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Blind Compensation of Angle Jitter for
Satellite-Based Ground-Imaging Lidar

Ethan Phelps and Charles A. Primmerman

Abstract— Space-based ground-imaging lidar has become
increasingly feasible with recent technological advances. Compact
fiber-optic lasers and single-photon-sensitive Geiger-mode detec-
tor arrays push designs toward low pulse energies and high pulse
rates. A challenge in implementing such a system is imperfect
pointing knowledge caused by angular jitter, exacerbated by
long distances between satellite and ground. Without mitigation,
angular jitter would cause significant blurring of the 3-D data
products. Reducing the error in pointing knowledge to avoid such
problems might require extreme mechanical isolation, advanced
inertial measurement units (IMUs), star trackers, or auxiliary
passive optical sensors. These mitigations can increase cost and
size, weight, and power considerably. An alternative approach
is demonstrated, in which the two-axis jitter time series is
estimated using only the lidar data. Simultaneously, a single-
surface model of the ground is estimated as nuisance para-
meters. Expectation–maximization is used to separate signal
and background detections while maximizing the joint posterior
probability density of the jitter and surface states. The resulting
estimated jitter, when used in coincidence processing or image
reconstruction, can reduce the blurring effect of jitter to an
amount comparable to the optical diffraction limit.

Index Terms— Angle-jitter, Bayesian, expectation–
maximization (EM), Geiger-mode detector, gradient descent,
image correction, imaging, lidar, satellite, surface estimation.

I. INTRODUCTION

M IT Lincoln Laboratory, Lexington, MA, USA, has pio-
neered the development of high-performance 3-D-lidar

systems using photon-counting avalanche photodiode (APD)
arrays [1]. We have successfully fielded several airborne
3-D-lidar systems. Currently, we are designing a space-based
3-D lidar.

The basic concept of a space-based ground-imaging lidar
is shown in Fig. 1. A short-pulse (∼1 ns) high-repetition-
rate laser illuminates a small patch on the ground (of order
70 m × 70 m). The backscattered light is imaged on a
moderate-sized (128 × 128 pixel) APD array. The APD
pixels detect individual photons and make precise timing
measurements, from which surface heights can be calculated.
To generate a surface-height map over a large area (of order
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Fig. 1. Nominal concept for space-based ground-imaging 3-D lidar. The
satellite-mounted lidar does a raster scan over a region of interest on the
ground, uniformly illuminating a 70 m × 70 m area with each pulse, which
projects onto a 128 × 128 array of Geiger-mode detector pixels. The dwell
time for the FOV is on the order of 10 ms.

10 km2), the laser beam and APD-array field of view (FOV)
are rapidly scanned across the ground.

A requirement for developing an accurate surface-height
map over a large area is that the majority of the individual
height measurements are registered to a small fraction
of a pixel (say < 1/3 pixel). We have achieved this
registration accuracy for airborne systems, but achieving it
in a space-based system is much more challenging for three
reasons.

First, the airborne systems did not need to operate
diffraction-limited, whereas the much longer-range space lidar
will need to operate close to the diffraction limit to get
adequate cross-range resolution. For the airborne systems,
the ground sampling distance (GSD) was greater than the
diffraction-limited ground resolved distance (GRD). This
meant that the jitter could be larger than the GRD, but would
not be significant because it was smaller than the GSD. For the
space-based system, on the other hand, we need to have GSD
≈ GRD, and therefore, we will be more sensitive to jitter.

Second, for the airborne systems, the range was a few
kilometers; for a space-based system, the range will be a few
hundred kilometers. This difference in range means that, for
equivalent ground resolution, a space-based system will be
100 times more sensitive to jitter than an airborne system. For
an airborne system, a pointing jitter of 100 μrad might be
adequate; a space-based system may need a pointing jitter <
1 μrad.
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Third, for our airborne systems, the pointing knowledge
was provided by highly precise pointing mirrors, but for a
space-based system, it would be desirable to eliminate the need
for large, heavy, and expensive pointing mirrors.

On the other hand, satellites already exist that do passive
imaging from space. Some of these satellites have small form
factors, yet produce high-resolution imagery. They use solar
illumination typically within the visible band, which has an
irradiance at Earth’s surface of about 500 W/m2 [2]. This is
about 25 000 times the surface irradiance of our lidar. The
vastly higher signal rates allow them to produce image frames
at a high rate (e.g., 2.5 kHz), which reduces jitter-induced blur-
ring. They can then use frame-to-frame image registration [3].
This approach would not work well for our much lower signal
rate.

To achieve the required registration accuracy, we have
been investigating a blind approach, which estimates the
two-axis jitter time series, and simultaneously, the surface
height—viewed here as nuisance parameters. This approach
has some similarities to blind deconvolution [4]. Some advan-
tages of the approach are that it uses only the available data
without requiring additional sensors, and it can potentially
compensate even very high-frequency components of jitter
that are comparable to the pulse rate. A challenge is the
very low signal rate, which necessitates a long dwell time,
thus increasing the amount of jitter observed and its blurring
effect.

Although our jitter-compensation scheme was developed
with a particular space-based lidar system in mind, we note
that the scheme is completely general and could be imple-
mented for many scanned 3-D lidar systems. This article
describes the development and initial testing of this novel
algorithm.

II. DESIGN CONSIDERATIONS

As the satellite passes over a region of interest, the lidar
does a raster scan over the region. The transmitted beam illu-
minates the whole FOV of the receive array. A narrower beam
would make the signal less challenging to integrate but would
require faster scanning to achieve the same area coverage rate,
increasing the system complexity and mechanical requirements
(e.g., larger reaction wheels and/or more vibration). A long and
narrow beam would allow scanning at the same rate but would
have worse registration errors. There may be an optimum beam
aspect ratio, but we demonstrate good performance even in
the challenging case of a square beam. The raster scan can be
divided into multiple lateral sweeps or smaller segments that
can be processed independently.

Table I lists the notional parameters of a space-based lidar
system. Based on these parameters, the GSD at zenith is
(λ/D)(R/Q) = 0.57 m, where λ is the wavelength, D is
the aperture diameter, R is the range, and Q is the parame-
ter described by Fiete [5], which we call the oversampling
factor. The per-pulse photoelectron (PE) return rate across
the whole array is Epulse(λ/hc)(ρ/π R2)π(D/2)2γ = 69
PE/pulse, where additionally Epulse is the pulse energy in
Joules, h is Planck’s constant, c is the speed of light, ρ is
the target reflectivity, and γ is the receive efficiency, which

TABLE I

EXAMPLE SYSTEM PARAMETERS

combines quantum and optical efficiency. When distributed
over 128 × 128 pixels, this return rate becomes 4.2 × 10−3

PE/pixel/pulse. At this low signal level, the necessary dwell
time is long enough that jitter would cause significant blurring.
A dwell time of 12.5 ms (or 2500 pulses) results in an
average of about ten detections per GSD, which is roughly
the requirement for forming a high-quality height image. Some
image-formation algorithms, such as [6], seem to require as
few as one detection per GSD, but that impressively low
number is achieved by sacrificing angular resolution. This
tradeoff is undesirable for a space-based system.

Blurring and registration errors caused by jitter are more
precisely caused by an error in pointing knowledge, which
we call residual jitter. Random disturbances in pointing often
have similar characteristics to Brownian motion, with a power
spectral density (PSD) that is inversely proportional to the
square of frequency. The error in angle measurements made by
inertial measurement units (IMUs) tends to be dominated by
angle random walk, which is also Brownian motion. Typically,
accurate pointing information, such as from star observations,
is received at a low rate, which limits what would otherwise
be unbounded power in the residual jitter at low frequencies.
In addition, frequencies that are much lower than the reciprocal
of the dwell time do not contribute significantly to blurring.
They do contribute to absolute registration errors, but we view
image quality as more important. For these reasons, we model
jitter via a first-order Gauss–Markov process, which has the
PSD shown in Fig. 2. This random process is equivalent to
Gaussian white noise passed through a single-pole low pass
filter [7]. The Gauss–Markov PSD is approximately flat below
its knee frequency of 20 Hz and approximates the Brownian
motion PSD above 20 Hz. The 20-Hz knee frequency was
somewhat arbitrarily chosen as a factor of 4 below the 80 Hz
reciprocal of dwell time. The scaling of the Brownian motion
PSD and consequently of the Gauss–Markov PSD was chosen
to approximately match one of the largest PSDs among a set
representing previous satellite systems.

Many pointing systems have resonances at certain frequen-
cies, with corresponding peaks in the jitter PSD. This is a



1438 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 2, FEBRUARY 2020

Fig. 2. Modeled PSD for residual angular jitter (solid line), representing
a first-order Gauss–Markov process, and reference PSD (dashed line). The
reference PSD represents Brownian motion, which is a common behavior in
pointing systems. The modeled PSD has a knee at 20 Hz and fits the reference
asymptotically at high frequencies.

mismatch to our assumed form of PSD, but we believe our
approach would be tolerant to some peaks in the PSD if the
parameters of the assumed PSD are chosen to approximately
fit the upper envelope of the actual PSD. Since the algorithm
is statistical in nature, it is naturally robust to some amount
of mismatch.

A small-angle approximation is used to translate the angular
jitter into the lateral motion of the optical axis on the surface,
i.e., �x ≈ Rθ . We expect the algorithm to be quite robust
to errors in this approximation partly because the estimated
surface serves only to help estimate the jitter. Any warping
of the estimated surface would only indirectly affect the
jitter estimates. Using the parameters from Table I, the long-
term RMS jitter per axis at the surface would be �x ≈
440 km × 8.9 μrad = 3.9 m. Since the dwell time is limited,
the standard deviation of the observed jitter is smaller, at about
2.4 m. This represents very significant blur of about 4 pixels
along the x- and y-axes. The relationship between dwell time
and jitter fluctuation is explored in [8].

To make this material easier to communicate and to under-
stand, the rest of this article will represent the application of
a staring sensor rather than a continuously scanning one. This
simplifies some aspects of describing the algorithm and makes
the results easier to quantify. One could consider a “step and
stare” mode that jumps by 1 FOV (70 m) after each dwell
time (12.5 ms), while a scanning sensor would slew at the
same average rate, but smoothly. Most aspects of the algorithm
remain the same whether the sensor is staring or scanning.

III. PROBLEM FORMULATION

A. Overview

The proposed algorithm is a very direct (but carefully
implemented) solution to an inverse problem, based on the
principle of Bayes’ rule. It starts with a high-fidelity statistical
model of the relevant physics. Bayes’ rule is applied to
determine the posterior probability density of the desired
parameters. Because of the high dimensionality of the state

space, we cannot represent the full probability density; there-
fore, we seek a maximum-likelihood solution. Expectation–
maximization (EM) is used to provide a more tractable approx-
imation to evaluating the posterior at a point in state space.
Gradient descent is an optimization technique that works for
maximizing the approximated posterior in a high-dimensional
space. Sparsity and locality are exploited in the computations
whenever possible, and array programming is used for paral-
lelization.

B. Physical Modeling

The projection of the optical axis onto the ground is known
to limited precision from IMU measurements and instrumen-
tation, such as angle encoders. An orthographic projection
model is used, which assumes that the change in angular
pointing is small. The region of interest can be divided into
sufficiently small pieces that this assumption is valid. With the
orthographic projection model, angles are replaced by their
projection onto the observed scene.

The satellite position and the projection of the optical
axis, as determined from the IMU and instrumentation, are
combined into a single 3-D vector function of time

g(t) =
⎡
⎣gx(t)

gy(t)
gz(t)

⎤
⎦ . (1)

The coordinate frame is fixed relative to the ground, with the
xy plane orthogonal to the line of sight, and the z-axis pointing
along the line of sight toward the satellite. The z component
can be considered the range, due to the orthographic projection
approximation. The xy plane, also called the reference plane,
is defined such that it is close to the surface, notionally at the
average surface level. The pixels of the detector array project
onto the reference plane in a grid with spacing equal to one
GSD.

The 3-D scene is modeled as the height of a single surface
relative to the reference plane, as a function of the lateral
coordinates, i.e., h(x, y). This type of function is sometimes
referred to as a 2.5-D image. Structures, such as bridges
or cantilevered buildings, do not necessarily challenge the
single-surface model (regardless of viewing angle), though
they do result in abrupt changes in height. Real 3-D scenes
can, of course, be more complex, with multiple surfaces per
GSD and fine-grained structure, such as foliage, that allows
lidar returns from a variety of ranges over a small line of
sight change. Nevertheless, we believe this model to be a good
approximation, as there is often a strong return from the first
surface, and it is likely that a large portion of the scene will
be well represented by the model. The goal is to represent the
surface accurately enough to facilitate estimation of the jitter.

The jitter is modeled as a 2-D function of time that
represents a lateral shift of the optical axis along the reference
plane

j (t) =
[

jx(t)
jy(t)

]
. (2)

A 2-D representation of rotation is adequate because the third
component of rotation—about the optical axis—does not get
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Fig. 3. Cropped view of truth height image (grayscale) with pixel grid (green)
and jitter path (blue) overlaid. Over the dwell time, the center of the pixel
grid follows the jitter path, leading to blurred imagery if this effect is not
compensated. The jitter spans a large number of pixels and shows the scale
of the blurring effect.

scaled by range, and therefore, its effect is over two orders of
magnitude smaller. The x and y jitter functions are assumed to
be independent first-order Gauss–Markov random processes.

Fig. 3 shows the surface height with the projected pixel grid
and the jitter path. Over the dwell time interval, the center of
the pixel grid would traverse the jitter path.

C. Measurement Process

The measurement process for each pixel is independent
of the others, given the surface and jitter, which for the
purpose of simulation are known quantities. The single-pixel
measurement process is a Poisson process with a time-varying
rate, which is the sum of contributions from noise and signal.
This can be represented as two independent Poisson processes
with rate functions that add up to the original. We model the
noise with a rate function that is constant in time, and the
signal with a rate function that is shaped like the returning
pulse train after reflecting off the surface. The sensor records
the time of each PE detection event, which may be due to
noise or signal.

Low per pulse detection rates are assumed for both noise
and signal, in order to ignore the effects of blocking. Blocking
is a characteristic of a Geiger-mode detector (i.e., pixel) in
which the detector takes some time (e.g., 2 μs) to reset, after
making a detection. Any photons arriving within this time
interval would not be detected—they would be “blocked” by
the preceding detection. The reduction in detection rate is
called blocking loss, which becomes significant as the rate
increases toward the reciprocal of the reset time. An indirect
effect of blocking is a skewing of the apparent pulse shape
due to detections from the early part of the pulse preventing
subsequent detections. Another effect is that statistical inde-
pendence between detection times is broken. Low rates let us
ignore these complications.

TABLE II

PROPERTIES OF PULSES

The first step in modeling the signal process involves simu-
lating the transmitted pulses. The transmit time of each pulse
is recorded, which represents the center of the pulse. If the
pulse energy is varied, then this is also recorded. A transmitted
pulse travels at the speed of light toward the surface, reflects
off the surface, and a fraction of the energy returns toward
the lidar. It is convenient to define the time tREF,i and range
rREF,i at which the i th pulse would reflect off the reference
plane. We call these the nominal reflection time and nominal
reflection range. These are found by taking the intersection of
the outgoing pulse’s range versus time curve and the range
versus time function gz(t) of the reference plane.

The nominal reflection time and range for the i th pulse are
related by

tREF,i = tTX,i + rREF,i

c
(3)

where c is the speed of light, and the remaining variables
are defined in Table II. Given the nominal reflection time,
the nominal receive time is

tRX,i = tTX,i + 2(tREF,i − tTX,i ). (4)

The nominal receive energy is

eRX,i = ρsurface Aγ

π

eTX,i

r2
REF,i

(5)

where ρsurface is the surface reflectivity (assumed constant),
A is the receive aperture area, and γ is the combined optical
efficiency and quantum efficiency. Lambertian scattering is
assumed. If eRX,i is expressed in units of counts, then it is
the expected number of detections for the i th pulse, across all
pixels.

In simulating measurement data, a binary indicator vari-
able dil is randomly generated, which represents whether
pulse i generates a detection in pixel l. This variable has a
Bernoulli distribution, with parameter eRX,i/Npixels expressed
in units of counts. Low per pixel signal rate is assumed here,
i.e., eRX,i/Npixels � 1. Another assumption here is uniform
spatial illumination across pixels, though a shaped beam could
be easily accommodated. The indicator variable is generated
for every pulse and for every pixel.

Measurements are simulated over the time interval [0, T ].
The sensor data contains the time and pixel number of each
detection, which may arise from signal or from background
noise. For simulation of signal detections for pixel l, the detec-
tion indicator variable dil determines whether pulse i causes
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a detection. For each pulse with dil = 1, the detection time is
modeled as

ζk|signal = tRX,i(k) − 2

c
h(xk, yk) + vk (6)

where k is the detection index and i(k) is the corresponding
pulse index. vk represents when the received photon was
emitted relative to the center of the pulse, which is distributed
as

vk ∼ Gaussian
(
0, σ 2

PW

)
(7)

where σPW is the standard deviation representing the spread
of the Gaussian pulse in time. Low per pixel signal
rate is assumed here, i.e., eRX,i/Npixels � 1, to avoid
blocking-induced skewing of the probability density function
(pdf) relative to the pulse shape.

The reflection coordinates at which the surface height is
evaluated are defined as

xk = gx(tRX,i(k)) + jx(tRX,i(k)) + ox(nk) + axk + bxk (8)

yk = gy(tRX,i(k)) + jy(tRX,i(k)) + oy(nk) + ayk + byk . (9)

Both of these equations are the sum of the following five
terms:

1) Reported projection of the optical axis at the nominal
receive time (gx(tRX,i(k)) and gy(tRX,i(k)));

2) Jitter at the nominal receive time ( jx(tRX,i(k)) and
jy(tRX,i(k)));

3) Offset of the pixel center relative to the optical axis
(ox(nk) and oy(nk));

4) Random location of photon arrival within the pixel
(drawn from a uniform distribution function) (axk and
ayk);

5) Optical blur (bxk and byk).

The functions ox(nk) and oy(nk) return the x and y coor-
dinates, respectively, of the center of pixel nk relative to the
optical axis. axk and ayk are uniformly distributed random
variables for the location of photon arrival within the pixel,
relative to its center

axk ∼ Uniform

(−�xpixel

2
,
+�xpixel

2

)
(10)

ayk ∼ Uniform

(−�ypixel

2
,
+�ypixel

2

)
(11)

where �xpixel and �ypixel are the pixel widths, which will be
equal for square pixels. bxk and byk are Gaussian distributed
random variables representing the blur due to the diffraction
pattern of the optics

bxk ∼ Gaussian
(
0, σ 2

blur

)
(12)

byk ∼ Gaussian
(
0, σ 2

blur

)
. (13)

The Gaussian distribution approximates an Airy function,
using σblur = 0.42λ/D, where λ is the wavelength and D
is the aperture diameter.

Background noise can come from dark counts or from
sources outside the sensor that are uncorrelated with the
pulses. Background noise is modeled as a Poisson point

TABLE III

PROPERTIES OF DETECTIONS

process, and therefore, the number of detections within the
dwell time for a given pixel is Poisson distributed

Nnoise,l ∼ Poisson( fnoise,l T ) (14)

where fnoise,l is the background count rate for pixel l and T is
the dwell time. The Nnoise,l individual detection times ζk|noise
are each independent and uniformly distributed over the dwell
time

ζk|noise ∼ Uniform(0, T ). (15)

This is repeated to generate the noise for all pixels.
Once all signal and noise detections have been generated,

they are merged by concatenating the two sequences and then
sorting into time order. Repeating this process for all pixels
results in the measurement data, which is the sequence of
pixel number—detection time pairs for all detections within
the dwell time—{nk, ζk}k=1:N .

IV. ESTIMATION APPROACH

A. State Representation

The state is defined as a vector with three parts, representing
the x jitter, y jitter, and surface height

θ =
⎡
⎣θx

θy

θh

⎤
⎦ . (16)

The jitter and surface height functions are defined in a para-
metric form as the weighted sum of regularly spaced kernel
functions. Each of the three parts of the state vector is a set
of weights. The x and y jitter functions are

jx(t; θx) =
∑

i

θx(i)φjitter

(
t − tgrid(i)

�tgrid

)
(17)

jy(t; θy) =
∑

i

θy(i)φjitter

(
t − tgrid(i)

�tgrid

)
(18)

where tgrid is a vector of uniformly spaced times with interval
�tgrid. The jitter kernel is the triangular function, which makes
the jitter functions equivalent to linear interpolation of the state
vector elements

φjitter(t) =
{

1 − |t|, |t| < 1

0, otherwise.
(19)

The sampling interval �tgrid for defining the jitter sequences
is chosen to be 10 μs, which is two times the pulse interval.
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TABLE IV

SAMPLING GRIDS AND INTERPOLATION KERNELS

This seems to be a good tradeoff between accurately repre-
senting the jitter and reducing the size of the state vector.

The height function is

h(x, y; θh)

=
∑
i,k

θh(i, k)φsurface

(
x − xgrid(i)

�xgrid
,

y − ygrid(k)

�ygrid

)
(20)

where xgrid and ygrid are uniformly spaced distance vectors
with intervals �xgrid and �ygrid, respectively. The double
indexing of the state vector should be interpreted as if the
vector were reshaped into the size of the 2-D grid. The surface
kernel is a 2-D Gaussian function. A Gaussian kernel shape
was chosen because it is smooth and convenient for taking
derivatives, but it decays rapidly. The rapid decay simplifies
the evaluation of the height function at a point by only
requiring the evaluation of kernels within a small vicinity. The
2-D Gaussian kernel can be expressed as the product of two
1-D Gaussian functions

φsurface(x, y) = φG(x)φG(y) (21)

φG(w) = exp

(
−1

2

(w

σ

)2
)

. (22)

The kernel width is determined by the standard deviation,
which is chosen to be σ = 1/2. The lateral sampling interval
(�xgrid and �ygrid) for defining the surface is chosen to be
three GSD’s. This represents a compromise between good
performance and fast/reliable convergence. A finer sampling
grid would allow more accurate representation of the surface,
which would potentially improve estimation performance at
the expense of increased compute time. However, it has
been observed that too fine of a sampling grid can greatly
hinder algorithm convergence. Table IV describes the size and
spacing of the sampling grids, and therefore, the sizes of the
state vector components. The state vector is quite large, with
multiple thousands of elements, and therefore, care must be
taken in the algorithm implementation.

B. Priors

The jitter and surface height functions are expected to be
slowly varying, and this represents prior information that can
be exploited. The jitter functions are modeled as two indepen-
dent uniformly sampled first-order Gauss–Markov processes;
and therefore, the θx and θy parts of the state vector are i.i.d.
Gaussian random vectors with zero mean

θx ∼ Gaussian(0, Qx ) (23)

θy ∼ Gaussian(0, Qy). (24)

The covariance matrix is large and nonsparse, but its inverse
is conveniently sparse [9]–[12]. It is a tridiagonal matrix with
only three unique nonzero values, given by

Q−1
x = Q−1

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(1−ρ2)σ 2 , first and last diagonal elements

1+ρ2

(1−ρ2)σ 2 , elsewhere on diagonal

−ρ

(1−ρ2)σ 2 , on first off-diagonals

0, elsewhere

(25)

where ρ is the correlation coefficient between adjacent sam-
ples, given by

ρ = exp(−2π fknee�tgrid). (26)

The long-term standard deviation σ and knee frequency fknee
are matched to the jitter PSD with the parameters in Table I.
The covariance and inverse covariance are shown in Fig. 4.

The surface height function is modeled as a 2-D uniformly
sampled first-order Gauss–Markov process (Markov random
field). The vectorized array of height coefficients θh is also a
Gaussian random vector

θh ∼ Gaussian(θ̄h, Qh). (27)

The mean, θ̄h might be set by some preexisting knowledge
of the surface, such as a digital elevation model, or it might
be zero. The covariance is a Kronecker product of two
matrices

Qh =
(

1

σ
Qhy

)
⊗
(

1

σ
Qhx

)
. (28)

Here, Qhx and Qhy are the covariance matrices of 1-D slices
of the height coefficient array along the x- and y-directions,
respectively. They have the same form as the jitter prior
covariances Qx and Qy but different values for σ and ρ.
Based on the statistics of the target scene, we choose σ = 8
meters and ρ = 0.87. Qhx and Qhy should share the same
parameters (σ and ρ), but will differ in size if the height
coefficient array is not square. The composite covariance Qh is
again nonsparse, but its inverse is sparse. Q−1

h is a nine-banded
array with six unique nonzero values. Since the inverse of a
Kronecker product is the Kronecker product of the inverses,
the inverse covariance can be written as

Q−1
h = (σ Q−1

hy

)⊗ (σ Q−1
hx

)
. (29)

Since the three parts of the state vector are independent (in
the absence of measurements), the total prior can be written as
the product p(θ) = p(θx)p(θy)p(θh). The product and each
of the three terms is a multivariate Gaussian with the form

p(θ) = Gaussian(θ̄ , Q)

= exp

(
−1

2
(log(|2π Q|) + (θ − θ̄ )T Q−1(θ − θ̄ ))

)
.

(30)
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Fig. 4. Top row: Covariance and inverse covariance of eight samples of a
1-D first-order Gauss–Markov process (relevant to the jitter priors). Bottom
row: Covariance and inverse covariance of an 8 × 8 sample array of a 2-D
first-order Gauss–Markov process (relevant to the surface prior). Both inverse
covariances are sparse.

C. EM Algorithm

The state estimation uses the EM algorithm [13]–[15] to
deal with the uncertainty of whether each detection arose
from noise or signal, in a robust way. “Noise” and “signal”
are considered to be two components in a mixture pdf. The
EM algorithm estimates the weights (prior probabilities) of
the components and the parameters of each component. For
this application, only the signal component has parameters
to estimate. Since the noise component represents a Poisson
process with a constant rate, it is uniform over a fixed interval.
A possible extension to this algorithm could accommodate
background light sources or nonuniform solar illumination by
estimating the background as a function of spatial location.
This would fit nicely into the EM framework and would result
in the noise component having its own states. The algorithm
described here is expected to be robust to spatially varying
background, but it does not exploit it.

A key aspect of EM, as applied here, is the estimation of
the “membership” of each measurement. This is a probability
vector for each detection representing whether it is noise or
signal. The steps in EM are as follows.

1) {w, θ} = ini tiali ze( ).
2) m = E-step(w, θ).
3) {w, θ} = M-step(m, θ).
4) If convergence criterion not met, go to step 2.

Here, w is the two-element component probability vector, θ is
the estimated state vector, and m is the estimated membership
array. Though not written explicitly, each step has access to
the measurements and assorted parameters. After initialization,
the E and M steps are cycled through repeatedly until a stop-
ping criterion is met. The E-step estimates membership, using
the simplifying assumption that the estimated state vector and
component probabilities are the true values. Conversely, the

M-step takes the membership as given and perturbs the state
vector estimate to reduce a cost function. The membership
weights the contribution of each detection to the cost function.
To determine when to stop iterating, any of the following
criteria or a combination of them can be used:

1) change in θ ;
2) change in m;
3) change in the total likelihood of data (available in

E-step);
4) number of iterations.

D. Initialization

Algorithm performance and speed are both improved by a
careful initialization. The jitter states θx and θy are initialized
as zeros. The two-element component weight vector w can be
set to [0.5; 0.5] or can be based on the expected noise and
signal rates. The height states θh are initialized by forming a
height image without jitter compensation and then doing a fit
to the image.

For each detection, the measured height is calculated as

hk = − c

2
(ζk − tRX,i(k)) (31)

where i(k) is defined as the index of the nearest pulse to the
observed detection time, that is,

i(k) = arg min
i

(|ζk − tRX,i |). (32)

The expected ground sample coordinates are calculated
as

x̄k = gx(tRX,i(k)) + ox(nk) (33)

ȳk = gy(tRX,i(k)) + oy(nk) (34)

Next, a 3-D histogram of the (x̄k, ȳk, hk) triplets is made.
The “measured” height image is formed by taking the height
bin with the most counts, for each (x, y) bin. The bin spacing
could be selected based on the SNR, but for simplicity,
the spacing can be chosen to match the 2-D grid on which
the surface states are defined.

If the height image is defined over the same 2-D grid
as the surface states, then an initial estimate of the surface
states can be made by deconvolving the surface kernel from
the height image. The deconvolution can be implemented via
division in the frequency domain. An alternative approach for
initialization is to do a least squares fit to the height image,
with the measurement matrix representing convolution with
the surface kernel. The least squares method is more general
and allows the option of incorporating a prior for the surface
states, but it is multiple orders of magnitude slower than
deconvolution and has been found to be unnecessary.

E. E-Step

The purpose of the E-step is to update the membership of
each detection. To define membership, first consider a discrete
variable sk that indicates whether a particular detection arose
from noise or signal

sk ∈ {noise, signal}. (35)
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Fig. 5. EM algorithm flow. Inputs are {pixel index, detection time} pairs, and various parameters, including pulse transmit times and pointing instrumentation
data. The algorithm iteratively refines estimates of the x and y jitter time series, a single-surface model of scene height versus x and y and the overall
proportion of noise and signal in the data. Initialization provides a starting estimate of the height. The E-step estimates the membership of each hit (noise
versus signal), and the M-step updates the estimated states by using gradient descent on a membership-weighted cost function that is closely related to the
posterior pdf.

This indicator variable is not known, but can be estimated.
Define the membership of detection k as a vector mk that
represents the conditional probability distribution of sk

mk =
[

mnoise,k
msignal,k

]
=
[

P(sk = noise|ζk)
P(sk = signal|ζk)

]

= Ck

[
p(ζk |sk = noise)wnoise
p(ζk|sk = signal)wsignal

]
(36)

where Ck is a scalar that normalizes mk such that the sum of
its elements is one. wnoise and wsignal are the noise and signal
component probabilities, respectively.

If the source is noise, then the detection time is simply
uniform over the dwell time interval

p(ζk|sk = noise) = 1

T
. (37)

If the source is signal, then the detection time is distributed as
a Gaussian sum, assuming a Gaussian pulse shape. For pulses
that are narrow relative to the pulse spacing, taking only the
nearest Gaussian is a very good approximation

p(ζk|sk = signal)

=
∑

i

ui exp

(
−1

2

(
log
(
2πσ 2

t,i

)+
(

ζk − t̄i
σt,i

)2
))

≈ ui(k) exp

(
−1

2

(
log
(
2πσ 2

t,i(k)

)+
(

ζk − t̄i(k)

σt,i(k)

)2
))

.

(38)

Another assumption here is that the height variation in the
scene is significantly less than the pulse spacing. The weights
of the Gaussian sum are the normalized receive energies

ui = eRX,i∑
i eRX,i

. (39)

If the range is not changing significantly over the dwell time,
and other things remain constant, then the weights would all
be approximately equal to the reciprocal of the number of
pulses within the dwell time interval.

The mean of the Gaussian distribution is

t̄i(k) = tRX,i(k) − 2

c
h(x̄k, ȳk; θh) (40)

where x̄k and ȳk are the mean coordinates of where the photon
reflected off the surface (this time treating jitter as a known
quantity)

x̄k = gx(tRX,i(k)) + jx(tRX,i(k); θx) + ox(nk) (41)

ȳk = gy(tRX,i(k)) + jy(tRX,i(k); θy) + oy(nk). (42)

The variance of the Gaussian distribution is the sum of the
variance representing the Gaussian pulse shape and a term
representing the broadening of the pulse due to the height
variation over the lateral uncertainty of the measurement. The
effect is that of convolving the pulse with the impulse response
of the surface. The translation of lateral uncertainty into height
uncertainty uses a local linear (planar) approximation to the
surface, as shown in Fig. 6. Accordingly, the lateral variances
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Fig. 6. Temporal pulse broadening caused by lateral uncertainty of the
measurement across the single surface model. Lateral uncertainty is caused by
not knowing where within a pixel the incoming photon arrived and the optical
resolution of the receiver. The combination is approximated as a Gaussian,
which is compressed or stretched by the slope of the surface, giving the
impulse response of the surface. This convolves with the incident pulse to
produce the return pulse.

are multiplied by the squared gradients of the height function.
The resulting standard deviation of the detection time is

σt,i(k)

≈
√

σ 2
PW +

(
2

c

)2 (
H 2

x (x̄k, ȳk; θh)σ 2
x + H 2

y (x̄k, ȳk; θh)σ 2
y

)
(43)

where Hx and Hy are gradients of the height function with
respect to x and y, as given in the Appendix. The lateral
variances are the sum of the variance of the uniformly dis-
tributed location of arrival and the variance of the optical
blur

σ 2
x = �x2

pixel

12
+ σ 2

blur (44)

σ 2
y = �y2

pixel

12
+ σ 2

blur. (45)

The pdf can alternately be expressed in terms of relative
range rather than absolute time, by doing a change of variables

p(ζk|sk = signal)

≈ ui(k)
c

2
exp

(
−1

2

(
log
(
2πσ 2

r,i(k)

)+
(

�rk

σr,i(k)

)2
))

(46)

which is a function of the range difference and range uncer-
tainty, given by

�rk = c

2
(ζk − t̄i(k))

= c

2
(ζk − tRX,i(k)) + h(x̄k, ȳk, θh) (47)

σr,i(k) = c

2
σt,i(k)

=
√( c

2
σPW

)2+H 2
x (x̄k, ȳk; θh)σ 2

x +H 2
y (x̄k, ȳk; θh)σ 2

y .

(48)

Fig. 7. Typical example of M-step cost function versus step size multiplier.
The cost function is evaluated for an initial large step size multiplier. If this
does not reduce the cost, then a sequence of decreasing logarithmically spaced
step size multipliers is tried.

F. M-Step

The M-step updates the estimate of the state vector and
component weights. The weights are updated by taking the
maximum likelihood estimate, which is found by simply
averaging the membership across all measurements[

wnoise
wsignal

]
= 1

N

∑
k

[
mnoise,k
msignal,k

]
. (49)

In EM, each measurement can come from one of multiple
components of a mixture pdf. In general, each component has
a set of parameters that are updated in the M-step. In this
application, only the signal component has parameters (i.e.,
elements of the state vector) to update.

The state vector estimate is updated by using gradient
descent to reduce a weighted sum cost function, where the
weights are the membership of the signal component. Gradient
descent is used because of the nonlinearity of the measurement
function and the high dimensionality of the state space. With
∼5000 state elements (and potentially more for a scanning
mode), a particle filter would be completely infeasible, and
even a covariance matrix starts to become unwieldy. There
are three reasons for settling for a reduction in the cost
function rather than a minimization. The first is that there
is no known closed-form solution. The second is that the
cost function is relatively expensive to evaluate. The third
is that the cost function becomes less valid as the distance
from the current state estimate increases. The cost function
gets refreshed by the E-step. Therefore, it makes sense to take
smaller steps and update the cost function frequently. Reducing
rather than minimizing the cost function in the M-step means
this algorithm is technically generalized EM.

The cost function is a modified version of the negative log of
the posterior probability density given that the source is signal.
The modification, which is associated with the EM algorithm,
is the weighting of the contribution of each measurement by its
signal component membership msignal,k . The cost function is

�(θ) = − log(p(θ))

−
∑

k

msignal,k log(p(ζk|θ, sk = signal)) (50)
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Fig. 8. Elements of the estimated state vector corresponding to x and y jitter, shown as time series, and height, shown as images. Estimates are shown at
initialization (left), iteration 20—representing partial convergence (middle), and iteration 1000—representing full convergence (right). The signal-component
probability is also displayed which increases as the algorithm “finds” more of the signal. Despite the coarse sampling of the height states and their indirect
relationship to height, the images show scene objects becoming sharper and more resolved as the jitter and height states evolve simultaneously.

where p(θ) is the Gaussian prior pdf, as described previously.
p(ζk|θ, sk = signal) was also given previously in (46), but
here, we make explicit the conditioning on the state vector.

Gradient descent is used to take a step that reduces the
cost function. This requires the partial derivatives of the cost
function with respect to the state

∂�

∂θ
= ∂

∂θ
(− log(p(θ)))

+
∑

k

msignal,k
∂

∂θ
(− log(p(ζk|θ, sk = signal))). (51)

The partial derivatives of the term representing the prior are

∂

∂θ
(− log(p(θ)))

= (θ − θ̄ )T Q−1

= (θx − θ̄x)
T Q−1

x
∂θx

∂θ
+ (θy − θ̄y)

T Q−1
y

∂θy

∂θ

+ (θh − θ̄h)T Q−1
h

∂θh

∂θ
(52)

where θ̄ and Q are the mean and covariance of the prior,
respectively. Due to sparsity, the prior and its partial derivatives
can be evaluated without explicitly representing the covariance
matrices or their inverses.

The partial derivatives in the sum are

∂

∂θ
(− log(p(ζk|θ, sk = signal)))

= − ∂

∂θ
log
(

ui(k)
c

2

)

+ 1

2

∂

∂θ

(
log
(
2πσ 2

r,i(k)

)+
(

�rk

σr,i(k)

)2
)

= 1

σr,i(k)

((
1 −

(
�rk

σr,i(k)

)2
)

∂σr,i(k)

∂θ
+ �rk

σr,i(k)

∂�rk

∂θ

)

(53)

where the partial derivatives of the range difference and range
standard deviation are

∂�rk

∂θ
= ∂h

∂θ
(54)

∂σr,i(k)

∂θ
= 1

σr,i(k)

(
σ 2

x Hx
∂ Hx

∂θ
+ σ 2

y Hy
∂ Hy

∂θ

)
. (55)

The height gradients and remaining partial derivatives are
given in the Appendix. This completes the derivation of the
gradient of the cost function.

Gradient descent is used to improve the state estimate
by trying various step sizes in the opposite direction of the
gradient. A step size multiplier α determines the new state
vector, at which the cost function is evaluated. If i is the
iteration number, a candidate state vector estimate is found
as

θ̂test = θ̂i − α
∂�

∂θ
(56)

If the cost is improved, then the previous state estimate is
replaced with the new one, and the M-step is complete

θ̂i+1 = θ̂test if �(θ̂test) < �(θ̂i). (57)

Otherwise, the next value of α in a descending logarithmically
spaced list is tried.
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Fig. 9. Top: Estimated x jitter versus time, at initialization (blue), partial
convergence (red), and full convergence (yellow), compared against truth
(purple). Bottom: Residual x jitter (truth minus estimate) at the same three
levels of convergence. At full convergence, the residual x jitter is reduced to
an unobservable constant bias plus a small amount of mostly white noise.

Fig. 7 shows the typical shape of the cost function versus
α. This shape makes the optimization very stable. Too large
of a step size increases the cost, and too small of a step size
reduces the cost only slightly. A better minimum may exist
for much larger step sizes, but we seek only to move toward
the local minimum. It is not important to truly minimize the
cost function at any given iteration of EM.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The algorithm was tested with simulated data that was
generated with the parameters listed in Table I. The simu-
lation used a high-resolution height map from the MACHETE
airborne lidar of the vicinity of the Boston Common Visitor
Center, Boston, MA, USA, to represent the true scene. The
algorithm was written in vectorized MATLAB code, using the
gpuArray functionality. To drastically improve computation
time, when evaluating the height function or its gradients, only
the kernels for the nearest 5 × 5 array of coefficients were
evaluated. This is a good approximation because of the rapid
decay of the 2-D Gaussian kernel. The measurements were
also range-gated to isolate the returns within a 50-m interval
centered on the scene. The code was run on an LLGrid node
with an Intel Xeon E5 processor and NVIDIA Tesla K80 GPU.
The algorithm was allowed to continue until it converged to
within single-precision after 8208 iterations, running at about
8 iterations/s.

Fig. 8 shows the evolution of the jitter and height parts of
the state vector as the algorithm progresses from initialization
to convergence (calling 1000 iterations full convergence). The
signal-component probability is also displayed and can be seen
to increase with iterations, as the improved state estimates

Fig. 10. Top: Standard deviation of residual jitter in x (blue) and y (red
dashed) versus iteration number. This is the main result of this article since
this metric neatly quantifies the blurring effect of residual jitter. At iteration
120, the standard deviation has been reduced by over an order of magnitude,
to a similar size as the diffraction limit and the pixel quantization. Bottom:
Residual jitter path at varying levels of convergence (initialization, partial,
and full).

allow more signal to be pulled out of the noise. The jitter states
start as all zeros and eventually acquire the precise shape of the
jitter time series. Concurrently, the height states approach the
shape of the scene, becoming sharper and more resolved. This
is despite the height states not representing height directly, but
rather the weights of the 2-D Gaussian kernels. The margin
around the height images is necessary to allow for the extent
of the jitter, which is only known statistically a priori.

Fig. 9 shows the evolution of the estimated and residual
x-axis jitter, with multiple iterations plotted together for com-
parison. At full convergence, the estimated jitter matches the
true jitter extremely well, aside from a small amount of mostly
white noise and a constant bias, which represents a registration
error. The constant bias is not observable from the data alone,
but it could be observed if spatially varying surface height
data is encoded in the prior of the height states, effectively
allowing the algorithm to register against the prior knowledge
of the surface. The registration problem can also be handled
via the conventional method of image cross correlation. This
would be a postprocessing step, and it would benefit from the
greatly reduced blurring in its compensated input images.

For comparison, we also implemented a baseline algorithm
that estimates the jitter via frame-to-frame registration. This
approach divides the dwell time into a number of frames and
forms a height image for each. The height images are formed
via the same histogram-based approach used for initialization,
with a spatial sampling interval of one GSD. The height image
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Fig. 11. Top row: Jitter-compensated height images, shown at varying levels of convergence (initialization, partial, and full), with an overlay of residual jitter
(blue). Bottom row: Google Earth imagery, high-resolution height map used as truth, and jitter-compensated height image using knowledge of the true jitter.
A simple histogram-based algorithm is used to form the height images. The jitter-compensated image at full convergence (top right) has greatly improved
resolution and is very similar to the perfectly compensated image (bottom right), aside from the unobservable constant bias, which represents a registration
error.

is then range-gated to a 40-m interval, which is approximately
the height extent of the scene. Elements of the height image
that are outside of the range gate are replaced with the mean
of all elements within the range gate. Then, the mean height is
subtracted from all elements. A cross correlation is performed
for each pair of consecutive frames (using circular convolution
for simplicity). The difference in jitter between the two frames
is estimated as the shift that maximizes the cross correlation.
The cumulative sum of these differences is taken and scaled by
the GSD to produce the estimated jitter time sequence. Linear
interpolation is used to evaluate this sequence at arbitrary
times.

To find the most favorable parameters for the baseline
algorithm, a parameter sweep was done over the number of
frames to divide the dwell time into. The minimum standard
deviation of the residual jitter was achieved with the dwell time
divided into about 20 frames of size 625 μs or 125 pulses.
With this optimal frame size, the standard deviation of the
residual jitter for the baseline algorithm was about 0.8 m,
which is an improvement of roughly a factor of three compared
with no compensation.

Fig. 10 shows the main result of this article, which is
the standard deviation over the dwell time of the residual
jitter as the iterations progress. This metric nicely quantifies
the blurring effect of residual jitter [8]. This is the angle-

resolution-degrading quantity that adds in quadrature to the
terms due to the diffraction limit and the pixel size. After
reducing the residual jitter standard deviation for the x- and
y-axes to about the same size (0.15–0.19 m depending on
level of convergence) as the diffraction limit (0.20-m standard
deviation) and the pixel width (0.16-m standard deviation),
the jitter is no longer the limiting term for angular resolution.
The algorithm’s performance is about four times better than
the baseline algorithm. The lower plot shows the x and y
components of the residual jitter time series plotted against
each other. These residual jitter paths are analogous to blur
functions that get convolved with the true scene to produce
degraded blurred height images. The converged residual jitter
path is drastically smaller and more pointlike than the original.

For illustrative purposes, Fig. 11 shows jitter-compensated
height images at varying levels of convergence. The same
histogram method of image reconstruction is used here as
was used for initialization, except that now the estimated jitter
time series is used to shift the x and y coordinates of the
measurements as a function of receive time. This is clearly
not the most sophisticated image forming or coincidence
processing algorithm, but it is simple and is adequate to
demonstrate the effect of jitter compensation. For reference,
below the compensated height images are images showing—
passive imagery from Google Earth, the high-resolution height
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map used as truth for simulating the measurements, and the
result of perfectly jitter-compensating the measurements.

The uncompensated image (iteration 0) is extremely blurred,
with the blurring together of multiple trees and the two
sections of the building. The jitter path is overlaid for com-
parison and can be seen to span many pixels. At partial
convergence (iteration 20) the image is much sharper, but still
partially blurred. The fully converged image (iteration 1000)
has drastically enhanced resolution and looks very similar
to the perfectly compensated image that would result if the
true jitter were known exactly. The residual jitter path (blur
function) is collapsed to a point, smaller than one pixel.
Small objects are resolved, which were not present in the
uncompensated image. Notice that the compensated images
expand as the jitter estimates improve, and the optical axis
traces out a path parallel to the actual jitter. Also evident is
the registration bias between the compensated images and the
perfectly compensated image.

VI. CONCLUSION

Initial tests of the jitter-estimation algorithm have been very
promising. Using the algorithm in a scenario in which the
standard deviation of the combined two-axis jitter was about
6 times the pixel size, and pixel size matched the Rayleigh
diffraction limit (1.22λ/D), caused the residual angular jitter
to be reduced by over a factor of 10 in amplitude (100 in
power). Relative to a baseline algorithm of frame-to-frame
registration, the performance improvement was about a factor
of 4 in amplitude (16 in power). The impact of the improved
pointing knowledge was demonstrated by running a simple
image reconstruction algorithm with and without compensat-
ing for the estimated jitter. The jitter-compensated image is
much clearer and would be much more valuable for object
recognition, whether performed by humans or computers.

The algorithm is about 1000 times slower than real-time
(for 90% of full convergence) on the single computer used
to run it. This can easily be improved by parallelizing over
multiple time intervals or upgrading the computing hardware.
Parameters, such as the step size in gradient descent, could
be chosen more carefully, and other code improvements are
possible. If the input jitter is smaller or if higher residual jitter
can be tolerated, these can greatly reduce the required runtime.
Even without any speed increase, the algorithm is practical to
implement without huge expense and would be significantly
enabling for a satellite-based lidar system.

APPENDIX

GRADIENTS AND PARTIAL DERIVATIVES

The E and M steps require the gradient of the height
function, and the M step also requires partial derivatives of the
jitter (17) and (18) and the height (20) functions with respect
to the state. The jitter and height functions can be written in a
compact form, as an inner product between a coefficient vector
and part of the state vector

jx = �T
j θx (58)

jy = �T
j θy (59)

h = (�y ⊗ �x )
T θh . (60)

The terms in the first and second gradients of the height
function are

Hx = ∂h

∂x
= (�y ⊗ ��

x

)T
θh (61)

Hy = ∂h

∂y
= (��

y ⊗ �x
)T

θh (62)

Hx x = ∂2h

∂x2 = (�y ⊗ ���
x

)T
θh (63)

Hxy = ∂2h

∂x∂y
= (��

y ⊗ ��
x

)T
θh (64)

Hyy = ∂2h

∂y2 = (���
y ⊗ �x

)T
θh . (65)

For the jitter functions, if the jitter time grid has L samples,
the coefficient vector is

� j =

⎡
⎢⎢⎢⎢⎢⎣

φjitter

(
t − tgrid(1)

�tgrid

)
...

φjitter

(
t − tgrid(L)

�tgrid

)

⎤
⎥⎥⎥⎥⎥⎦ . (66)

The coefficient vector for the height function is a Kronecker
product of two vectors. If the grid of height coefficients is M
by N , the two vectors and their first and second derivatives
are

�x =

⎡
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(
x − xgrid(1)
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...
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The 1-D Gaussian kernel and its first and second derivatives
are
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where the width of the Gaussian kernel is set by σ = 1/2.
The necessary partial derivatives of the jitter functions and
the height function and its gradient are

∂ jx

∂θ
= �T

j
∂θx

∂θ
(76)

∂ jy

∂θ
= �T

j
∂θy

∂θ
(77)

∂h

∂θ
= Hx

∂ jx

∂θ
+ Hy

∂ jy

∂θ
+ (�y ⊗ �x

)T ∂θh

∂θ
(78)

∂ Hx

∂θ
= Hx x

∂ jx

∂θ
+ Hxy

∂ jy

∂θ
+ (�y ⊗ ��

x

)T ∂θh

∂θ
(79)

∂ Hy

∂θ
= Hxy

∂ jx

∂θ
+ Hyy

∂ jy

∂θ
+ (��

y ⊗ �x
)T ∂θh

∂θ
. (80)
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