

where ht is the hidden state at time t; xt is the input at
time t ; W and b are the weights and bias of each gate layer,
respectively; the subscripts f , i , c, and o represent the forget
gate layer, input gate layer, tanh layer, and output gate layer,
respectively; and σ represents the activation function, which
is the commonly used sigmoid function.

The third layer is a tanh layer (3), which creates a new
candidate value (C̃t ). The output of the tanh layer provides
potentially valuable information from the current steps. In (4),
the old memory carried by the old cell state Ct−1 is combined
with the new candidate C̃t according to the outputs of the
forget gate (1) and the input gate (2)

C̃t = tanh(WC [ht−1, xt ] + bC) (3)

Ct = ft Ct−1 + it C̃ t (4)

where Ct is the cell state at time t , which passes through the
model carrying information of previous steps, and C̃t is the
candidate value that could be added to Ct .

Finally, the output of the LSTM is generated based on the
updated cell state, according to the following equation in the
output gate layer:

ht = σ(Wo[ht−1, xt ] + bo) ∗ tanh(Ct ). (5)

By using the values of different depths in the well logs
as inputs to different time steps in the LSTM, the LSTM

becomes an ideal tool to generate geomechanical logs, since it
is able to not only extract information from series data but also
propagate information from previous time steps with long-term
dependences.

B. Physics-Constrained LSTM

As discussed above, the LSTM may be an effective model
since the mapping relationship between inputs and outputs
is extremely complex, and geomechanical parameters are
sequence data with long-term dependences. However, simply
applying the LSTM model does not necessarily achieve high
prediction accuracy. The existing study has proved that the
domain knowledge is beneficial to break through the bottle-
neck of the model and further improve the prediction accu-
racy [33]. By combining existing background knowledge of
petroleum engineering and geology, it is possible to construct
an LSTM model that is more suitable for predicting geome-
chanical parameters. Compared with the ordinary data-driven
model, the PC-LSTM model, referred to as the PC-LSTM,
introduces domain knowledge as a priori information into the
model. This kind of physics-constrained data-driven model
achieves better performance since it considers the influence of
the physical mechanism behind the geomechanical parameters.

Specifically, two constraints are imposed on the model,
which are mechanism-mimic network architecture and
formation-adjusted stratified normalization. First, by analyzing
the first principle models and the empirical models for deter-
mining geomechanical parameters, it is known that the geo-
mechanical parameters are often determined by two sonic logs
that are difficult to measure [4], [5], [34]–[37]. This indicates
the existence of intermediate variables in the physical models.
By adding a physics-constrained layer into the LSTM network
architecture, the physical mechanism behind the geomechani-
cal parameters is introduced into the LSTM model as a priori
information. This architecture is not similar to the conventional
neural network architecture that solves such problems, and it
has a stronger physical meaning. Second, the data-processing
method of this model has also been improved. Simply applying
the conventional normalization method often causes problems
with formation misalignment and affects prediction accuracy
due to the uplift and subsidence of the formation during
geological evolution. By combining geological information
of the stratum trend, the stratified normalization method can
ensure that the target strata and the other strata of different
wells remain aligned.

C. Mechanism-Mimic Network Architecture

As demonstrated by the experiments in Section III,
the LSTM model is capable of generating geomechanical logs
based on conventional well logs (GR, resistivity, and density).
The LSTM model uses a common network architecture with
two LSTM layers and two fully connected layers in front of the
output layer, which is shown in Fig. 2(a). However, the direct
application of the LSTM model does not necessarily achieve
optimal prediction accuracy. By understanding the physical
mechanisms behind the geomechanical parameters, we are able
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Fig. 2. LSTM architecture and the mechanism-mimic network architecture of PC-LSTM. (a) Standard LSTM architecture with two LSTM layers and two
fully connected layers. (b) Mechanism-mimic network architecture of PC-LSTM. The mechanism-mimic network architecture adds a physics-constrained layer
to the standard LSTM to mimic the physical mechanism of geomechanical parameters. In the mechanism-mimic network architecture, the output vector of the
LSTM layer is first compressed to 2-D, and then, the tensor is combined with input variables and expanded to higher dimensions to connect the subsequent
fully connected layer. The physics-constrained layer modeled after the physical mechanism enables the PC-LSTM to introduce the physical mechanism as
a priori information by changing the network architecture.

to construct models that perform better than models that use
a standard network architecture.

Concerning the mechanism-mimic network architecture,
the network is adjusted according to the physical model
for calculating geomechanical parameters, which is described
in Appendix A. By comparing these physical models, it is
found that although different geomechanical parameters are
determined by different physical models, the input information
of these physical models is basically derived from sonic logs
(Vp and Vs), true vertical depth (TVD), and density (RHOZ).
However, only the TVD and density are provided in the
conventional logs, and the two sonic velocities are unknown
information. Therefore, according to the physical mechanism,
Vp and Vs are essentially intermediate variables of the model.
Based on this assumption, a physics-constrained layer is
added to the LSTM model to mimic the effects of Vp and
Vs , which is shown in Fig. 2(b). In the adjusted model,
the output of the LSTM layer is first passed to a fully
connected layer, which is then further reduced to a 2-D vector
to mimic the sonic velocities. Simultaneously, the TVD and
density are directly transmitted from the input layer and com-
bined with the 2-D vector to construct the physics-constrained
layer. Finally, the physics-constrained layer is expanded to
connect to the subsequent layers of the standard LSTM
model.

It should be mentioned that the two neurons in the
physics-constrained layer only mimic the sonic velocities but
do not simulate them. In other words, adding these two
neurons to the network merely constitutes a structural imitation
of the physical mechanism, but these two neurons do not
necessarily represent Vp and Vs . In the process of training,
the two neurons are not supervised with reference to the sonic
logs. Since a neural network always has a group of equivalent
solutions, the two neurons in the physics-constrained layer are
likely to be a set of equivalent bases (or even orthogonal bases)
of Vp and Vs .

The traditional LSTM architecture is spindle-shaped,
whereas the mechanism-mimic network architecture is
dumbbell-shaped. The neural network generally does not
perform an operation of compressing and then expanding
the intermediate layer, unless for dimensionality reduction,
because this will bring a loss of information. On the other
hand, however, this kind of operation can also refine the
information. Considering the physical mechanism behind the
geomechanical parameters, this mechanism-mimic network
architecture has the potential to make more accurate estimates
of geomechanical parameters. Moreover, this adjustment is
only for the network architecture, and the true value of Vp

and Vs will not be used in the training process, which means
that this adjustment does not introduce more information. This
adjustment does not increase model complexity either, and the
number of weights is approximately the same.

D. Formation-Adjusted Stratified Normalization

Data normalization can often improve the prediction accu-
racy of the model and speed-up convergence. It is important to
normalize the TVD since it is not only used to track the spatial
position but also helps to transfer the knowledge learned from
the wells in the training data set to the wells in the test
data set. The commonly used data normalization method maps
the data distribution to a small interval, usually with a zero
mean (by subtracting the mean in the numerator) and unit
variance. However, since the well logs reflect the formation
information and the formation often has a large number
of undulations [Fig. 3(a)], traditional normalization methods
often cause problems with formation misalignment and affect
prediction accuracy [Fig. 3(b)]. Specifically, if normalization
is performed for the TVD data as a whole, although the
overall distribution of data is mapped into a small interval,
a large deviation will exist in the distribution of the target
formation (reservoir) since the target formation of different
wells is always at different depths in the original TVD data.
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Fig. 3. Comparison of standard normalization and formation-adjusted stratified normalization. (a) Formation undulation on the West-to-East well-passing
line. (b) Formation distribution after the standard normalization method. (c) Formation distribution after formation-adjusted stratified normalization.

On the other hand, if normalization is performed for the target
formation, it will also result in deviations in the normalization
results of other formations. Due to a large number of fluctu-
ations in the formation, whether it is normalized for all TVD
data or the target formation alone, a large deviation will exist
in the normalization results.

A layered normalization method based on TVD correction is
proposed to solve this dilemma. In this method, the TVD data
are divided into three groups according to the target formation
(i.e., Bakken formation) and its upper and lower formations
(i.e., LodgePole and Three-Forks formation, respectively). The
min–max normalization is applied, and the three groups of
TVD data are independently mapped into different intervals,
which is described in (6). In this way, it is ensured that the
normalized target formations of different wells remain aligned,
and the upper and lower formations are also mapped to similar
intervals

TVDnorm

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TVD−DLP,min

DLP,max − DLP,min
for TVD < DLP, max

TVD−DLP,max

DB,max − DLP,max
+ 1 for DLP,max ≤T V D < DB,max

TVD−DB,max

DDF,max − DB,max
+ 2 for TVD > DB,max.

(6)

The effect of formation-adjusted stratified normalization is
shown in Fig. 3. The LodgePole formation is represented in
green, the Bakken formation is represented in yellow, and the
Three-Forks formation is represented in red.

The left side is the data normalized without formation
adjustment [Fig. 3(b)], and it is obvious that the formations
cannot be aligned. The right side is the data stratified nor-
malized based on TVD according to formations [Fig. 3(c)].
It is obvious that the target formation and its upper and lower
formations treated by the formation-adjusted stratified normal-
ization are more aligned among the wells on the West-to-East
well-passing line than the formations treated by the standard
normalization. The formation-adjusted stratified normalization
constrains the data through the physical conditions of the
formations, which is more in line with a physical reality.
It should be mentioned that since the proposed model can
process sequential data and each data point contains all the
input logs at the same depth, it is not necessary to apply this
adjustment to the well logs other than the TVD. It is sufficient
to use the standard normalization for the other logs.

E. Physical Models for Geomechanical Log Generation

Since the geomechanical parameters are difficult to measure,
the mechanical earth model (MEM) is used to generate the
geomechanical fields based on sonic logs [38]. Based on the
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previous research in North Dakota, an integrated workflow for
calculating geomechanical parameters is developed as follows.

Assuming vertical transverse isotropy (VTI) for an
anisotropic elastic medium, the M-ANNIE2 model corrected
according to known core data [4], [5], is used to calculate
the anisotropic elastic parameters. Based on the obtained
stiffness matrix, the anisotropy Young’s modulus and Pois-
son’s ratio are calculated [34]–[36], [39]. In addition, uniaxial
compressive strength (UCS) [38], [40], internal friction coeffi-
cient (μ) [36], [38], internal cohesion (C) [37], [39], [40], and
tensile strength (T0) [41], [42] are important parameters for
hydraulic fracturing simulation [37]. They are estimated based
on existing models according to geological information, such
as the rock type and other reservoir properties. The validity
of the physical model is verified by comparing the known
geomechanical parameters in the database and the calculation
results. In addition, the parameters obtained by the physical
model are within the estimation intervals proposed by the
U.S. Energy Agency through the geological survey of the
area [43]. A detailed introduction of the physical models used
to determine the geomechanical parameters is provided in
Appendix A.

F. End-to-End Model Structure

In this article, a physics-constrained layer was added
to the network architecture in order to reflect the physi-
cal mechanism behind the geomechanical parameters. This
physics-constrained layer contains a 2-D vector that mimics
sonic log data in geomechanical models. An end-to-end model
is proposed in this article, which is capable to generate
geomechanical parameters directly from conventional well
logs with great accuracy.

It should be mentioned that this end-to-end model does not
equal to a cascade model that simply combines a model that
generates sonic logs from conventional well logs with a model
that generates geomechanical parameters from sonic logs.
The cascade model formed by combining the two submodels
relies on sonic logs for training; however, obtaining these logs
is time-consuming and expensive. In the end-to-end model,
the physics-constrained layer only mimics the structure of
the physical models and does not require the sonic logs for
training. In addition, although the geomechanical parameters
in the cascade model can be calculated from the sonic logs
according to the method introduced in Appendix A, the selec-
tion of these models often depends on reservoir properties
and rock types, and this information is not easily available
in practice. In the end-to-end model, however, the mapping
relationship between sonic logs and geomechanical parameters
is completely obtained by the data-driven method and does
not require geological information, such as reservoir proper-
ties and rock type. In other words, for traditional methods,
different rock types require different models when calculating
geomechanical logs. However, the deep learning model is
more versatile, and the prior geological information such
as rock types has actually been implicitly included in the
geophysical logs, so there is no need to explicitly introduce
such information into the model. Therefore, the end-to-end

Fig. 4. Distribution of 76 wells in the North Dakota Williston Basin.

network proposed in this article can reduce the demand for
input data while utilizing the physical information behind
the geomechanical parameters, which is more conducive to
practical applications.

III. EXPERIMENTS

A total of 76 wells from the North Dakota Williston Basin
comprise the data set for this study [44]. All of the wells in the
data set have conventional well logs, including GR, resistivity
(AT30), and density (RHOZ), but only 39 wells contain sonic
logs. This means that a full set of geomechanical logs can be
constructed for these 39 wells based on the physical methods
described in Appendix A. The distribution of all 76 wells
is shown in Fig. 4. The blue points in Fig. 4 represent the
39 wells with both sonic logs and conventional logs. The
reference geomechanical model used in subsequent experi-
ments is obtained from these wells. The orange points are
the 37 wells with only conventional logs. Due to the lack of
sonic logs, conventional methods cannot use the information
from these wells to build geomechanical models. The orange
curve is the West-to-East well-passing line, and the blue curve
is the North-to-South well-passing line. The wells on the two
well-passing lines are utilized as a test data set to evaluate the
model prediction accuracy in the subsequent 3-D modeling
experiment.

This study evaluated the performance of the PC-LSTM
model through three experiments. All of the logs are normal-
ized in the experiments.

A. Evaluation of the Impact of Physical Constraints

In the first experiment, the effect of introducing two phys-
ical constraints is evaluated. The 39 wells with a full set
of geomechanical parameters are randomly divided into a
training data set (28 wells) and a test data set (11 wells).
The standard LSTM model, the adjusted LSTM model with
mechanism-mimic network architecture (MM-LSTM), and the
PC-LSTM model with mechanism-mimic network architecture
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Fig. 5. Model accuracy of the standard LSTM, MM-LSTM, and PC-LSTM. The MSE losses of the ten geomechanical parameters are separately calculated,
where AVE represents the average MSE loss of all geomechanical parameters. The abscissa indicates the geomechanical parameters, the ordinate is MSE, and
the error bar indicates the MSE standard deviation of 20 independent experiments.

and formation-adjusted normalization (PC-LSTM) are sepa-
rately trained with the training data set and compared with
the test data set. The experiment is repeated 20 times to avoid
randomness affecting the statistical results, and the training
data set and the test data set are reallocated each time. The
prediction results of different models are evaluated based on
the mean-square-error (MSE) function.

The results of 20 independent experiments of the three
models are shown in Fig. 5. Fig. 5 shows the prediction MSE
loss of different geomechanical parameters for the standard
LSTM (red), MM-LSTM (yellow), and PC-LSTM (blue) mod-
els. The error bars represent the standard deviation of the
MSE loss obtained from 20 random experiments. The specific
values in the histogram are shown in Table I, which are the
MSE loss plus or minus standard deviation of the prediction
results of the three models for each geomechanical parameter.
AVE represents the average MSE loss of all predictors. The
lower the values, the more accurate and stable is the model.
The minimum value of each group is shown in bold. The
network architecture of MM-LSTM is improved according
to the physical mechanism, and PC-LSTM is a model that
considers both physical constraints of network architecture and
formation-adjusted stratified normalization. The three models
in Fig. 5 have a similar model complexity and the same
input information, and thus, the difference in model accuracy
depends on whether the physical mechanism is considered.
As shown in Table I and Fig. 5, the average MSE loss
of the PC-LSTM is reduced by 12.5% compared to the
standard LSTM with a smaller error standard deviation, thus
indicating that the PC-LSTM proposed in this article can not

TABLE I

MSE LOSS OF LSTM, MM-LSTM, AND PC-LSTM

only improve the accuracy of the model but also reduce the
uncertainty of the prediction results. In addition, an interesting
phenomenon was discovered through experiments. If only one
physics-constraint is added to the model, the average MSE
is only reduced by 3.3% for the mechanism-mimic network
architecture and 3.2% for the formation-adjusted stratified nor-
malization. But when both physics constraints are introduced
at the same time, the average MSE is reduced by 12.5%.
This indicates that the effects of physics-constraints are not
linearly additive but have a mutually reinforcing effect. The
comparison results in Fig. 5 show that the PC-LSTM based
on the physical mechanism achieves superior performance.
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Fig. 6. Prediction results of the No. 5 well, including compressional
velocity Vp , cohesion C , vertical Young’s modulus Ev, and vertical Poisson’s
ratio νv.

The MSE is a commonly used indicator in machine learning
to measure the model performance, but it is relatively abstract
from the engineering perspective. In order to reflect the model
performance more directly, the absolute error is calculated.
In the proposed model, a total of ten different logs are
generated, including Vp , Vs , T0, C , UCS, μ, Ev, Eh, νv,
and νh, and their corresponding absolute errors are 2.9%,
3.3%, 6.9%, 2.4%, 3.2%, 2.3%, 5.7%, 4.8%, 2.9%, and 2.6%,
respectively. The overall average absolute error of all the ten
well logs is 3.7%.

The specific prediction results are shown in Fig. 6. Consider-
ing space limitations, only one well prediction result from one
experiment is randomly selected here, and its prediction results
are displayed. Fig. 6 shows the prediction results of the geome-
chanical parameters compressional velocity Vp , cohesion C ,
vertical Young’s modulus Ev, and vertical Poisson’s ratio νv,
in order. The input variables are the GR, resistivity AT30,
density RHOZ, and TVD. The MD represents the measured
depth. The left side of the MD shows the input variables, and
the right side shows the output variables. The yellow curves
represent the true values, and the blue curves represent the
predicted values. For well logs, valuable information is stored
in the trend information of the data, and absolute values are not
important. By comparing the actual geomechanical parameters
and predicted values, PC-LSTM is capable of predicting the
trend of geomechanical parameters more accurately, which
is critical for practical applications. These predictions are
useful for establishing a more accurate geomechanical model,
improving reservoir evaluation accuracy, and optimizing well
drilling and completion strategies.

B. 3-D Geomechanical Field Generation Experiment

The second experiment demonstrates the effect of the
PC-LSTM on improving the accuracy of geomechanical

modeling in practical applications. Full-field 3-D models on
geomechanical parameters are built based on model predic-
tions in this experiment. The modeling method based on
geomechanical parameters is provided in Appendix B. In order
to make the experiment more in line with the actual situation
and more challenging, the test wells were not randomly
selected, but the 21 wells were selected as test data from the
widest part of the West-to-East direction and the South-to-
North direction of the distribution of 39 wells. The distribution
of test wells is shown in Fig. 4. In this way, the test data
account for more than half of all available data, and the
whole field is divided into four parts, which not only increases
the difficulty of the problem but also simulates the uneven
distribution of wells with complete logging information in the
real-world development. The full-field 3-D models generated
in this experiment are shown in Fig. 7. Fig. 7(a) presents
the model generated based on the 18 available wells (training
data set); Fig. 7(b) shows the model constructed based on the
predictions of the geomechanical parameters of the unknown
wells (test data set) through the PC-LSTM; and Fig. 7(c)
presents the reference model, which is generated based on
a total of 39 wells with a full set of geomechanical log data.
Since Fig. 7(c) is the reference model, the closer the results
of Fig. 7(b) and (c) are to Fig. 7(a), the more effective is the
corresponding method.

By comparing the geomechanical modeling results, it is
shown that great similarity exists between the full-field
3-D model constructed based on the PC-LSTM predictions
[Fig. 7(b)] and the reference model based on the geome-
chanical parameters of all 39 wells [Fig. 7(c)]. This indicates
that PC-LSTM can effectively extract the mapping relationship
between geomechanical parameters and conventional well logs
and generate physical fields similar to reference fields. The
application of the PC-LSTM is capable of improving the
accuracy of geomechanical modeling. In addition, the attribute
distribution on the surface of each formation shows that con-
ventional models, such as kriging, have difficulty in predicting
data spatially far from known data. However, data could
be accurately predicted by the PC-LSTM, as long as they
are located in similar geological settings with known data.
In fact, spatial distance does not determine the accuracy of the
PC-LSTM, which constitutes an advantage of the PC-LSTM
over other conventional methods.

C. Building-Extended Geomechanical Fields Based
on PC-LSTM

As the first two experiments validate the effectiveness of the
PC-LSTM, an advanced workflow could be introduced at this
point. Specifically, if a conventional well log is available, sonic
logs and geomechanical parameters could be obtained based
on the PC-LSTM. In addition, a more accurate geomechanical
field could be constructed based on the estimations, which is
helpful for geological analysis and reservoir simulation.

The third experiment is a demonstration of the useful-
ness of this workflow, in which the PC-LSTM is utilized
to predict the geomechanical parameters of the unmeasured
wells in the North Dakota Williston Basin region. Specifically,
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Fig. 7. Full-field 3-D models on geomechanical parameters. The compressional velocity field (Vp), cohesion (C), vertical Young’s modulus field (Ev),
and vertical Poisson’s ratio field (νv) generated based on different models. (a) Basic fields generated based on available training wells through traditional
geomechanical modeling methods. (b) Geomechanical fields generated based on the training wells and the prediction of test wells via PC-LSTM. (c) Reference
fields generated based on all 39 wells.

as mentioned above, there are 37 wells that only contain
conventional well logs (GR, AT30, and RHOZ) but no sonic
logs or geomechanical logs. With these data, the PC-LSTM
can be utilized to generate geomechanical logs. The PC-LSTM
is first trained based on the 39 wells with geomechanical
logs. Then, the geomechanical parameters of the 37 wells
with only conventional well logs are predicted. Finally, a more
detailed geomechanical model of the Williston Basin area of
North Dakota is built based on geomechanical logs from all
76 wells. It should be mentioned that although these 37 wells
are geographically located outside of the area covered by the
training data set, they are in the same basin covered by the
training data set from a geological perspective. Therefore,
the 37 wells may be predicted by the model trained by
39 wells.

By applying the PC-LSTM, more detailed geomechanical
information could be obtained with high accuracy. Since the
76 wells cover a larger area than the 39 wells, modeling

the 76 wells using the PC-LSTM can not only improve
the geomechanical modeling accuracy but also extend the
coverage of geomechanical models. It is shown in Fig. 8(b)
that the geomechanical model generated from the 76 wells is
more elaborate and larger than the reference model constructed
based on the 39 wells [Fig. 8(a)]. For example, the low-
velocity zone in the Vp field located in the Southwest of
the research area is not shown in the reference model since
it is out of range, but it is detected in the extended model
based on the PC-LSTM. The application of the PC-LSTM
makes it possible to extract information from samples lacking
sonic logs, expand the geomechanical parameter data set, and
construct geomechanical parameter fields with wider coverage
and more detailed description. With the PC-LSTM, more
well logs could be used for geomechanical analysis. The
PC-LSTM provides an efficient way to make full use of
economically available conventional well logs to generate
more accurate geomechanical models. With more data being
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Fig. 8. Reference and extended full-field 3-D models on geomechanical
parameters. The compressional velocity field (Vp), cohesion (C), vertical
Young’s modulus field (Ev), and vertical Poisson’s ratio field (νv) generated
based on different models. (a) Reference fields generated based on all 39 wells.
(b) Extended fields generated based on 76 wells via PC-LSTM.

taken into account, risks involved in decision-making for oil
field development could be substantially reduced.

IV. CONCLUSION

The physics-constrained neural network proposed in this
article can accurately generate geomechanical logs at a low
cost based on readily available conventional logs, which brings
a significant value to the subsurface. These geomechanical logs
greatly benefit subsurface description, reservoir evaluation, and
exploration of underground resources, such as oil and gas,
groundwater, minerals, and geothermal energy.

Through this study, we showed that the process of applying
machine learning methods to engineering practice is not one
way but rather should be two ways. In fact, the physical
mechanism behind the engineering problem is very important
to improve the performance of the machine learning model.
By analyzing the physical mechanism behind the problem and
introducing it as a priori information, a machine learning
model that is more suitable for the problem can be constructed.
Through this two-way mechanism, the characteristics of the
problem itself can be used to feed back the model and improve
its performance. Specifically, two constraints are imposed on
the model, which are mechanism-mimic network architecture
and formation-adjusted stratified normalization.

It should be mentioned that the PC-LSTM model in this
study is not a surrogate model for the first principle models
and empirical models that determine the geomechanical para-
meters. Usage of these first principle models and empirical
models depends on geological information, such as rock type
and reservoir properties, which is not contained in the input
variables in this study. Thus, with such information, it would
be difficult to directly calculate the geomechanical parameters
based on first principle models and empirical models. The
physics-constrained data-driven model proposed in this study
is an end-to-end model, which means that the feature engi-
neering is not required. This model is capable of describing
the direct mapping relationship between conventional well logs
and geomechanical parameters; thus, it can be used to generate
geomechanical logs based on conventional well logs. This
physics-constrained model helps to reduce the logging cost and
increase the accuracy of geomechanical modeling and brings
value to the subsurface.

APPENDIX A

A. Physical Models for Geomechanical Well Log Generation

In order to calculate the geomechanical parameters, the stiff-
ness tensor needs to be calculated first. Assuming VTI for an
anisotropic elastic medium, the tensor could be represented as
follows:

{
Cij

} =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0

0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A.1)

Using compressional velocity (Vp), shear velocity (Vs),
and density, C33 and C44 can be determined by (A.2) and
(A.3), respectively. The M-ANNIE2 model [5] is applied for
calculating C66, C11, C12, and C13

C33 = ρV 2
p (A.2)

C44 = ρV 2
s (A.3)

C66 = 2k1
C44
C33

+ 1−k1 − k3

2k1
1

C33
− k3

1
C44

(A.4)

C11 = k1(2C66 − 2C44 + C33) (A.5)

C12 = C11 − 2C66 (A.6)

C13 = k2C12 (A.7)

where k1, k2, and k3 are empirical properties derived from
core data, which matches with most databases.

Young’s modulus (E) is the ratio of longitudinal stress to
longitudinal strain. Poisson’s ratio (υ) is the ratio of latitudinal
to longitudinal strain. The anisotropic Young’s modulus and
Poisson’s ration are calculated based on the elements of the
stiffness tensor [34]–[36], [39]

Eh = (C11 − C12)
[
C33 (C11 + C12) − 2C2

13

]
C11C33 − C2

13
(A.8)

Ev = C33 − 2C2
13

C11 + C12
(A.9)
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υh = C33C12 − C2
13

C33C11 − C2
13

(A.10)

υv = C13

C11 + C12
. (A.11)

UCS describes the maximum axial compressive stress that
a right-cylindrical sample of material can withstand before
failing. There are three layers in the target formation Bakken:
upper, middle, and lower. For each specific layer, we applied
different empirical equations for calculating UCS [35]. For the
upper and lower layers, which are organic-rich shales, (A.12)
is applied. (A.13) is used for the middle layer, which is mainly
limestone

UCS = 7.22E0.712
stat (A.12)

UCS = 13.8E0.51
stat . (A.13)

For the other formation, empirical equations developed by
Bradford et al. [40] are applied for calculating UCS, which is
used worldwide for UCS > 700 psi

UCS = 2.28 + 4.1089Estat. (A.14)

Internal friction factor (μ), also called the internal friction
angle, is a measure of the ability of a unit of rock to withstand
a shear stress. It is the angle (μ) measured between the normal
force and resultant force, which is attained when failure just
occurs in response to a shearing stress. The internal friction
factor is an important parameter for hydraulic fracturing sim-
ulation [37], and it is calculated as follows [41]:

μ = 26.5 − 37.4(1 − ϕ − Vshale) + 62.1(1 − ϕ − V 2
shale).

(A.15)

For the Bakken formation, the shale rock from upper and
lower layers exhibits different characteristics. The empirical
equation for the upper and lower layers is calculated as
follows [38]:

μ = 18.352V 0.5148
p . (A.16)

Cohesion (C) is the resistance force per unit area if a shear
force is applied to a cube of rock at zero normal pressure. It is
mainly controlled by the lithology and mineralogy, and the
following equations determine cohesion for limestone, shale,
and sandstone [45]–[47]:

C =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UCS

2
(1−sin μ)

cos μ limestone

10 tan μ shale
UCS

2 tan
(

π
4 + μ

4

) sandstone.

(A.17)

Tensile strength (T0) refers to the force per unit
cross-sectional area required to pull a substance apart. It is
also an important parameter describing rock strength [37]. For
different lithologies, different empirical equations are applied
as follows [41], [42]:

T0 =

⎧⎪⎨
⎪⎩

0.1UCS shale(
UCS

9.25

) 1
0.947

limestone.
(A.18)

APPENDIX B

B. Geomechanical Modeling Based on Geomechanical
Parameters

Regarding the geomechanical model generation process,
modeling based on the interpolation of well logs and formation
tops is conducted. Well location is set using the longitude
and latitude provided by the database. Since the Williston
Basin is a large intracratonic sedimentary basin with no giant
fault zones existing in the research area, fault modeling is
not required [38]. Different interpolation methods are used
according to different purposes. The thin-plate spline interpo-
lation algorithm is applied for horizon modeling to generate a
relatively smooth formation surface. Under the XY gridding
model, constrained by the Mississippian-LodgePole formation
top and Devonian-Birdbear formation top, the zone models of
LodgePole, Bakken, and Three-Forks formations are set up.
Upscaled well logs and geomechanical logs of each formation
are calculated by square root average and are extracted to
the grid. A physical property modeling process was imple-
mented to compute geomechanical maps. The ordinary kriging
algorithm is selected in order to generate attribute models
constrained by formations. Each modeling process used the
same set of hyperparameters for interpolation. As a result,
3-D geomechanical models are built and could be viewed from
the surface slice to observe the distributions of geomechanical
properties.
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