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Assessing the Shape Accuracy of Coarse Resolution
Burned Area Identifications

Michael L. Humber , Luigi Boschetti, and Louis Giglio

Abstract— Accuracy assessment of burned area maps has
been traditionally performed using pixel-based metrics, with the
objective of assessing the accuracy and precision of burned area
estimates at local and regional scales. While these assessments
are helpful for obtaining consistent estimates of the burned area
across many fires and over large areas, pixel-based approaches do
not necessarily characterize how well individual fires are mapped.
At the individual fire scale, other factors like the shape of the fire
have significance regarding ecology, fire succession, and landscape
management and determining other fire properties such as
the spread rate. We propose a method for evaluating wildfire
classification maps, which retains the spatially explicit properties
of the burn scar. Our method quantifies the edge error (EE) of
burned area classifications and reference maps by calculating the
average geometric normal of the evaluated burned area boundary
along the burn edge and the two nearest neighbor samples
from the reference burn boundary. The metric is a physically
meaningful quantification of the EE, which represents the average
distance between the boundaries of the reference and evaluated
burn scars. The methods are demonstrated by comparing MODIS
Burned Area (MCD64A1) maps to Monitoring Trends in Burn
Severity (MTBS) maps for 173 total wildfires in the United States.
The results indicate that when accounting for the minimum
achievable EE (MAEE) due to differing spatial resolutions,
the mean EE is less than two MODIS pixels and the magnitude
of the errors does not appear to be related to fire size.

Index Terms— Accuracy assessment, MODIS Burned Area,
North America, wildfire.

I. INTRODUCTION

W ILDFIRES are an important natural process which have
widespread effects on human health, property, ecology,

land cover, emissions, and more [1]. While the fire activity
over the last millennium can be modeled effectively using cli-
matological variables until the Industrial Revolution, increased
pressure from the growing human population around the 1900s
altered global fire patterns via anthropogenic suppression and
ignitions [2]. This change is not limited to solely the number of
fires and amount of burned area: recent studies have shown that
fire size, and as a corollary, shape, are influenced by human
activity as well [3], [4].
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From a remote sensing perspective, understanding and
mapping the burned area has received more attention in the
past than understanding the size and shape of individual
fires. In fact, current methods used for identifying individual
fires from coarse resolution satellite data require extracting
those fires from existing burned area maps [3]–[8]. However,
the shape and size of individual fires is an important topic with
regard to ecology and fire succession, landscape management,
and determining other fire properties such as the spread rate.
As a basic example, the length of the fire front impacts
the ability of fauna to escape the flames [9]. The postfire
succession can be influenced by the shape of the burn as well
as by the patchiness of the burned area mosaic which can
favor certain plant or animal traits by changing the amount of
fringe habitat and the openness of the canopy [9], [10]. Fire
size is also related to management practices—heterogeneous
landscapes create fuel breaks which can limit the spread of
fire across the surface [11], [12]. Finally, in image processing
workflows such as those presented in [8], [13], and [14],
individual fires are identified for the purpose of extracting
other metrics such as the fire spread rate, which are inherently
linked to the shape and size of the fire.

Several programs exist with the goal of providing satellite
products to be used for operationally monitoring—spatially
and temporally—global wildfire activity. Such products can
be broadly categorized as active fire products (represent-
ing locations actively burning on the Earth’s surface at
the time of the sensor overpass) and burned area products
(representing the postfire-affected area as determined by the
removal of vegetation, exposure of soil, and the presence
of charcoal and ashes). Two decades of mapping efforts
have produced a number of global coarse spatial resolu-
tion (e.g., 250-m to 1-km pixel size) burned area products,
including MCD45A1, MCD64A1, Copernicus Burnt Area,
Fire CCI, and others (respectively, [15]–[19]). These prod-
ucts have used input from a variety of sensors including
MODIS, SPOT-VEGETATION, PROBA-V, and MERIS. The
extent and timing of burning is an essential parameter in
fire emission calculations performed with the conventional
bottom-up approach [20], and the need for consistent esti-
mates of greenhouse gas emissions was one of the main
drivers of the development of global satellite fire monitoring
products [21].

Quality assessment of coarse resolution burned area prod-
ucts is needed to provide data users with necessary information
about the suitability of the products for specific applications
and has taken many forms such as intercomparison with other
coarse resolution burned area or active fire products [22]–[26]
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or comparison with a sample of higher resolution, indepen-
dently derived reference burned area maps [27]–[30]. Product
validation is an important activity outlined by the Committee
on Earth Observation Satellites (CEOS) Land Product Valida-
tion (LPV) Subgroup and involves assessing product accuracy
in one of four stages, each with increasing statistical rigor.
The comparison with independent reference burned area maps
(commonly termed validation) is conventionally conducted
using accuracy metrics derived from a confusion matrix—i.e.,
the matrix reporting the co-occurrence of proportion of burned
and unburned data in the product and in the independent
reference data (for a review, see [31]), or from the regression
between proportions of area burned in coarser resolution grid
cells [32].

Arguably because of the great emphasis placed on the use of
global burned area products for emissions estimation, valida-
tion has traditionally described the accuracy and precision of
areal estimates at different scales, rather than the accuracy of
other aspects of the burned area representation. The accuracy
of the shapes mapped in a burned area product is currently not
considered as part of product validation exercises, and neither
is the accuracy of derived metrics such as fire size distribution,
compactness, spread rate, and orientation of the fire front.
There is an outstanding need to expand the validation of
burned area products to consider these characteristics. Several
recent studies have aimed to quantify the distribution of fire
sizes and other characteristics of individual fires, based on
existing data sets that have not been validated beyond standard
areal accuracy [3], [4], [8], [33]. Of those studies, only the
results of [3] were partially validated, limited, however, to the
comparison of the size distribution of MODIS-derived burn
scars to the size distribution of a sample of Landsat-derived
burn scars, without directly comparing individual fires.

Evaluating properties such as the number of fires, fire size,
and fire shape require object-based approaches, rather than
area-based approaches. While object-based accuracy assess-
ments have been previously applied to remotely sensed the-
matic maps (see [34]–[37]), there has been relatively little
research on the applications in burned area detection. Early
work on object-based accuracy assessment of burned area
classifications was conducted by Remmel and Perera [38],
who considered the degree of areal overlap between mapped
and reference data between individual fire events using
AVHRR-derived burned area maps and a wide variety of high-
resolution reference data (in addition to the confusion matrix).
While this work was based on the overlapping area and did
not explicitly take into account the fire boundaries, it does
highlight the errors from the perspective of the mapped burn,
the individual fire event, and the reference data which provides
an analog to the concepts of “producer’s” and “user’s” accu-
racy. Another recent exception is [13], who proposed a patch-
based burned area product accuracy assessment approach,
but their method approximates it with an ellipsoidal model
for the purposes of compatibility with the behavior of more
advanced vegetation and fire models, such as “Organising Car-
bon and Hydrology In Dynamic Ecosystems” (ORCHIDEE)
rather than assessing the actual mapped shape of the fire
complex [39], [40].

In this article, we provide a novel edge error (EE) metric
which is used to quantify the degree to which coarse resolution
burned area maps retain the shape of burn scars identified at
moderate resolution, in keeping with established protocols for
burned area product validation. The metric is demonstrated
through a comparison of the MODIS MCD64A1 burned area
product, which has a nominal resolution of 500 m [16], to the
Landsat-based Monitoring Trends in Burn Severity (MTBS)
products, which have a resolution of 30 m [41]. A calcula-
tion of the minimum achievable EE (MAEE) metric, which
accounts for differences in pixel size, is detailed in Section III
along with other object-based metrics from the literature.
Section IV presents the performance of the metrics, and
this article concludes with a discussion of the implications
of implementing coarse resolution burned area products for
representing individual fire shapes.

II. DATA

A. MCD64A1 Burned Area Product

Coarse resolution sensors such as MODIS provide global
coverage with short revisit times (e.g., daily). This is advanta-
geous for burned area mapping as the high temporal frequency
improves the probability of obtaining cloud-free observations
and can be exploited to more accurately determine the day
of burning. On the other hand, such sensors are unable to
capture fine details in the shape of objects on the ground
due to their low spatial resolution, and in the case of burned
area mapping, the minimum fire size which can be reliably
mapped is larger than that obtainable by moderate resolution
counterparts [42]. In this article, the latest Collection 6 MODIS
MCD64A1 burned area product [16], [30] was selected
because it is operational, global, and publicly available. The
Collection 6 MCD64A1 product detects the most total burned
area of any current operational product at coarse spatial
resolution [26], including significantly more burned area than
the previous Collection 5.1 MCD45A1 product [15], [23],
with yearly global burned area increasing by approximately
26% [16].

The MCD64A1 burned area mapping algorithm combines
daily MODIS surface reflectance imagery with 1-km MODIS
active fire data to map burning on a daily basis at the
MODIS 500-m spatial resolution. The algorithm applies
dynamic thresholds to composite MODIS Terra and Aqua
imagery generated from a burn-sensitive spectral band index
derived from MODIS 1240- and 2130-nm Terra and Aqua
bands, and a measure of temporal variability. Cumulative
MODIS 1-km active fire detections are used to guide the
selection of burned and unburned training samples and
to guide the specification of prior burned and unburned
probabilities [16].

The MCD64A1 burned area product includes several data
layers—“Burn Date,” “Burn Date Uncertainty,” “QA” (Quality
Assurance), and “First Day”/“Last Day” (during which burns
can be reliably detected) [43]. The product is distributed in the
MODIS Sinusoidal Equal Area Projection [44], with a nominal
500-m resolution (the actual resolution is 463.3127 m).
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TABLE I

EIGHT CASE STUDY FIRES SELECTED IN THIS STUDY

B. MTBS

In the previous literature, coarse resolution (≥250 m)
satellite-derived burned area maps have been assessed or val-
idated using moderate (typically ≤30 m) resolution data such
as those provided by Landsat (see [16], [27], [30], [31], [45]).
There are multiple programs which map burned area across
the conterminous United States and Alaska using Landsat
data. One of the more comprehensive efforts with regard to
the total number of fires mapped is the MTBS [41] project,
which provides wall-to-wall Landsat-based burned area maps
for the United States. The classification is largely derived from
photointerpretation conducted by expert interpreters rather
than automated methods.

MTBS commenced in 2005 in support of the Wildland Fire
Leadership Council (mtbs.gov). Now supported by the USGS,
U.S. Forest Service, and the U.S. Department of the Interior,
the program aims to map all fires since 1984 which exceed
1000 (405 ha) or 500 acres (202 ha) in the western and eastern
United States, respectively. Three basic types of data are
available from the MTBS program: burned area boundaries,
fire occurrences, and burn severity mosaics. Both the burned
area boundaries and burn severity mosaics provide information
about the location and spatial extent of fires occurring in the
United States and selected territories.

The burned area boundaries data set consists of vectors
which delineate the outermost extent of the burned area
patches. The boundaries are derived via photointerpretation
of Landsat TM, ETM+, and OLI scenes and do not identify
internal unburned islands within the boundary of the burn [41].
The burn boundaries are used to limit the extent of analysis for
the burn severity data, which consists of classifications derived
from the pixel values indicating the severity of burning based
on the differenced normalized burn ratio (dNBR).

For studies in the United States, MTBS data have been
used as a reference data set for comparison to other
products [46], [47]. However, studies have demonstrated that
MTBS often overestimates the total burned area due to
the commission of the unburned islands to the burned area
total [48]. This feature is consistent with the intended use of
MTBS, which focuses on land management rather than burned
area estimates [41]. It is noted that due to the ambiguity in

Fig. 1. Eight case study fires selected for this study, depicted in RGB =
SWIR2, NIR, and red composite with MTBS boundaries (yellow).

the burn severity classification, it is impossible to reconstruct
internal unburned islands in the context of this study.

C. Study Area

Eight fires in the western United States, occurring between
2005 and 2015, were selected as case studies (Fig. 1 and
Table I). The fires were selected in a semirandom fashion from
the MTBS data set, such that the fires represented a variety
of sizes and locations. No more than one fire was selected
for any given state. According to the National Land Cover
Database (NLCD2011) [49], the dominant land cover for the
Dry Creek Complex, Esmerelda Fire, Cave Creek Complex,
and Murphy Complex was shrub/scrubland. The South Sarpy
Fire and Lincoln Canyon Complex were also predominantly
in shrub/scrublands, but also included grasslands/herbaceous
areas. The East Amarillo Complex, the largest fire in the study,
occurred predominantly in grasslands/herbaceous areas with
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secondary occurrence in shrub/scrublands. Finally, the Rim
Fire occurred predominantly in evergreen forest with a sec-
ondary land cover of shrub/scrublands. In addition to these
eight fires, 165 fires identified from the 2016 burning season
were selected to demonstrate the methods over a large sample
size.

III. METHODS

Previous work has shown that the accuracy of pixel labels
at the regional and continental scale does not necessarily
indicate accuracy with respect to assigning shape bound-
aries [36]. Object-based approaches to assessing burned area
detection accuracy, wherein the entire shape of a fire are
taken into consideration rather than simply the individual
pixels, are necessary to quantify a classifier’s performance at
the individual fire scale and enable the accuracy of the fire
to be described with regard to shape as well as area. This
approach, which should be considered complementary to—
rather than a replacement for—the commonly implemented
pixel-based approaches, consists of three key steps: extraction
and harmonization, metric calculation, and identification of the
MAEE. These steps are described hereafter.

A. Extraction and Harmonization

Individual fires were extracted from their respective data
sets using a two-pass region (otherwise known as “con-
nected components”) labeling algorithm, such as that described
in [50]. First, a binary mask was created from the MTBS and
MCD64A1 data sets. The MCD64A1 product is distributed as
a monthly composite; for this study, in instances where the
burning event took place over the course of multiple calendar
months, the monthly products were composited temporally
such that the maximum day of burning between two consecu-
tive months was retained. Unlike MTBS, the MCD64A1 prod-
uct does not associate individual fires with a fire name. While
several algorithms exist for the purpose of extracting individual
fires from the MODIS Burned Area data sets (see [5], [7]), the
operation was trivial and conducted manually for the relatively
simple cases in this study. A binary mask was then created
encompassing all cells flagged as burned.

From the binary masks, the locations of edge (that is, the
boundary or perimeter) cells were extracted by identifying
any cell adjacent to an unburned cell, based on queen’s
case adjacency (otherwise known as 8-adjacency) rules. The
location of the center of the cell was recorded, rather than the
cell corners, and stored in a vector format. The boundaries
of the MTBS fires were projected from the native Albers
equal area projection to the MODIS Sinusoidal projection.
For fires observed in 2016, MCD64A1-derived fires were then
paired with MTBS fires under the following conditions: the
overlapping area was greater than 10% of the MTBS and
MODIS fire area; the area of the fire was greater than 500 ha;
the fire was characterized as a “wildfire” by MTBS; and
there was no obvious mischaracterization resulting from the
rudimentary extraction method based on visual inspection.

B. Metric Calculation

1) EE Computation: Computer vision algorithms iden-
tify the similarity of two image objects through the lens

of “shape representation” or “shape matching.” Generally,
such algorithms may be used for database retrieval or image
object retrieval [51]–[54]. Shape matching algorithms are not
typically spatially explicit and instead focus on identifying
patterns regardless of size or orientation [55], [56]. These
features may be useful for identifying broad patterns of
shape, but, for object comparison in the spatially explicit
geographic domain, these may not be desirable attributes as
the rotation or orientation of a fire scar on the landscape is an
intrinsic property of the fire itself. Any agreement in burned
area shapes along different orientations is, in this regard,
coincidental.

An advantage of shape matching in the scope of this
study is the ability of the algorithms to assess the similar-
ity of object boundaries without the use of a user-defined
parameter. The discrepancy in boundary locations, or so-
called “contour dissimilarity,” is calculated by identifying the
edges of an object (i.e., the burn edge extraction step) then
calculating the distance between the edge locations of the
evaluated object and a reference object. The error for each
edge location is calculated by advancing through the edge
points in order to identify the minimum distance between the
objects [55].

Measures of contour dissimilarity are desirable in this regard
because, assuming the data are represented in a projected
coordinate system, the unit of the contour dissimilarity in the
geospatial domain is a physically meaningful representation of
distance. In this work, the contour dissimilarity is calculated
based on EE, where the average EE represents the expected
distance between a given evaluated and target object. The
proposed EE metric quantifies the degree to which two burn
identifications agree upon the location of a burn boundary.
The method is used to determine the location of every edge
pixel in an evaluated burn, Burn(eval), relative to its nearest
neighbors (NNs) belonging to the target burn, Burn(tgt) (see
Fig. 2). It is assumed that if the boundaries are closer together
on average, then the representation of the burn shape as a
whole is more accurate.

In the ideal case, zero EE represents instances where the
burn boundaries of the evaluated product are perfectly aligned
with the burn boundaries of the target product. In practice,
this is very unlikely to be the case for an entire burn,
especially at differing spatial resolutions, due to imperfect co-
registration, subpixel differences in boundary identifications,
and differences in methodologies for identifying burns in each
data set. Note that while the first two issues are related to cell
size and are not truly errors, the latter is a result of erroneous
classifications. It follows that smaller EEs (those approaching
zero), therefore, represent a higher level of agreement and
a more accurate classification of the fire boundary while
increasing EEs indicate poorer characterization of the fire
boundary.

The (coarse resolution) MCD64A1 burn boundary is des-
ignated as the burn to be evaluated, Burn(eval), which is
compared to the higher resolution MTBS burn boundary
designated as the target burn, Burn(tgt). The EE is the
mean error between an evaluated edge location Burn(eval) to
the minimum of geometric normal of the line segment (⊥)
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Fig. 2. Association of four evaluated edge locations, Burn(evali ), to two
target edge locations, Burn(tgt j ). Note that evaulated edge locations 1 and
4 are associated with the nearest target burn edge location, while evaluated
edge location 3 is associated with the geometric normal of the line segment
Burn(tgt1), Burn(tgt2), and in the case of evaluated edge location 2, the geo-
metric normal and NN distance are identical.

connecting the two NNs in a target burn, Burn(tgt)NN1 and
Burn(tgt)NN2, or the closest of the two NNs such that for a
Burn(eval) with n edge locations (Fig. 2)

EE =
n∑

i

EEi

n
(1)

where

EEi = min(EENN, EENorm) (2)

and

EENN = d(Burn(evali ), Burn(tgt)NN1) (3)

and

EENorm = d(Burn(evali )⊥[Burn(tgt)NN1, Burn(tgt)NN2]). (4)

As detailed above, the value of EE (1) is the average of
all EEi [see (2)–(4)] for a given burn identification. That is,
all edge cell locations of the evaluated burn are iteratively
compared to the nearest edge cell location(s) of the target
burn. In the event that a Burn(evali ) has multiple Burn(tgt)NN2
(when there is a tie for the second NN), EENorm is evaluated
for all possible combinations of the tied elements, selecting the
minimum of the evaluated outcomes. An example illustrating
the EEi vectors for a hypothetical pair of burn shapes is
provided in Fig. 3.

It is noted that while a subset of the edge locations is
often sampled in shape-matching implementations, all edge
locations are selected in this methodology in order to retain the
spatial integrity of the input data. To accommodate the analysis
of this volume of data, the search for NNs is made more effi-
cient (with respect to time) through the use of K-dimensional
trees (“K-D trees”) [57]. K-D trees are a form of binary tree
which can be used to rapidly reduce distance-based query time
by dividing space using a hyperplane at each tree node. The
time complexity for searching a K-D tree is approximated
as O = n log(n), where O is the maximum number of
operations needed to identify a desired value and n represents
the number of elements to be evaluated. For both the evaluated
and reference objects, a K-D tree is constructed containing
all points identified in the edge location extraction step. Each
point along the edge of the test object is used to query the
reference K-D tree to find the two NN points determined by

Fig. 3. EE vectors for two hypothetical burns, in the direction of coarse
to high resolution. The “Target Burned Cells” represent the reference data
set at higher resolution, in this instance MTBS. The “Evaluated Burn Cells”
represent the coarser resolution data set, i.e., MCD64A1. The EEi vectors
(arrows) show the direction and magnitude of the cell-specific EE.

the minimum Euclidean distance between the edge point and
the point under evaluation in the K-D tree.

As the EE metric consists of the average distance between
analogous points along the contours of two burned area
identifications, the metric has physical significance and does
not rely on any free parameter as input.

2) Computation of Overlapping Area Metrics: Many
object-based metrics have been proposed in the literature,
which relate the accuracy of a given evaluated object to a
reference object based on area. Two of the more widely
implemented indices, oversegmentation (OS) and underseg-
mentation (US), can be considered analogous to errors of
omission and errors of commission, respectively [34]–[37]. OS
describes the degree to which an algorithm divides an object
into too many segments, i.e., omits areas which are within the
boundaries of the true object, while US describes the degree to
which an algorithm divides an object into too few segments,
i.e., commits areas which are outside of the boundaries of the
true object [34]. Thus, OS (5) defines the relationship between
the overlapping area, or intersection, of the target object (“x”)
and the evaluated object (“y”) to the area of the target object
such that

OS = 1 − area(x ∩ y)

area(x)
. (5)

Similarly, US (6) defines the relationship between the over-
lapping area of the target object (“x”) and the evaluated object
(“y”) to the area of the evaluated object such that

US = 1 − area(x ∩ y)

area(y)
. (6)
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Fig. 4. Examples of cross-resolution edge location scenarios. (a) Burn
boundaries at both resolutions are ideally co-located. (b) Scenario contains
commission and omission errors. The distance between edge locations in both
cases is the result of only resolution differences.

Both metrics were calculated assuming the MTBS burned
area as the target object and the MCD64A1 burned area as the
evaluated object. It is noted that while MTBS is designated as
the target object (by convention) in this case, the MTBS burned
cell identifications themselves are unvalidated and are expected
to overestimate the total area burned due to the ambiguity of
the “Unburned to Low Burn Severity” class. Hereafter, OS and
US are also referred to as “overlapping area metrics” as they
relate the area of one object to another.

3) Identification of the MAEE: While the EE is a mea-
surement of the physical distance between comparable edge
locations between two burned areas, the metric can only
be interpreted directly when the burned areas are spatially
co-registered and at the same spatial resolution. When the
observations are presented at different spatial resolutions, it is
necessary to account for the effects of the difference in spatial
resolution in order to minimize the effects of random place-
ment of burned cells in the higher resolution map compared
to the lower resolution map.

In practice, many arrangements of burned pixels at high
resolution can be accurately represented by a coarse resolution
map such that the measured error is a consequence of the
discrepancy in cell sizes. Fig. 4 illustrates two cases where
a coarser resolution pixel accurately and reasonably preserves
the shape of an object also represented at a higher resolution.
In these cases, errors in the calculation of the EE are, therefore,
the result of subpixel variations in the shape which are not
expected to be captured by the coarse resolution product, rather
than errors in the classification itself. Noteworthy, however,
is that Fig. 4(a) demonstrates an EE close 0 according to the
method described earlier (because all edge cells at the higher
resolution intersect the NN or are located on the line segment
connecting the two NNs, even though the areas are different!),
while Fig. 4(b) exhibits a larger EE, though the value is less
than the one-sided dimension of the coarse cell.

Calculation of the MAEE gives context to the measurement
by providing an estimate of the unavoidable error which
results from differences in spatial resolution rather than algo-
rithm misclassification. The MAEE calculation is a simplified
version of the method implemented by Boschetti et al. [58]
for calculating the Pareto boundary. As with the cited work,
it is necessary to have only the higher resolution image—
the MTBS burned area map—and to know the cell size of

the coarser resolution product (463.3127 m in the case of
MCD64A1).

For each of the eight fires in this study, the MTBS maps
were projected and resampled to the MODIS Sinusoidal 500-m
grid such that the values of the output raster are a soft
classification representing the proportion of the coarse cell that
was identified as burned in the original map (values range from
0% to 100%; Fig. 5). Cells with values of 100% represent the
core burned area, while locations near the perimeter of the fire
exhibit decreasing burn proportions. The soft classifications
were then hardened for all whole percent thresholds in the
range [1%, 100%], resulting in 100 possible classifications
for each fire. The extraction procedure was repeated on the
hardened burn proportion maps (Fig. 6), upon which EE was
calculated using the native resolution MTBS maps and the
thresholded (MODIS resolution) MTBS proportion maps. Note
that in cases where the cell sizes are the same and the data
sets are spatially co-registered properly, the soft classification
will contain only two unique values, 0% and 100%, where
a threshold of 0% results in an (implausible) map where all
cells are burned and a threshold of 100% results in the original
burned area map itself.

The minimum of each EE series per fire represents the
optimal, or most efficient, solution and is retained as the
MAEE. Recalling that this number represents the amount of
expected or unavoidable error due to the random placement
of burned cells at the higher resolution relative to the coarse
resolution, MAEE is reported along with EE in order to
help distinguish between the errors resulting from incorrect
classification from the errors resulting from differences in
spatial resolution.

MAEE was calculated for only the eight case study fires.
The reason for this is twofold: MAEE is unlikely to be relevant
to users of the product when presented in aggregate, and as a
practical matter, the calculation of MAEE is computationally
intensive.

IV. RESULTS

The results of the methodology are presented in
Sections IV-A and IV-B. The MAEE calculation procedures
are presented first, as these results are a component of the
final EE statistic. Then, the EE metric results are presented,
followed by the overlapping area metrics. EE and overlapping
area metrics are presented in aggregate for the 2016 fire
season.

A. MAEE

The MAEE calculation was performed for each of the
eight case study fires, taking into consideration the error from
the MTBS at the MODIS 500-m resolution to the MTBS
native resolution edge. For each fire and threshold for subpixel
fraction of area burned (1%–100%), the mean EE is plotted
in Fig. 7. Generally, the mean EE distribution is concave,
which is to say EE decreases monotonically as the threshold
increases until the minimum is reached, at which point the
mean EE increases monotonically.

The minimum mean achievable EEs were observed using
a minimum threshold in the range 11% (Murphy Complex
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Fig. 5. Esmerelda Fire: original MTBS classification and projection/resampling to MODIS Sinusoidal 500-m grid indicating percent of each cell identified
as burned by MTBS.

Fig. 6. Esmerelda Fire: edge cell locations for MTBS data at MODIS 500-m
resolution using 1%, 50%, and 100% thresholds.

and East Amarillo Complex) to 29% (South Sarpy Fire).
The MAEE ranged between ∼120.68 (South Sarpy Fire) and
∼153.35 m (Murphy Complex); thus, in all cases, the min-
imum mean achievable EE is less than 155 m, or roughly
33% of a MODIS 500-m cell. The range of MAEE values
and thresholds for each fire underscores the need to calculate
the metric on a per-fire basis, rather than assuming a single
global value.

B. EE and Overlapping Area Metrics

The edge error metric, EE, is presented for each of the
eight case study fires, where MTBS at the native resolution
was used in all cases (not to be confused with the aggregated
classifications used for calculation of the MAEE). The results
are presented in Fig. 8 and Table II, which show that the EE
is less than or equal to the MODIS cell size (461.3127 m)
in 5 out of 8 possible cases and is slightly greater than the
MODIS cell size in one other case—the South Sarpy Fire
(466.34 m). The Rim Fire produces arguably the worst result,
with EE exceeding 776 m or roughly 1.7 cell widths. For the
2016 fire season, the 25th, 50th, and 75th EE quantiles were
259.0, 332.9, and 442.7 m, respectively.

The EE does not appear to be driven by fire size for the
fires in this study, indicating that the MCD64A1 detections

Fig. 7. MAEE thresholds for MODIS resolution edge locations (463.3127-m
cells) and MTBS native resolution edge locations. Red triangles indicate series
minima; gray dashed lines indicate MODIS cell size.

along the edge of a fire are relatively stable. The highest edge
accuracy was achieved by the Dry Creek Complex, the third
smallest fire in the study which burned 20 170 ha according
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Fig. 8. Mean EE for MCD64A1 to MTBS. The gray dashed line indicates
the MODIS cell size.

to MTBS. The lowest edge accuracy was achieved by the Rim
Fire, the fifth-largest fire in the study at 104 040 ha burned.

With regard to the Rim Fire, it appears that the burned area
is poorly characterized by both the MCD64A1 and MTBS
products. The former appears to omit some areas that were
burned, while the latter commits a significant amount of
burned area due to the ambiguous “Unburned to Low” burn
severity class. This is most evident in the northern portion of
the fire, as depicted in Fig. 9.

A comprehensive listing of the EE metric for the case study
fires is provided in Table II, along with the overlapping area
metrics. For both the OS and US metrics, the smallest fire
in the data set, South Sarpy Fire, demonstrated the worst
performance. Intuitively, the area-based metrics are highly
susceptible to large swings in the value of the metric for
smaller sample sizes. On the other hand, two of the larger
fires, the Cave Creek Complex and Rim Fire, demonstrated
the smallest OS and US, respectively. In the case of the Rim
Fire, the US metric performed well at the expense of the OS
metric for the reasons described above and illustrated in Fig. 9.
We note that these results are in line with previous findings by
Rodrigues et al. [59], who determined that the levels of OS
and US (referred to as OEEDGE and CEEDGE, respectively)
decrease as the average fire size increases for the Brazilian
Cerrado. Regarding the 2016 fire season, the 25th, 50th, and
75th quantile OS errors were 0.15, 0.25, and 0.39, respectively,
and the US errors were 0.04, 0.07, and 0.13, respectively.

V. DISCUSSION AND CONCLUSION

Burned area accuracy assessment has historically been lim-
ited to the traditional pixel-based confusion matrix approaches,
which succinctly summarize the probability of a pixel having
a correct burned or unburned label. These approaches are
effective for studies related to the total area burned at coarse
spatial scales where the actual shape of fires may be either
obscured due to pixel size or of little consequence to the
intended use of the data.

This article introduces a method for characterizing the accu-
racy of the shape of coarse resolution burned area detections,
by comparing them to higher resolution reference burned area

maps. A novel edge error metric (EE) indicates the average
distance between the boundary of individual burned areas as
mapped in the coarse resolution product and the reference
boundary. This metric is accompanied by an indication of
the MAEE which accounts for burning in the high-resolution
reference map which is smaller than the resolution of the
coarse product.

To benchmark the performance of the proposed metric, two
conventional indices from the object-based image analysis
literature were calculated—OS and US. The OS and US
metrics show a general tendency to demonstrate large errors
for small fires (consistent with [59]), while the EE does not
appear to be related to fire size. This is intuitive given the
formulation of the metrics—OS and US are indices based on
the errors in 2-D area, while EE is a measure of the errors in
zero-dimensional (point) edge locations. At the individual fire
level, the proposed EE metric complements, but should not
replace, the area-based indices because the quantities which
they evaluate are different.

The approach was demonstrated by assessing the shape
accuracy of the MODIS Collection 6 MCD64A1 burned area
product, using as reference data a sample of high-resolution
fire perimeters provided by the MTBS project. Our results
indicate that for the sample of eight individual fires considered
in the analysis, the MODIS Collection 6 MCD64A1 burned
area product is able to capture the boundaries of fires identified
at the Landsat-scale by MTBS. In most cases, the EE was less
than the width of one MODIS 500-m cell and in all cases, and
the error was less than the width of two cells. Considering
the sample of 165 fires that occurred in 2016, the average
EE for the selected fires was approximately 332 m and the
EE was less than two pixels in 160 out of 165 cases (97%).
No anomalous/unanticipated algorithm behavior was observed
when calculating the EE of the larger data set, indicating
that our proposed method is operationally stable (a primary
rationale for assessing the larger test sample).

It is important to note that the primary purpose of the MTBS
data set is to provide information for land managers on burn
severity, and it is not designed to be a reference data set for
satellite-based burned area mapping [41], as the data set is
often employed. As a result, and due to the labor-intensive
procedure used to generate the MTBS data set, the extent of
unburned islands within a fire is not mapped. However, it is
expected that the identification of unburned islands within fires
changes significantly with scale, e.g., many small unburned
islands may exist at the 30-m scale which do not manifest
as a meaningful signal at coarse resolutions. This highlights
implicit assumptions of the EE metric that: 1) any boundary—
burned or unburned—is large enough to be captured by both
the test and reference data sets and 2) for any boundary
in a given data set, a corresponding boundary exists in the
other. In the absence of these conditions, the EEs increase
as a function of the number, size, and placement of the
unmatched boundaries within the fire extent. The unburned
islands are discussed in the Appendix, with the EE metric
applied to photointerpreted data to demonstrate the metric
conceptually, assuming the aforementioned issues have been
resolved.
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TABLE II

EE INDICES AND OVERLAPPING AREA METRICS

Fig. 9. Rim Fire edge locations identified by MCD64A1 and MTBS.
Significant discrepancies in the northernmost part of the image contribute
to high EE values.

Due to the cross-resolution calculation of the MAEE metric,
this approach can theoretically be applied to any other combi-
nation of burned area maps and reference data, including maps
and reference data of the same spatial resolution. In addition,
given a method for automated extraction of individual fires
from burned area maps (see [8], [60]), the method can con-
ceivably be routinely applied to the global validation of coarse
resolution products (see [28], [30]). The EE metric is able to
capture information lost in pixel-based accuracy assessment
and, for studies focused on shape and topology of burned area
perimeters, it is a more representative and relevant source of
information regarding mapping accuracy.

In future work, we will apply the EE metric as well as the
other object-based indices in two research areas. First, we plan
to analyze the difference in EEs for fires identified by different
classification algorithms to compare, for example, the MODIS
MCD64A1 Collection 6 500-m burned area product [16] and

the Fire CCI version 5.1 250-m burned area product which is
also derived from MODIS [61], or the Fire CCI version 4.1
300-m burned area product derived from MERIS [18].

In addition, given a higher spatial resolution data set delin-
eating true fire boundaries, the EE metric can be used to
refine burn scar extraction algorithms. Typically, individual
burn scars are identified using flood fill algorithms which use a
threshold for the maximum number of days between detections
in neighboring pixels to determine adjacency (see [3]–[6],
[8], [60], [62]), which can lead to US or OS if the threshold
is too large or small, respectively. EE, in these cases, could be
evaluated iteratively with different thresholds to empirically
derive a more representative regional threshold.

APPENDIX

An implicit assumption in calculating the EE metric is
that each object identified at the coarser resolution has a
corresponding object at the finer resolution (this assumption
is already made when selecting the fires for analysis in the
first place). The EE can, therefore, be calculated including
unburned islands within the outer boundary of the burn with
no modification, provided this condition is met.

However, special consideration must be given to unburned
islands as several studies have demonstrated that the presence
of unburned islands observed by satellites do not correspond
well to in situ measurements taken at a higher spatial res-
olution [63], [64]. Similarly, unburned islands identified at
a higher resolution will not necessarily correspond to those
identified at a coarser resolution, e.g., Landsat versus MODIS,
meaning that it is not guaranteed that all unburned islands
will be present in both data sets. This issue can, in theory,
be solved by applying a robust set of rules for selecting
unburned islands that are present across different resolutions,
i.e., accounting for the low-resolution bias [58]. These rules
could be based on the size of the unburned island, whether
or not the unburned islands overlap in both data sets, etc.
Determining these specific rules is outside of the scope of this
work, but it is of interest to the broader fire remote sensing
community and deserves additional study.



HUMBER et al.: ASSESSING THE SHAPE ACCURACY OF COARSE RESOLUTION BURNED AREA IDENTIFICATIONS 1525

Fig. 10. MCD64A1 and modified MTBS edge locations including interior
unburned islands. (Top) Esmerelda Fire (Nevada, 2005) has an EE of 252.59.
(Bottom) East Amarillo Complex (Texas, 2006) has an EE of 398.52.

Two of the case studies were chosen to conceptually demon-
strate the EE metric when applied to burn scars containing
unburned islands. These fires, the Esmerelda Fire and the
East Amarillo Complex, were manually photointerpreted to
append the larger internal unburned islands to the MTBS
boundaries (Fig. 10). The edge of the internal unburned islands
and external fire boundaries were then compared between
the modified MTBS and MCD64A1 fire shapes. The EE for
the Esmerelda Fire was 252.59 m and the East Amarillo
Complex was 398.52 m, representing improvements of more
than 100 and 40 m, respectively, when compared to the EE of

the fire boundary alone. This improvement can be attributed to
the fact that the geometry of the unburned islands for the two
burns is less complex (often elliptical in shape) than the fire
boundary geometry. A caveat to this demonstration is that the
photointerpretation of the unburned islands purposefully left
out very small unburned islands—as previously mentioned,
conducting this analysis at scale requires a robust method for
determining the minimum detectable unburned island size.
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