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Abstract— Accurately classifying 3-D point clouds into woody
and leafy components has been an interest for applications in
forestry and ecology including the better understanding of radi-
ation transfer between canopy and atmosphere. The past decade
has seen an increase in the methods attempting to classify leaves
and wood in point clouds based on radiometric or geometric
features. However, classification purely based on radiometric
features is sensor-specific, and the method by which the local
neighborhood of a point is defined affects the accuracy of classi-
fication based on geometric features. Here, we present a leaf-wood
classification method combining geometrical features defined by
radially bounded nearest neighbors at multiple spatial scales in
a machine learning model. We compared the performance of
three different machine learning models generated by the random
forest (RF), XGBoost, and lightGBM algorithms. Using multiple
spatial scales eliminates the need for an optimal neighborhood
size selection and defining the local neighborhood by radially
bounded nearest neighbors makes the method broadly applicable
for point clouds of varying quality. We assessed the model
performance at the individual tree- and plot-level on field data
from tropical and deciduous forests, as well as on simulated point
clouds. The method has an overall average accuracy of 94.2%
on our data sets. For other data sets, the presented method
outperformed the methods in literature in most cases without
the need for additional postprocessing steps that are needed in
most of the existing methods. We provide the entire framework
as an open-source python package.

Index Terms— Leaf versus wood separation, LiDAR, machine
learning, python package, tropical forests.

I. INTRODUCTION

RECENT advances in remote sensing have enabled us to
observe the forest structure in 3-D and in unprecedented

detail. Terrestrial laser scanning (TLS) is revolutionizing the
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field of forestry by enabling accurate measurements of various
forest structural parameters. Parameters like vertical distrib-
ution of plant material and aboveground biomass (AGB) of
trees have been successfully estimated from TLS data [1]–[5].
However, separating leaf from woody elements in a forest
canopy is necessary for quantifying the vertical distribution of
leaf area index (LAI) and for studying the woody component
of evergreen vegetation. A recent study showed that woody
materials in TLS data led to an overestimation of LAI between
3% and 32% when tested in the Bavarian Forest National Park
with deciduous, coniferous, and mixed plots [6]. Accurately
quantifying the distribution of leaves in forest canopy
has important implications in understanding the radiation
regime, photosynthetic processes, and carbon and water
exchange between the canopy and the atmosphere [7]–[9].
In addition, the presence of leaves has shown to result in the
overestimation of AGB of trees estimated from TLS using
quantitative structure modeling (QSM) [5].

In the past decade, there have been significant advance-
ments in the methods for leaf and wood separation from
TLS data. The methods developed were either based on the
radiometric features [10] or geometric features [8], [11]–
[16] or a combination of both [17]. Since the radiometric
features mainly depend on the wavelength used by a particular
sensor, methods based on radiometric features become sensor-
specific. However, the methods based on geometric features
require only the x , y, and z coordinates of the points and,
hence, are broadly applicable across data collected by different
sensors. Geometric methods mainly use features based on
eigenvectors and normal vectors calculated for each point.
Both the eigenvectors and normal vectors are calculated for
each point from its local neighborhood. The local neighbor-
hood of a point can be defined either by specifying a fixed
number of nearest neighbors for that point [11], [15] or by
specifying a sphere of fixed radius with that point at the
center called radially bounded nearest neighbors [8]. So far,
the most common way of defining the neighborhood has been
to specify the K-nearest neighbors, with K often ranging
between 10 and 100 [14], [15], as it is more computational
and memory-efficient than the radially bounded neighbors.
As the geometric features for a point depend on the value
of K, different studies have used different approaches to
estimate the optimal K value for calculating these features.
Wang et al. [14] showed that the method with an optimal adap-
tive neighborhood size performed better than the one using a
fixed neighborhood size. To choose the optimal neighborhood
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size, Wang et al. [14] minimized the eigen-entropy across
different values of K ranging from 9 to 99 with an increment
of 9. Recently, Vicari et al. [15] generated eigenvalue-based
features that were proposed in literature [8], [18], for every
point using different neighborhood sizes (K value ranging
between 10 and 250, for example) and predicted leaf or wood
class for every point in each of the neighborhood sizes. The
final class for each point was then picked based on majority
voting.

The other approach is radially bounded nearest neighbors,
which defines the neighborhood using neighbors within a
certain radius of a point. This approach has some advantages
over using K-nearest neighbors of the point [8]. Unlike radially
bounded nearest neighbor, geometry of a point defined by its
K-nearest neighbors is influenced by the point cloud density.
For instance, point density in the canopy is often lower than
the points closer to the ground. Hence, the geometry of the
leaves defined by its K neighbors in the understorey will be
different from the geometry of the leaves defined by the same
K neighbors in the canopy. Although this problem could partly
overcome by downsampling the point cloud with a known
maximum point spacing and/or by combining the features
extracted from multiple neighborhood sizes [15], radially
bounded nearest neighbors of a point are much less sensitive to
variation in point density and, hence, broadly applicable to the
point clouds of varying quality. In addition, LeGall et al. [19]
demonstrated that radially bounded nearest neighbors result in
features with consistent geometrical meaning compared with
K-nearest neighbors.

Most of the existing methods based on geometric fea-
tures have relied on using fixed-neighborhood size [8] or
choosing an optimal neighborhood size using some heuris-
tics like eigen-entropy as in [14] be its K-nearest neighbors
or radially bounded neighbors. The use of multiple neigh-
borhood sizes, both multiple K-nearest neighbors [20] and
radially bounded neighbors [19], [21], has been successfully
used for point cloud classification in other fields (mainly in
urban or other man-made structurally less complex environ-
ments). Belton et al. [13] showed that combining the geo-
metrical features derived from multiple search radii (between
0.1 and 0.5 m) had significant advantage over the geometrical
features derived from a single search radius for the leaf-wood
classification of giant red tingle trees. Moreover, almost all the
existing methods based on the geometric features used eigen-
values or the features derived from eigenvalues for leaf-wood
classification. While eigenvalues represent the magnitude of
variance present in data, eigenvectors represent the direction of
that variance. Though directional and orientation features are
seldom used, a recent study improved the leaf-wood classifica-
tion accuracy by including the orientation information (inclina-
tion angle in this case) of every point in its local neighborhood
space along with radiometric and eigenvalue-based geometric
features [6]. In addition, it is not clear how the existing
methods would perform for tropical forest sites both at the
individual tree-level and plot-level as the validation on tropical
forest sites is limited (except for [15]). As most of these exist-
ing methods are not made available as open-source libraries,
it makes the intercomparison of these methods difficult.

The main objective of the study is to develop a new method
building up on existing works that is broadly applicable across
different forest types for classifying leaf from wood points
in 3-D data, purely based on the geometrical features of the
points at local spatial scales. To overcome the above-described
issues, in our study, we defined the local neighborhood of a
point using radially bounded nearest neighbors. We opted for
radially bounded nearest neighbors for points, as it enables the
method to be broadly applicable for point clouds of varying
point cloud density and quality. Since the orientation of leaf
and wood points varies in the local neighborhood space,
we also explored the features based on eigenvectors along
with the normalized eigenvalues at multiple neighborhood
sizes for classification. We defined the local neighborhood of
a point at multiple spatial scales, as it eliminates the need
for the selection of optimal neighborhood size for a data set.
Most of the existing methods have used classical machine
learning algorithms like RF [11], support vector machines
(SVMs) [11], and Gaussian mixture models (GMMs) [8], [15]
to classify leaf from wood points. Recent advancements in
gradient boosting machines (GBMs) have made them the
most popular choice for classification problems, and they have
shown to outperform most of the other classical machine
learning algorithms [22]. In this article, we compared the
performances of three different supervised machine learning
algorithms for the classification: the most commonly used
RF and two other boosting methods, namely, LightGBM
and XGBoost. In addition, the performance of the presented
method is assessed at both the plot-level and the individual
tree-level from simulated to temperate and tropical trees and
tropical plots. We tested the predictive performance of the
models using a cross-validation approach with the data from
two tropical rainforest sites in this study. The model was
tested on independent data sets that were not used for training
the model from the study in [15]. The independent test data
sets consisted of simulated data sets of four trees of different
species and field data of nine trees (including both tropical and
temperate). In addition, we compared the presented method
with three other methods from the literature. We provide the
entire framework for the leaf-wood classification as an open-
source python package.

The specific objectives are the following.

1) To develop a new method for leaf-wood classification
based on a supervised machine learning algorithm
building up on the existing works.

2) To compare the performance of the presented method
with some of the existing methods for leaf-wood
classification.

II. LEAF-WOOD CLASSIFICATION MODEL DEVELOPMENT

A. Training and Validation Data Preparation

We collected TLS data from multiple plots of two
different tropical forest sites: Gigante Peninsula, Panama
(February–April, 2016) and Nouragues, French Guiana
(August–October, 2017). The detailed description of the
plot size, maximum canopy height, and data collection
setup is given in Table I. The Gigante Peninsula is a
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TABLE I

DESCRIPTION OF THE PLOTS WHERE THE TLS DATA WERE COLLECTED

≈60-year old secondary seasonal tropical forest with high
liana density [2544 lianas ≥ 1-cm diameter at breast
height (DBH) per ha] [23] and an estimated plant area
index (PAI) of 6 [24]. Nouragues is an undisturbed old-
growth lowland moist tropical forest with the medium liana
density (1200 lianas ≥ 1 cm DBH per ha) [25] and an
estimated PAI of 7 [26]. The scan locations were chosen
in such a way as to get better visibility of the central
tree and the surrounding lianas. We randomly distributed
20–35 retroreflective targets in the field to coregister the
data from all the scan locations to get a single high-
resolution 3-D point cloud with minimal occlusion [27].
All the data were collected either using RIEGL VZ-400
(Gigante Peninsula) or RIEGL VZ-1000 (Nouragues)
scanners (RIEGL Laser Measurement Systems GmbH,
Horn, Austria). Both are multiple return time-of-flight-based
scanners using a narrow infrared laser beam of wavelength
1550 nm and a beam divergence of 0.35 mrad. Based on the
manufacturer’s specifications, the data from the two scanners
are interoperable [28]. The registration of data from all scan
positions for each plot was done using the RISCAN Pro
software (version 2.5.3, RIEGL Laser Measurement Systems
GmbH, Horn, Austria) provided by RIEGL.

Both GIG_TREE and NOU_TREE (as in Table I) were
manually extracted using CloudCompare (version 2.8.1,
CloudCompare, GPL software) [29] from a plot in Gigante
and Nouragues, respectively.

The first step to build a leaf-wood classification model
based on supervised machine learning is to label training
data from which a classifier can learn. The data should be as
representative of the real problem as possible to create a robust
classifier. As indicated in Table I, all the coregistered TLS data
from five plots and two isolated trees were manually labeled
into two different classes: 0 being leaf points and 1 being wood
points. The manual labeling was the most time-consuming part
of the machine-learning pipeline. All the manual labeling was
done in CloudCompare by an experienced person [29] and
took almost 150 person-hours.

After manual labeling, we downsampled the TLS data using
a voxel grid filter of size 0.02 m. We chose 0.02 m as the
size for the voxel grid filter to make a tradeoff between
retaining the important information in the point cloud and
reducing the computational complexity [30]. Downsampling
ensures a uniform distribution of points by reducing the

number of redundant points, especially the points closer to
the scanner. Though it is not absolutely necessary to perform
downsampling, it is highly recommended as it would improve
the computational and memory efficiency of the presented
method by few-folds. In addition to downsampling, we also
removed the ground points in the plot-level TLS data using the
cloth simulation filter (CSF) implemented in CloudCompare
and proposed in [31].

The classes are slightly imbalanced in the leaf-wood clas-
sification problem with the points belonging to wood class
being fewer than the points belonging to leaf class. In our
training data set, the wood points contributed to an average
of only ≈15% of all the points. Sample labeled plot-level
and tree-level data from these two different sites are shown
in Fig. 1(a) and (b).

B. Predictor Variables

We used the normalized eigenvalues and zenith angle of the
eigenvectors of every point in the TLS data from a plot, across
multiple spatial scales, as the predictor variables to classify
leaf and woody points. We defined the local neighborhood
for each point by setting a sphere around each point with
the following radii: 0.1, 0.25, 0.5, 0.75, and 1.0 m. We did
not consider spheres with radii below 0.1 m, as it will render
some of the points without sufficient neighbors, especially at
the top of the canopy where there is minimal point density.
For instance, in a dense tropical forest, the average nearest
neighbor distance between points could be as much as 5 cm
at 20 m from the ground [32]. The reason for not choosing
the neighborhood size beyond 1 m is to minimize the memory
requirements of the proposed method. As the number of neigh-
bors a point could have within 1-m radius could sometimes
exceed 100 000, especially closer to the ground, this could
easily lead to memory error when computing neighbors for
the whole point cloud.

The eigenvalues and vectors for each point along with
its neighbors at every spatial scale are calculated using the
steps in [13]. First, we compute the covariance matrix of
every point with its neighbors for all the five spatial scales.
Then, the eigenvectors and the corresponding eigenvalues are
calculated for the covariance matrix of every point at all the
spatial scales. We then normalized the eigenvalues between
0 and 1 by dividing each eigenvalue by the sum of all three
eigenvalues. The normalized eigenvalues for each spatial scale
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Fig. 1. Illustration of manually labeled point cloud at (a) plot-level data and (b) tree-level data from two different sites from Gigante Peninsula and from
Nouragues. Green: leaf points. Brown: woody points.

are represented as λ1, λ2, λ3 (x m), where λ1 > λ2 > λ3 and
x ∈ {0.1, 0.25, 0.5, 0.75, 1.0}. We also calculated the zenith
angle of all the three eigenvectors for every point at all five
spatial scales that are represented as θ1, θ2, θ3 (x m), where
θ1 > θ2 > θ3 and x ∈ {0.1, 0.25, 0.5, 0.75, 1.0}. As a result,
we had 30 features in total to classify leaf from wood points.

The eigenvalues and zenith angle of the eigenvectors ade-
quately capture the different spatial distributions of trunk,
branch, and leaf points at a local spatial scale, as shown
in Fig. 2(a) and (b) for GIG_TREE data in Table I. This
difference in spatial distributions enables the separation of leaf
from wood points. As shown in Fig. 2(a), trunk and branch
points have a dominant direction of variance indicated by a
relatively higher λ1 than λ2 and λ3. Leaf points on the other
hand have similar values for both λ1 and λ2. The zenith
angle of the eigenvectors varies among trunk, branch, and
leaf points in its local neighborhood [Fig. 2(b)]. For instance,
the zenith angle of the first eigenvector for tree points is close
to 0◦ or 180◦, while it is not the case for the leaf and branch
points. In addition, it is evident from the figure that the leaf
and branch points have different zenith angle compositions
[see also Fig. 2(c)].

The main reason for choosing the radially bounded neigh-
bors is to make the method broadly applicable for point clouds
of varying point cloud density and quality compared with
K-nearest neighbors (see [19] and Fig. 3). The figure shows
the eigenvalue λ1 computed using K-nearest neighbors and
radially bounded neighbors for the GIG_TREE data in Table I
before and after downsampling. The eigenvalues were com-
puted at a spatial scale of 0.5 m for the radially bounded
neighbor method and with a value of 150 for the K-nearest
neighbor method. We downsampled with a voxel grid filter
of size 0.04 m. As shown in Fig. 3(a), the λ1 remains
unchanged before and after downsampling when radially
bounded neighbors were used, whereas the λ1 changes (espe-
cially at z = 101 m) between the two point clouds when
K-nearest neighbors are used. As a result, the optimal value
of K would depend on the point cloud density and quality

and has to be chosen carefully to derive the local geometrical
properties of the points.

We also defined the local geometry of all the points at five
different spatial scales between 0.1 and 1 m. Fig. 4 shows the
distribution of eigenvalue λ1 at three different spatial scales
(0.25, 0.5, and 0.75 m) calculated for GIG_TREE. As shown
in the figure, λ1 at 0.25-m spatial scale has the highest value
for small branches (< 10 cm) and λ1 at 0.5- and 0.75-m spatial
scales peaks at big branches (> 10 cm), while the λ1 for leaves
remains smaller and relatively the same across all the three
spatial scales. This shows that using multiple spatial scales
might have advantages over single or an optimal spatial scale.
All three eigenvalues at all the five spatial scales are shown
in Appendix A.

C. Model Development

We built a leaf-wood classification model using a
supervised machine-learning algorithm. We chose three
different ensemble-based machine-learning classifiers to
develop the leaf-wood classification model. Ensemble
classifiers combine the output from multiple weak learners,
as opposed to individual classifiers that depend on one strong
learner, and have proved to be more beneficial than the
individual classifiers in a variety of fields including remote
sensing [33]. Empirical studies have shown the bagging
and boosting methods, using decision trees as base learners,
to outperform single classifiers most of the time, making them
very popular for myriad of applications [34]. In this study,
we chose a bagging method named RF and two boosting
methods such as lightGBM and XGBoost.

1) Random Forest: One of the main reasons for choos-
ing RF for building the leaf-wood classification model is
that RF is robust to outliers, and hence avoids overfitting
by building multiple parallel decision trees using random
subsets of data and random subsets of features for each
tree [35]. A recent study has shown that RF outperformed
other individual machine-learning classifiers like Naive Bayes,
neural networks, and so on, for leaf and wood classification
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Fig. 2. Illustrating (a) eigenvalues and (b) zenith angle of the eigenvectors to represent the different spatial distribution of (a) trunk, (b) branch,
and (c) leaf points at a local spatial scale (0.5 m in this case). (c) Zenith angle of the first eigenvector θ1 calculated for the spatial scales 0.1, 0.25,
and 0.5 m for GIG_TREE in Table I. The color scales at the bottom of each figure indicate the range of θ1.

of individual trees based on geometric features in temperate
forests [11]. To choose the optimal number of decision trees to
build the model, we analyzed the performance of the models

built with 10–80 decision trees by cross-validation. We used
the default value of

√
30 as in [35] for the number of features

to be used for building each decision tree.
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Fig. 3. Illustrating the difference between the eigenvalues derived for a point with its local neighborhood defined based on (a) radially bounded neighbors
and (b) K-nearest neighbors. Both (a) and (b) indicate the values for λ1 derived at a spatial scale of 0.5 m for the radially bounded neighborhood in (a) and
derived with 150 nearest neighbors in (b).

Fig. 4. Eigenvalue λ1 calculated for the spatial scales 0.25, 0.5, and 0.75 m for GIG_TREE in Table I. The color scales at the bottom of each figure indicate
the range of λ1.

2) XGBoost and LightGBM: XGBoost [22] and light-
GBM [36] are two of the most popular choices based on boost-
ing for different machine-learning applications. In this study,

we used decision trees as our base learner for both the boosting
methods. Unlike RF, which is based on bagging, boosting trees
are built sequentially. At any given instant, the current decision
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Fig. 5. Sevenfold spatial cross-validation approach for assessing the
predictive performance of the leaf-wood classification model.

tree is built based on the outcomes from the previously built
decision trees. While the implementation of both XGBoost
and lightGBM are similar, lightGBM improves on XGBoost
in its training speed and the data set size it can handle.
However, both the methods require extensive parameter tuning
to improve the performance over other methods like RF.
We used randomized search for parameter tuning and chose
the optimal parameter combination by cross-validated search
over the different parameter settings. More details on the
hyperparameter optimization for XGBoost and lightGBM is
given in Appendix B.

The model performance to choose the optimal hyperpa-
rameters for all the three classifiers was assessed using the
performance metrics described in Section II-D. We then built
the final models using the optimal parameter combination and
compared the predictive performance of these models using a
sevenfold spatial cross-validation approach.

D. Model Predictive Performance

We assessed the performance of all the three leaf-wood
classification models using a sevenfold spatial cross-validation
approach [37]. In the sevenfold spatial cross-validation
approach, we trained the model on six of the seven data sets
described in Table I and tested on the seventh data set. As a
result, the performance of the model is assessed on all the
available data sets while still efficiently using all the data for
building the model, as shown in Fig. 5

In addition to assessing the performance by a cross-
validation approach, we used two independent test data sets:
simulated data and field data from the study in [15]. The
sevenfold cross-validation approach required building seven
different models, each built on different combinations of
training data as explained above. The final model, whose
performance is assessed on independent data sets, is built
on all seven training data sets mentioned in Table I. All
the independent test data sets are at the individual tree-
level. The simulated data sets are from four 3-D tree models
simulated using the Monte Carlo ray-tracing library, librat
[38]–[40]. Four 3-D tree models used are Acer platenoides
(ACPL), Almus glutinosa (ALGL3), Betula pendula (BEPE2),
and Tilio cordata (TICO2). All nine field trees were scanned
using the RIEGL VZ400 laser scanner. Of the nine trees,
three trees are from Alice Holt, U.K., represented as alice1,

alice2, and alice3, two trees are from Caxiuana, Brazil, repre-
sented as caxiuanaA117 and caxiuanaA21, two trees are from
Nouragues, French Guiana, represented as nouraguesH20 108
and nouraguesH20 13, and two trees are from Ankasa Forest
Reserve, Ghana, represented as tree 13 and tree 2. The
height of the trees ranged from 18 m (alice 3) to 45 m
(nouraguesH20 108). For more details on both of these data
sets, refer to the original article of [15].

We use accuracy, F1 score for leaf and wood for assessing
the performance of the model as in [15]. We defined leaf as
the positive class to estimate the F1 score for leaf class and
wood as the positive class to estimate the F1 score for wood
class.

Accuracy quantifies the percentage of correctly classified
points.

F1 score is the harmonic mean of both precision and recall
with 1 as its best value and 0 as its worst

F1 score = 2 ∗ Precision * Recall

Precision + Recall
. (1)

Precision is the fraction of correctly classified positive class
points [true positives (TPs)] out of all the classified positive
points [TP and false positives (FPs)]

Precision = TP

TP + FP
. (2)

Recall is the fraction of correctly classified positive class
points (TP) out of all the positive class points in the data [TP
and false negative (FN)]

Recall = TP

TP + FN
. (3)

The positive class in this case would be leaf for F1 score
(leaf) and would be wood for F1 score (wood) as mentioned
above.

E. Intercomparison With Existing Methods

We compared the performance of the presented method
with three other methods in literature [8], [13], [15] on the
independent data sets from [15] described in Section II-D.
While the result of the method proposed in [15] on these
data sets is readily available from the manuscript, we had to
implement the two other methods based on the descriptions
in their original manuscripts to be able to compare their
performance against our method. We described a wide range
of methods available for leaf-wood classification in Section I.
Of all the methods, some of the methods relied on intensity
values for separating leaf from wood points. Since the intensity
values are sensor-specific and we had access to neither their
methods nor data sets, we chose to compare our methods
only against the ones based on geometric features [10], [17].
Of all the geometric-based methods, we only implemented
those methods for which we could gather all the necessary
information. For instance, it was not clear how and what
neighborhood size was chosen for some of the methods
[11], [12]. This left us with two methods that could be
used for comparison, and these two methods that we finally
chose were both based on the GMMs [8], [13]. However,
it was not very clear how the GMMs were initialized in
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TABLE II

DETAILED INFORMATION ON THE FEATURES USED BY THE THREE EXISTING METHODS FOR LEAF-WOOD CLASSIFICATION

TABLE III

COMPARISON OF RF, XGBOOST, AND LIGHTGBM MODELS USING ACCURACY, F1 SCORE (LEAF), AND F1 SCORE (WOOD)
FOR ALL THE PLOTS AND TREES SHOWN IN TABLE I

Fig. 6. Performance of the model built with varying number of decision trees
assessed by average accuracy from the sevenfold cross validation approach
explained in Fig. 5. The models assessed for varying number of decision trees
were built with all the 30 features.

both the cases. To avoid any bias, we generated our own
machine learning model based on RF (with 60 decision trees)
with the features and neighborhood sizes used in those two
studies. The RF model was built on the training data set
explained in Section II-A using the features in Table II. This
way, we empirically compare the performance of the features
presented in this article with the features presented in the two
chosen studies using the metrics mentioned in Section II-D.
Detailed information on the features and neighborhood type
and sizes used by all the three methods is given in Table II.

III. RESULTS

A. Model Development

The choice of the number of decision trees had little impact
on the performance of the RF model with the average accuracy
of the model from the sevenfold spatial cross validation merely
increasing from 93.6% to 94.15%. We chose 60 decision
trees as the RF model’s accuracy stayed at 94.15% beyond
60 decision trees (see Fig. 6).

Since the number of hyperparameters optimized were eight
for both the XGBoost and lightGBM models, it is hard to
visualize the performance of the optimal model compared with
the others. The final optimal parameter combination for both
the models is given in Appendix B.

We compare the accuracy of three models for each plot and
tree in Table I using the sevenfold cross validation approach
(see Table III). As indicated in the table, while all the three
models on average performed well, the RF model had a
slightly better accuracy than XGBoost and XGBoost (and
in turn RF) performed slightly better than lightGBM across
all performance metrics. As a result, we chose RF as our
predictive model to perform further analysis of its performance
to classify leaf from wood points.

B. Predictive Performance of Random Forest Model

1) Performance of Eigenvector-Based Features: We com-
pared the performance of the RF model with and without the
features based on eigenvectors. Most of the existing studies
have used features based on eigenvalues but not eigenvectors.
However, as shown in Fig. 7, zenith angles derived from the
eigenvectors increased the F1 score (wood) by 3%.

Our RF model with features based on both eigenvalues and
vectors at multiple spatial scales showed an overall average
accuracy of 94.2% with individual accuracy ranging between
90.1% and 96.3% (Table III). F1 score for the leaf class of the
model was high with an average of 0.97. On the other hand,
the F1 score for the wood class of the model was relatively low
with an average value of 0.81. An example of this classification
for NOU_2 and GIG_TREE can be seen in Fig. 8.

As shown in Fig. 8 and Table III, the method performed
equally well at both the individual tree- and plot-level.

2) Intercomparison of Methods on the Independent Test
Data Sets From [15]: We evaluated and compared the per-
formance of our method with three methods from the lit-
erature on the independent data sets from [15] (Table IV).



KRISHNA MOORTHY et al.: IMPROVED SUPERVISED LEARNING-BASED APPROACH FOR LEAF AND WOOD CLASSIFICATION 3065

Fig. 7. Performance of the RF model built with and without zenith angles of
the eigenvectors. F1 score (leaf) and F1 score (wood) are from the sevenfold
cross validation approach explained in Fig. 5.

Fig. 8. Illustration of the model predictions for (a) NOU_2 plot and
(b) GIG_TREE.

The independent data sets consist of both simulated and field
data sets, as explained in [15].

The presented method outperformed the methods imple-
mented based on the features proposed in [8] and [13]. Though
[8] and [13] used similar features based on eigenvalues, they
both differed in the number of local neighborhoods chosen to
derive the geometric features. As the results indicate, our RF
method based on [13], which combined the features from mul-
tiple neighborhoods, clearly outperformed the method based
on [8], which used fixed, single neighborhood size.

For the simulated data sets, the performance of the pro-
posed method was consistent with that of the method pro-
posed in [15]. The method performed better for ACPL and
TICO2 than for ALGL3 and BEPE2. The proposed method
has higher F1 score for leaf class and a lower F1 score for
wood class than the study in [15]. The lower F1 score for the
wood points of ALGL3 and BEPE2 could be mainly attributed
to the geometrical properties of the leaves, which are similar
to thin long branches, as shown in Fig. 9. The F1 score for
the leaf points still remains high as wood points belong to the
minority class and misclassifications in the minority class do

Fig. 9. Ground truth and model predictions for the simulated point cloud
ALGL3, using Monte Carlo ray tracing. (Left) Ground truth for the whole
tree with green representing the actual leaf points and brown representing
the actual woody points. (Right) RF model predictions for the whole tree
with green representing the predicted leaf points and brown representing the
predicted woody points.

Fig. 10. Illustration of the model predictions for alice 3 tree in Table IV.
Black square: part of the trunk misclassified as leaf points by the proposed
method.

not reflect in the performance metrics of the majority class
as much as they do in the minority class. It is clear from
Fig. 9 that we need additional information compared with just
geometric properties to distinguish between leaf and wood for
such tree species.

For the field data, the proposed method outperformed the
method presented in [15] even without any additional post-
processing steps for most of the trees except the Alice Holt
trees from U.K. (alice 1, alice 2, and alice 3 in Table IV).
Though the F1 score for wood points were much lower for
all three Alice Holt trees, our visual inspection revealed that
the method was able to detect most of the big and small
wood structures except for few regions surrounded by dense
vegetation (indicated by the black square in Fig. 10).
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TABLE IV

COMPARISON OF ACCURACY, F1 SCORE (LEAF), AND F1 SCORE (WOOD) FOR BOTH THE SIMULATED AND FIELD DATA SETS FROM [15]

IV. DISCUSSION

In this article, we presented a method for classifying leaf
from wood points purely based on the geometrical properties
of the points at different local spatial scales. We also com-
pared various state-of-the-art machine learning classification
algorithms and found that the model built by the RF algorithm
yielded the best results. As indicated in Table III, the model
performs uniformly across the two different tropical sites
included in this study. The two sites included plots with their
canopy heights ranging from 25 to 44 m and also included
trees belonging to multiple species. The performance of the
proposed method on the data sets from [15] further confirms
the broader applicability of the method to trees from the
sites that were not part of the training data set. For instance,
the model performed with an average accuracy of 87.6 when
tested on trees from temperate forests (in U.K.) and three
different tropical forest sites (one from Brazil, French Guiana,
and Ghana).

A. Field Versus Simulated Data Set

We tested our method on both the simulated and field
data. The simulated data consisted of 3-D tree models from
four different species, simulated using the Monte Carlo ray
tracing library, librat [38]–[40]. One of the main advantages
of the simulated data is that we know the true class values,
and as a result, they could serve as true validation data sets
for evaluating an algorithm. Though we could carefully label
all the points collected by a scanner in the field, it is a
tedious task and it is easy to mislabel points especially in
the areas of low point density. As a result, simulated point
clouds could serve as a true validation set when available.
An additional benefit of having simulated data when using
supervised machine learning is that they can also be used as

the training data set. For instance, as shown in Fig. 9, our
method failed to accurately separate leaf from wood points for
the species ALGL partly due to the lack of similar examples in
our training data set. These simulated data sets hold promise
for generating new reliable training data sets for improving the
predictions from the machine learning algorithms. However,
to simulate realistic virtual 3-D tree models, intense field
data collection is necessary to parameterize and construct
them [38]. The more complex the nature and structure of an
environment is, the more difficult it is to simulate realistic
models. Considering the complex nature of the tropical forest
structure, field testing is necessary to test the performance of
the method in tropical environments truly.

B. Impact of Scanner and Scanning Protocol on the Method

The quality of the 3-D point cloud could have an impact
on the performance of the presented method. Data quality is
highly dependent on the scanner and the scanning protocol
used in the field. Therefore, it is important to understand how
the scanner type and the scanner protocol used can have an
impact on the leaf-wood classification results. Scanner’s beam
divergence and resolution can influence the quality of the point
cloud. All the data used in this study were collected using
RIEGL VZ-400, which is a high-resolution multireturn TLS.
As indicated in Table I, we used two different resolutions to
collect the data from the same scanner, and our method yielded
similar results for both these resolutions. In the case of TLS,
minimum size of the object distinguishable by the scanner
increases with the increasing distance from the scanner. Since
it is not possible to resolve an object (leaf or a small branch)
smaller than the beam divergence of the scanner used, it is
important to choose a similar high-resolution scanner to get
reproducible results [41]. While beam divergence determines
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the minimum size of the object resolvable at a given distance,
multireturn for a given pulse is capable of detecting several
objects within a single outgoing pulse. Studies have demon-
strated the advantages of multireturn LiDAR over single-
or first-return LiDAR in complex forests [32].

Data quality is dependent not only on the scanner type
but also on the scanning protocol used. The quality of the
point cloud can be assessed by using the vertically resolved
average nearest neighbor distance as a proxy [27]. As shown
in [27], the average nearest neighbor distance (point spacing)
increased, especially in the mid and upper canopies, with lower
sampling densities. This effect of occlusion is expected to
be amplified when scanning in forests with dense understory
vegetation. Similarly, higher sampling density should be used
when using a first-return LiDAR to reduce the impact of
occlusion. Therefore, scanning protocols should be adapted
according to the forest and scanner types, following the
guidelines published for using TLS in forest plots [27], [41].
These guidelines on the scanning protocol are already being
implemented by the ecosystem research and monitoring net-
works like the terrestrial ecosystem research network (TERN)
in Australia, to enable data acquisition of desirable quality
from TLS [41].

Dense understory vegetation not only amplifies the impact
of occlusion away from the scanner but also affects the
performance of the method closer to the scanner, as shown
in Fig. 10. Additional postprocessing steps proposed in other
studies might aid in improving the performance for this type
of trees [8], [15].

C. Intercomparison With Existing Methods

In addition, we also compared our method with the three
state-of-the-art leaf-wood classification methods proposed in
[8], [13], [15]. Eigenvector-based features proposed in this
method have clear advantages over the eigenvalue-based fea-
tures used in [13], and multiple local spatial scales clearly
outperform the geometric features derived from a single spatial
scale as evident from the results in [8]. Intercomparison of the
results between our method and the method in [15] indicates
that there is no one solution that fits for all when it comes
to classifying leaf and wood points in natural environments
like forests. While the presented method outperformed the
method in [15] for most of the trees, it clearly failed for
few trees. In addition, the presented method has an average
accuracy comparable with the existing methods without the
need for additional postprocessing steps, which is a part of
most of the existing methods. As a result, the misclassified
woody points (as in Figs. 8 and 10) can be corrected using
the postprocessing steps proposed in literature [8], [15]. This
means that the existing postprocessing steps in literature would
have a considerably more accurate starting point when fused
with the presented classification method. This might lead to
even better results than the ones currently reported, which
needs further confirmation. The combination of current method
with multiple existing approaches could be the best way to
move forward. However, the nonavailability of most of the
existing methods and standardized reference data sets make it
difficult to take the leap forward, as discussed in [15].

D. Broader Applicability of the Proposed Method

One of the main challenges of point cloud classification
in natural environments like forests is the data heterogeneity,
which is a consequence of forest structural complexity, varying
scanner configurations, varying scanning protocols such as
multi or single scanning setups, and so on. As a result, it is
challenging to develop generalizable and transferable methods
in natural environments compared with other computer vision
methods, which are mostly developed and applied in struc-
turally less complex man-made environments. Nevertheless,
the proposed method based on multiscale radially bounded
neighbors, to some degree, mitigates this problem by being
more robust to point clouds of varying density and quality
than the methods based on K-nearest neighbors. Our method
is based on a machine learning model trained on data sets
from two tropical forest sites. However, the independent test
data sets included broad-leaved trees from one temperate and
three other tropical forest sites that were not part of the
training set. This indicates the broader applicability of the
presented method. However, there are other forest types (e.g.,
boreal, savannah, and so on), where the method is yet to be
evaluated. Though there is no guarantee that the method will
work on these forest types, we make our model available to the
community to incrementally train and test it on their own data
sets. We provide the entire leaf-wood classification method as
an open-source python package to enable the community to
perform the intercomparison of different methods and fusion
of our method with other methods. Extracting eigenvalues at
multiple spatial scales on a small plot with approximately
500 000 points can be completed within 10 min even on a
single-core machine. The main specifications of the machine
we used to run the algorithm are the following: dual boot
(Ubuntu 16.04 LTS and Windows 10), Intel Xeon E5-1650 v4,
6 cores, and 128-GB RAM. The python package has been
tested on both the Ubuntu and Windows operating systems.
Although the current implementation of our method has high
computational efficiency, it comes at the cost of high memory
requirements as we keep the neighbors of all the points in
the point cloud in memory. One of the ways to overcome
the memory issue is to downsample the point cloud. As the
proposed method is more robust to point clouds of varying
density than existing methods based on K-nearest neighbors,
downsampling should not have an impact on the final outcome
(see Fig. 7). In addition, memory requirements would be
higher when working with plot-level data than the individual
tree-level data. As a result, one practical solution to overcome
the memory issue would be to split the plot-level data into
smaller subplots and calculate the eigenvalue and vectors for
each of the subplots. More details on the practical implementa-
tion and tips to deal with the memory issue can be found in the
github page: https://github.com/sruthimoorthy/leaf_wood_clf.

V. CONCLUSION

We present a robust method for leaf-wood classification
from the 3-D data of tropical rainforest plots. The presented
method combines the geometric features based on radially
bounded nearest neighbors for points at multiple spatial scales
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Fig. 11. Illustrating the effectiveness of eigenvalues at multiple scales for classifying leaf and wood points in tropical forests (GIG_TREE in Table I).
The ground truth for GIG_TREE is shown in Fig. 1(b). The color scales at the bottom of each figure indicate the range of λ1, λ2, and λ3 at (a) 0.1, (b) 0.25,
(c) 0.5, (d) 0.75, and (e) 1 m spatial scale from left to right, respectively.

in a machine learning model. The main advantage of the
method is that it eliminates the need for the selection of
optimal neighborhood size, which is a requirement for most
of the state-of-the-art methods, thus making it completely
automated and userfriendly. The choice of defining the local
neighborhood using radially bounded nearest neighbors makes
the method broadly applicable to the 3-D data of varying
point cloud density and quality. We show the robustness of the
method across a wide range of test data sets from simulated to
temperate trees and tropical forest trees and plot. In addition,
we also provide the entire leaf versus wood classification
model as an open-source python package for the scientific
community to explore and contribute for future improvements
of the model.

APPENDIX A
EIGENVALUE AT MULTIPLE SPATIAL

SCALES FOR GIG_TREE

The eigenvalues λ1, λ2, and λ3 for the GIG_TREE at the
spatial scales of 0.1, 0.25, 0.5, 0.75, and 1 m are shown
in Fig. 11.

APPENDIX B
XGBOOST AND LIGHTGBM: HYPERPARAMETER

OPTIMIZATION

A. XGBoost

We tuned the following set of parameters for XGBoost. The
range of values and the optimal value chosen for each of the
parameters is given next to each parameter.

1) max_depth: (Range = [3, 5, 7, 9], Optimum = 9). This
parameter defines the maximum depth of a decision tree.

2) min_child_weight: (Range = [1, 2, 3, 4, 5, 6], Opti-
mum = 3). This parameter defines the minimum sum of
weights of all observations in a leaf node.

3) gamma: (Range = [0, 0.1, 0.2, 0.3, 0.4, 0.5], Opti-
mum = 0.1). This parameter defines when to make a
split.

4) subsample: (Range = [0.6, 0.7, 0.8, 0.9], Optimum =
0.7). The parameter defines the fraction of the data to
be randomly sampled to build each tree.

5) colsample_bytree: (Range = [0.6, 0.7, 0.8, 0.9], Opti-
mum = 0.8). The parameter defines the fraction of all
the features to be randomly sampled to build each tree.
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6) alpha = (Range = [1e-5, 1e-2, 0.01, 0.05, 0.1, 1, 2, 10,
20], Optimum = 0.1). L1 Regularization term.

7) lambda = (Range = [1e-5, 1e-2, 0.01, 0.05, 0.1, 1, 2,
10, 20], Optimum = 1). L2 Regularization term.

8) learning_rate = (Range = [0.001, 0.01,0.1], Optimum =
0.01). This parameter controls the learning rate of the
model.

B. LightGBM

We tuned the following set of parameters for lightGBM.
The range of values and the optimal value chosen for each of
the parameters is given next to each parameter.

1) num_leaves: (Range = 20 randomly generated values
between 6 and 50, Optimum = 45). This parameter
defines the maximum number of leaf nodes in a decision
tree.

2) min_child_samples: (Range = 20 randomly generated
values between 100 and 500, Optimum = 211). This
parameter defines the minimum number of data allowed
in a leaf node.

3) min_child_weight: (Range = [1e-5, 1e-3, 1e-2, 1e-1, 1,
1e1, 1e2, 1e3, 1e4], Optimum = 1). This parameter
defines the minimum sum of weights of all observations
in a leaf node.

4) subsample: (Range = [0.6, 0.7, 0.8, 0.9], Optimum =
0.6). The parameter defines the fraction of the data to
be randomly sampled to build each tree.

5) colsample_bytree: (Range = [0.6, 0.7, 0.8, 0.9], Opti-
mum = 0.8). The parameter defines the fraction of all
the features to be randomly sampled to build each tree.

6) alpha: (Range = [1e-5, 1e-2, 0.01, 0.05, 0.1, 1, 2,
10, 20], Optimum = 2). L1 Regularization term.

7) lambda: (Range = [1e-5, 1e-2, 0.01, 0.05, 0.1, 1, 2,
10, 20], Optimum = 20). L2 Regularization term.

8) learning_rate: (Range = [0.001, 0.01,0.1], Optimum =
0.001). This parameter controls the learning rate of the
model.

The number of estimators or decision trees in both the cases
was set to 1000 with an early stopping condition to stop the
training, when the performance on an independent validation
set did not increase in 30 iterations.
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