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Context-Aware Convolutional Neural Network for
Object Detection in VHR Remote Sensing Imagery

Yiping Gong™“, Zhifeng Xiao

Abstract— Object detection in very-high-resolution (VHR)
remote sensing imagery remains a challenge. Environmental
factors, such as illumination intensity and weather, reduce
image quality, resulting in poor feature representation and
limited detection accuracy. To enrich the feature represen-
tation and mine the underlying context information among
objects, this article proposes a context-aware convolutional neural
network (CA-CNN) model for object detection that includes pro-
posal generation, context feature extraction, feature fusion, and
classification. During feature extraction, we propose integrating a
context-regions-of-interests (Context-Rols) mining layer into the
CNN model and extracting context features by mapping Context-
Rols mined from the foreground proposals to multilevel feature
maps. Finally, the context features extracted from multilevel
layers are fused into a single layer, and the proposals represented
by the fused features are classified by a softmax classifier. In this
article, through numerous experiments, we thoroughly explore
the influence of key factors, such as Context-Rols, different
feature scales, and different spatial context window sizes. Because
of the end-to-end network design approach, our proposed
model simultaneously maintains high efficiency and effectiveness.
We conducted all model testing on the public NWPU VHR-
10 data set. The experimental results demonstrate that our
proposed CA-CNN model achieves significantly improved model
performance and better detection results compared with the state-
of-the-art methods.

Index Terms— Contextual information mining, convolutional
neural network (CNN), object detection.

I. INTRODUCTION

BJECT detection is a fundamental and meaningful task
Oin the fields of computer vision and image processing.
With the development of remote aerospace imaging tech-
nology and the increasing volume of data available, there
is an urgent need for a fast and accurate object detection
algorithm. Although extensive research [1]-[9] has been con-
ducted, accurately locating objects in a complex environment
remains a challenging problem. Based on the feature extraction
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methods they use, object detection methods can be divided into
two general approaches: handcrafted feature-based methods
and deep learning-based methods. The handcrafted feature-
based methods generate hundreds of candidate boxes that may
contain objects of interest by using the selective search [10]
and edge boxes [11] algorithms. Then, the hand-designed
features, such as histograms of oriented gradients (HOG) [12],
local binary pattern (LBP) [13], and scale-invariant feature
transform (SIFT) [14] features, are extracted from each box
based on prior knowledge. Finally, these features are classified
by a classifier, such as a support vector machine (SVM) [15].
The recent success of deep learning approaches, especially the
convolutional neural network (CNN), has attracted consider-
able interest in deep learning-based object detection methods,
and many models have achieved the state-of-the-art perfor-
mances [1], [16]-[21]. In contrast to artificially designed meth-
ods, deep learning methods use proposal generation methods,
such as MultiBox [22], DeepBox [23], and region proposal
networks (RPNs) [21] to generate fewer but higher quality
candidates. Moreover, the features extracted by CNNs outper-
form hand-designed features.

Different from natural scene images, remote sensing images
are easily disturbed by environmental interferences, such as
illumination intensity and weather, resulting in low image
quality and poor feature representation. To address this prob-
lem, many researchers [24]-[27] have studied the contributions
of contextual information to feature representation and object
detection and proven that considering contextual information
helps to reduce object uncertainty and increase detection
accuracy. A spatial region with a window size that is too
small cannot fully capture the relationships between an object
and its surroundings, while a larger window may introduce
excessive noise, which can reduce the object detection accu-
racy. Although many works have made use of spatial context
information, determining an appropriate boundary for the
spatial context window is difficult because no rigorous theory
exists [28], [29]. Inspired by the works in [30] and [31],
we propose integrating a context-regions-of-interests (Context-
Rols) mining layer into the CA-CNN model. This layer can
automatically generate Context-Rols with a size not smaller
than those of regions-of-interests (Rols) from the poten-
tial context proposals surrounding the Rols; then, it fuses
the Context-Rols features with the Rols features prior to
classification.

Our contributions are as follows.

1) Context Feature Extraction: Information from an

object’s surroundings is important for accurate object
detection; for example, a bridge with a boat passing by is
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Fig. 1.

Context windows with different sizes.

easy to distinguish from a road surrounded by buildings
or farmland. To take advantage of the information among
objects, we mine an adaptive Context-Rol for each
Rol to extract contextual features; then, we fuse the
contextual features with the Rol features. In addition,
we present a series of experiments conducted with con-
text windows of different sizes to estimate their effects
on object detection. As shown in Fig. 1, the context
window sizes from 1.5x to 3.0x are the relative sizes
of the Rols.

2) CA-CNN: We propose an end-to-end model that
simultaneously extracts the features from Rols and
Context-Rols and fuses them into a single feature.
The experimental results on the NWPU VHR-10 data
set show a great improvement in object detection
performance.

II. RELATED WORKS

Object detection based on contextual information is a focus
of object detection research and has received considerable
attention. The poor image quality caused by interference
factors, such as sensors and the environment, makes it dif-
ficult to locate objects accurately. Considerable efforts based
on contextual information have been made to solve these
problems. According to Biederman’s division method [32],
which is widely used in the field of computer vision to
classify contextual information, context can be divided into
three categories: semantic context, spatial context, and scale
context. We describe these three categories in detail in the
following.

A. Semantic Context

Semantic context describes the likelihood that an object will
appear in a specific type of scene while not appearing in other
types of scenes. The semantic context can also be expressed as
a symbiotic relationship with other objects; for this purpose,
semantic coding [29], [33] or a co-occurrence matrix [24], [34]
can be used to determine the correlations between the objects.
However, this method requires the accurate identification of
other objects; consequently, unreliable detection information
will severely affect the final detection results.

B. Scale Context

On one hand, the scale context describes the relative scales
of different objects in the same scene, emphasizing their size
relationships; on the other hand, it also characterizes the coarse
and fine features of the same object appearing in feature maps
at different levels. Fine features represent high-level semantic
information that is relevant to the overall nature of the object,
whereas coarse features represent low-level statistical features,
such as edges and shapes. Convolutional and pooling operators
cause the receptive fields to become increasingly large, which
is detrimental to the detection of small objects, and the lost
detail information cannot be repaired through upsampling or
deconvolution. Thus, many scholars have made great efforts
to preserve the useful low-level features. Yu and Koltun [35]
developed a new convolutional network module that uses
dilated convolutions to systematically aggregate multiscale
contextual information without losing resolution. The pre-
sented context module avoids pooling operations and instead
uses dilated convolutions to extend the receptive fields, thereby
improving the accuracy of the state-of-the-art semantic seg-
mentation systems. HyperNet [36] performs maximum pooling
operations on lower level convolution layers and deconvolution
operations on higher level convolution layers to sample all
feature maps at the same size; then, it normalizes the sam-
pled feature maps through local response normalization. The
aggregation of the normalized feature maps is a hyper-feature
that replaces the last convolution layer for proposal generation
and object detection. Inside-outside net (ION) [31] applied
Rol-pooling operations to feature maps at different scales and
then concatenated the L2-normalized Rol feature maps. On the
PASCAL VOC 2012 data set, ION achieved an improvement
in object detection from the state-of-the-art mean average
precision (mAP) of 73.9% to an mAP of 76.4%. This improve-
ment provides strong evidence that context and multiscale
representations improve small object detection. Multi-scale
CNN (MS-CNN) [37] extracts and classifies candidate boxes
from multiple output layers, combining various scale-specific
detectors into a strong multiscale detector. The successes of
all these techniques demonstrate that multiscale feature fusion
can compensate for the semantic gap between the low- and
high-level features to improve the accuracy of object detection,
especially for small objects.

C. Spatial Context

Spatial context implicitly describes the symbiotic relation-
ships between an object of interest and its surrounding envi-
ronment by emphasizing positional relationships. The spatial
context can be subdivided into four aspects: component con-
text, neighborhood context, target context, and scene context.
The component context refers to the spatial relationships
among the components of the object itself; for example,
the wings of an aircraft always appear on both sides of the
fuselage. The neighborhood context refers to the spatial posi-
tional relationships between an object and the pixels within
a certain neighborhood; corresponding features are extracted
from pixel-level statistics in these local regions. The algo-
rithms most commonly used for this purpose are HOG [12]
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Fig. 2. Framework of the CA-CNN model.

and SIFT [38]. The target context refers to spatial location
relationships among multiple objects, such as orientation and
distance. For example, tennis and basketball courts often
coexist. The scene context refers to the spatial context of an
object and its surrounding environment. For example, aircrafts
always park at airports, while ships dock in harbors or float on
the sea. Many researchers have attempted to model such spatial
context relationships. ION [31] makes use of pixel information
from four directions around an object to extract spatial context
features for object detection. MS-CNN [37], a stacked network
that consists of branches of image recognition neural networks
(IRNNSs), extracts context features by introducing a larger
window in each branch: the sizes of these windows are mined
adaptively.

Although the consideration of many types of contextual
information has been proposed in pursuit of more accurate
object detection, the lack of a systematic theory still constrains
the application of contextual information in other detection
tasks. Many problems remain to be explored for practical
applications, such as which features are appropriate to fuse
and how to fuse them effectively. We present a detailed study
of these contextual issues in Section III.

III. METHODOLOGY

In our experiments, we used the Faster RCNN from
VGGI16 [21] as the backbone network in our model. Fig. 2
shows an overview of our proposed CA-CNN model, which
comprises three stages: proposal generation, context feature
extraction, and feature fusion and classification. For context
feature extraction, we add a context feature extraction layer
to the CNN following the last convolution layer to generate
more effective features. Finally, we use a softmax classifier
for classification.
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A. Proposal Generation

The purpose of region proposal generation, which is the
first step in the object detection process, is to locate candidate
regions that may contain objects of interest. Traditionally,
to obtain as many region proposals as possible, an exhaustive
search method known as the sliding window method is com-
monly used for proposal generation; however, this approach
results in high redundancy and expensive computation. More
recently, the selective search [10] and edge boxes [11]
algorithms were proposed for proposal generation. These
algorithms reduce the number of boxes generated and improve
the detection efficiency. However, the number of region pro-
posals generated using these methods is still too large because
objects may appear anywhere. Moreover, the repeated convo-
lution operations on each region on the input image severely
affect the detection efficiency. To solve these problems and
accelerate the detection process, we integrated an RPN into
our CNN model to more efficiently generate higher quality
region proposals by applying the sliding window method
only to the final convolutional feature maps. Consequently,
the convolution operation is performed only once for each
image because the RPN shares the final convolution result
with the primary network. The sliding windows applied to the
final convolutional feature maps are called anchors. To capture
objects of different sizes and shapes, we define a series of
anchors with different sizes and aspect ratios. The output of
the RPN consists of Rols, whose coordinates are mapped from
the region proposals in the feature maps to the corresponding
regions of the original image.

B. Context-Rol Mining

To mine the underlying context information surrounding the
Rols, we propose a Context-Rols mining layer that generates a
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Fig. 3.  Mining Context-Rols. Blue box: Rol generated by the RPN. Red
boxes: proposals used to generate Context-Rols. Yellow box: valid context
region.

Context-Rol for each Rol. An RPN generates a large number
of proposals and preserves only the top 256 proposals as Rols,
which are sized to exactly cover the real objects. However,
before the training process completes, the proposals generated
by RPN may cover parts of the objects or the background
around the objects. Therefore, we use these proposals to
generate Context-Rols to extract context information. The
process of mining Context-Rols is shown in Fig. 3, where
the blue box indicates the Rol, the red boxes indicate the
proposals used to generate Context-Rols, and the yellow box
indicates the valid context region. The mining process includes
two components as follows.

1) Potential Proposal Preparation: First, all the proposals
generated by the RPN are arranged in reverse order
according to their probabilities, which are predicted by
the softmax classifier. Then, we pick the top 10000 pro-
posals and send them to the core network to evaluate
the probabilities and rectified coordinates of ten classes.
Only the proposals that definitely belong to one of the
ten categories are preserved. In other words, we keep
only the proposals whose probability is above 0.5 in a
certain category. During the early training stage, because
the probabilities of ten categories may not exceed 0.5,
we use the proposals generated by the RPN instead.
Finally, the proposals are sorted in reverse order by their
probabilities, and we select the top 6000 proposals to
perform context proposal mining.

2) Context Proposal Mining: For each Rol generated from
the RPN, we first define a valid context region with a
size three times that of the Rol. Then, we define all the

proposals as ¢ = {po, p1, ..., pn}, Where p; represents
the ith proposal modified by the RPN and 7 is the total
number of proposals. In our experiment, n is 6000. Then,
the proposals are used to generate Context-Rols when
they satisfy the following constraints.

a) The bounding box of the proposal must be inside
the valid context region. The closer the proposal
is to the central target, the more effective the
information it contains, and vice versa. Therefore,
we set the valid region size to 3.0x relative to the
Rol to avoid too much noise interference.

b) The proposal confidence (probability) must be
larger than 0.5. The proposal used to generate
Context-Rols should be a foreground box itself.
The category of the foreground box surrounding
the Rol may be the same as that of Rol or may
differ. Regardless of the category of the foreground
box, the relationship between the foreground box
and the Rol is what we want to mine.

¢) The proposal area must be no more than twice that
of the Rol. We assume that the context candidate
proposals are similar in size to the Rol. Context
window that is too large will introduce consider-
able noise, leading to a degradation in the Rol.

3) Context-Rols: For each Rol, we simply adopt the mini-
mum bounding box of the context proposals and the Rol
as the Context-Rol.

C. Context Feature Extraction and Classification

To compensate for the semantic gap between the high-
and low-level features, we map the Rols and Context-Rols
to feature maps at different levels to extract scale context
features. As shown in Fig. 4, after Rol generation and Context-
Rol mining, the Rols and Context-Rols are first mapped to the
conv4 and Conv5 layers for scale context feature extraction;
then, the scale context features extracted from different layers
are fused into one comprehensive feature. The fused single
feature is the final feature representation for each proposal and
will be fed into a softmax classifier to obtain the probability
of each proposal. In addition, to reduce the bounding box
redundancy, a nonmaximum suppression (NMS) algorithm is
applied with a threshold of 0.3.

IV. EXPERIMENTAL RESULTS

This section first introduces the data set used in our
experiments and the implementation details of our proposed
CA-CNN model. Then, we comprehensively analyze the key
factors that influence the detection results, such as different
feature scales and different sizes of spatial context windows.
Next, we explore the influences of the context features on all
ten classes of the experimental data set individually. Finally,
we compare the results of our proposed method with those of
other state-of-the-art methods.

A. Data Set Description

A large number of publicly available data sets exist for
natural image processing. However, few such data sets contain
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TABLE I
TRAINING AND VALIDATION DATA SETS

category object size(pixel)  object number enhancement method  object size after enhancement  object number after enhancement
ship 20~90 134 R\M\D 10~97 2144
airplane 28~112 322 R\D 17~112 2576
storage tank 24~70 73 S\M\D 12~/70 1168
vehicle 19~82 293 R\D 10~82 2344
harbor 30~155 108 R\M\D 16~155 1728
tennis court 36~79 80 R\M\D 18~79 1280
baseball diamond 38~134 64 R\M\S 20~134 2560
bridge 40~256 58 R\M\S 20~256 2320
basketball court 42~156 34 R\M\D\S 21~156 2720
ground track field 131~305 27 R\M\D\S 70~305 2160

Scale Context Feature

Fig. 4. Scale context feature extraction process.

-2
(i) baskball (j) ground track
court field

(Dtennis comt  (g) baseball
diamond

Fig. 5. NWPU VHR-10 data set. (a) Ship. (b) Airplane. (c) Storage tank.
(d) Vehicle. (e) Harbor. (f) Tennis court. (g) Baseball diamond. (h) Bridge.
(i) Basketball court. (j) Ground track field.

remote sensing imagery. The NWPU VHR-10 [39] data set is
a challenging ten-class object detection data set commonly
used in object detection tasks that were annotated by North-
western Polytechnical University. This data set contains a
total of 800 images, of which 650 contain objects and the
remaining 150 contain no objects. As shown in Fig. 5, the ten
object classes are ship, airplane, storage tank, vehicle, harbor,
tennis court, baseball diamond, bridge, basketball court, and
ground track field. Of these images, 715 are high-resolution
remote sensing images collected from Google Maps with
spatial resolutions ranging from 0.5 to 2 m, and the remaining
85 images are pansharpened color-infrared images with a
spatial resolution of 0.08 m.

We randomly selected half the data set as the training data
set and the other half as the test data set. Then, we randomly
selected 20% of the training data set as a validation data set.

TABLE II
DETAILS OF THE DATA ENHANCEMENT

Enhancemnet method Parameters
Rotation (R) angle = [90,180,270]

Mirror(M) horizontal
Downsampling(D) ratio = [0.5 ~ 0.8]

Shifting(S) direction = [left, right, top, bottom], ratio = 0.2
TABLE III
TEST DATA SET
Category Object size(pixels)  Object number

ship 17~88 107
airplane 28~110 399
storage tank 39~86 185
vehicle 19~82 303
harbor 25~194 103
tennis court 36~85 128
baseball diamond 41~126 74
bridge 53~203 55
basketball court 40~207 31
ground track field 108~277 28

Table I shows the pixel sizes and the numbers of objects in the
training and validation data sets. Because the NWPU VHR-10
data set alone was not sufficient for training, we enhanced the
training data set by applying rotation, mirroring, downsam-
pling, and shifting transformations, as shown in Table II. For
the downsampling method, we varied the sampling ratio from
0.5 to 0.8 for every remote sensing image. For the storage
tank class, the rotation enhancement method was ineffective
because of the rotational symmetry of the round storage
tanks; therefore, we used only the other three enhancement
methods on these images. In addition, because the number of
objects in each category was unbalanced, we adopted different
enhancement methods for different categories to balance the
object quantities. The total numbers of objects and the object
sizes in the training and validation data sets after enhancement
are shown in Tables I and III lists the pixel sizes and the
numbers of objects in the test data set.

B. Implementation Details

We based the construction of our CA-CNN model based
on the successful VGG16 (Faster RCNN) model pretrained
on the ImageNet data set [40]. The basic VGG16 model is
composed of five convolution layers, two connection layers,
and one classification layer. The first two convolution layers
contain two individual convolution operations, and the last
three convolution layers contain three individual convolution
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TABLE IV
TRAINING PARAMETERS
parametes values
Max Iteration 60000
Stepsize 30000
Learning Rate 0.001
Anchor Size [1,2,4,8,16]
Ratios [0.5,1,2]
Batch Size 256
Momentum 0.9
Weight Decay 0.0005
Droupout 0.5
Weights Initilization Xaiver
Max Length of Input Image 2000 pixel
Max Length of Resized Image 2000 pixel

operations. Except for the last convolution layer, which is
followed by an Rol-pooling layer, the convolution layers are
each followed by a max-pooling layer. The activation function
used in all the hidden layers is ReLU [41]. In our experiment,
we extracted features from the output of the final convolution
result of each convolution layer, for example, Conv5_3 and
Conv4_3. The training parameters and network parameters
are shown in Table IV. To capture objects of various sizes,
we defined the anchor sizes of 1, 2, 4, 8, and 16 that
corresponded to input image regions with the sizes of 16, 32,
64, 128, and 256 pixels, respectively. In addition, to avoid
image compression, we set the max length of the input images
and the resized images from 600 to 2000 pixels, which is
larger than the pixel size of our data set. We train on one
GPU for 60000 steps and the weights of the whole network
are initialized by Xaiver. The initial learning rate is 0.001,
which is decreased by 10 at the 30000 steps. We train on one
GPU for 60000 steps and the weights of the whole network
are initialized by Xaiver.

C. Evaluation Protocols

We adopted the curve (PRC) and the average precision (AP)
to evaluate the object detection performance.

1) Precision—Recall Curve: PRC is a widely used
measure applied in many studies on object detection
[1], [39], [42]-[44]. Assuming that TP, FP, and FN denote the
numbers of true positives, false positives, and false negatives,
respectively, the precision and recall metrics can be formulated
as follows:

.. TP
Precision = —— (1)
TP + FP
TP
Recall = ———. 2)
TP +FN

A detection result will be predicted as a true positive when it
has an intersection over union (IOU) with the ground truth of
no less than 0.5; otherwise, it is considered a false positive.

2) Average Precision: In the field of computer vision and
object detection, AP is one of the common criteria. AP is
especially suitable for evaluating algorithms that simultane-
ously predict the position and class of a target because this
criterion reflects the stability of the model. A higher AP
value indicates a better model performance and vice versa.
For multiclass detection tasks, mAP is often used to assess
the mean performance of a model across all classes.

TABLE V

PERFORMANCES OF OUR PROPOSED CA-CNN MODEL
AND THE VGG 16 MODEL IN TERMS OF AP VALUES

Category VGG16(Faster RCNN)  CA-CNN
ship 0.8932 0.9055
airplane 0.9878 0.9991
storage tank 0.9876 0.9001
vehicle 0.8899 0.8900
harbor 0.8040 0.8897
tennis court 0.9037 0.9016
baseball diamond 0.9091 0.9965
bridge 0.5809 0.7962
basketball court 0.9032 0.9091
ground track field 0.9057 0.9091
mAP 0.8765 0.9097

D. Results and Analysis

To evaluate the contributions of the context features to
successful object detection, we first quantitatively compare
the performance of our proposed CA-CNN model with
that of the underlying VGG16 model. Then, we thoroughly
analyze the factors that can strongly influence the detection
results, including different object scales (feature maps at
different levels) and different sizes and combinations of
spatial context windows, and present an overall comparison.
Finally, we compare our proposed CA-CNN model with other
state-of-the-art methods.

1) Results: As introduced in Section III, we extract con-
text features from the Conv5_3 and conv4_3 layers based
on each Rol and its Context-Rols. Table V compares the
results of our proposed CA-CNN model with those of the
basic VGG16 model in terms of AP. As shown in Table V,
our proposed CA-CNN model achieves a detection result
of 90.97%, while VGG16 achieves 87.65%. With the excep-
tion of a decrease in the storage tank, vehicle, and tennis
court classes, our proposed method leads to better detection
results, especially for the bridge class, which shows the
largest improvement (21.53%). However, although our method
achieves the best mAP, the AP values of our method for the
storage tank and tennis court class are lower than those of
VGG16. It is known that the features of one single object
are much different from those of two or more. Context-
Rols are usually larger than the objects and cover part or
whole of the objects nearby as well as the center object,
making the features extracted from Context-Rols contradicting
those from Rols. Therefore, for some storage tanks that are
tightly arranged, features extracted from Rols may bring about
the interference between the objects of the same classes;
however, the appearance of related objects or scenes will help
to improve the detection accuracy. For bridges and harbors,
the appearance of ships will improve the feature representation
and detection accuracy. For ships, scenes, such as bridges
or harbors, also help to improve the detection accuracy of
ships.

Fig. 6 shows a visualization of the detection results of our
proposed CA-CNN model and VGG16 on the ten classes. The
first, third, fifth, and seventh lines show the detection results of
our proposed model, while the second, fourth, sixth, and eighth
lines show the results of VGGI16. This results comparison
yields two conclusions as follows.
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Fig. 6. Performances of our proposed CA-CNN model and VGG16. The first, third, and fifth lines show the detection results of our proposed model, while

the second, fourth, and sixth lines show the results of VGG16.

1) Considering context features can reduce false positives;
for example, the “tennis court” and ‘“storage tank”
predictions for the airport scene, the “basketball court”
prediction for the factory, the “ship” prediction alongside
the house, the “vehicle” prediction for the field, and the
“airplane” prediction for the residential area generated
by the VGG16 model are all eliminated in our detection
results.

2) Considering context features can improve the recall. For
the ship, harbor, ground track field, and bridge classes,
our proposed method detects more objects than does the
VGG16 model.

2) Context Feature Evaluation: We thoroughly explore the
influences of the scale of features and the size of the spatial
window on the object detection performance from the per-
spective of the mAP, mean recall (mR), and mean precision
(mP), as shown in Table VI. For this comparison, we defined
context window sizes ranging from 1.5x to 3.0x to explore
the effects of different sizes on the detection and to explore
the performance of features extracted from feature maps at
different levels. In the part related to the multiscale, it can
be seen that the feature levels can greatly affect the detection
results. Compared with the high-level features extracted from
Conv5, the lower-level features extracted from conv4 yield
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PRCs of the proposed CA-CNN [VGG16-Conv(45)4-Rols+Context-Rols] model and other approaches for the ship, airplane, storage tank, vehicle,

harbor, tennis court, baseball diamond, bridge, basketball court, and ground track field object classes.

TABLE VI
OVERALL PERFORMANCE OF THE MODELS EXPLORED IN THIS ARTICLE
Method mAP mR mP
VGG16-Conv5 0.8765 0.9249  0.8172
VGG16-Conv4 0.9021 0.9427 0.6739
VGG16-Conv(45) 0.9033 0.9345 0.7321
VGG16-Conv(345) 0.8899  0.9458 0.5580
Rols(1.0X) 0.8765 0.9249  0.8172
Rols+(1.5X) 0.8838 0.9298 0.8177
Rols+(2.0X) 0.8883  0.9438  0.8287
Rols+(2.5X) 0.8974 0.9398  0.8369
Rols+(3.0X) 0.8905 0.9397 0.8404
Rols+Context-Rols 0.8985 09397 0.8413
VGG16-Conv(45)+Rols+Context-Rols  0.9097  0.9397  0.8595

better mAP and mP values while reducing the mP because
of the tradeoff between precision and recall. Through the
multilevel feature fusion, conv(45) and conv(345) both yield
mAP and mR values above those of Conv5, but their mP is
lower. Therefore, we can conclude that multiscale features are
beneficial for improving the AP and recall. In the second part,
related to the size of the spatial window, we can see that among
all spatial window sizes, the automatically mined Context-Rols
method achieves the highest mAP and relatively high mR and
mP scores. In the last part of the table, we extract context
features from both conv4 and conv5, demonstrating that our
proposed method achieves the best performance among all the
investigated methods

Fig. 7 shows the PRCs for all the classes. We selected
several typical models for comparison, including VGG16-
Conv5 (backbone), VGG16-Conv(45), VGG16-Conv5+2.5x,
and CA-CNN [VGG16-Conv(45)+Rols+Context-Rols]. For
all categories, our proposed method achieves a detection recall
of over 80%. For the bridge class, the models that use
context information achieve obvious improvements compared
with the basic model, VGG16-Conv5, which uses features
extracted from Conv5_3. However, for the storage tank class,
considering the context results in a decrease in the recall
and mAP compared with the basic VGG16-Conv5 model.
This result may occur because the proximity of other storage
tanks interferes with feature representation and judgment for
any single storage tank; therefore, for objects of this type,
the features extracted from Rols may be sufficient.

TABLE VII

COMPARISON OF OUR PROPOSED CA-CNN MODEL WITH RICA,
HYPERNET, RICNN, COPD, AND EXEMPLAR-SVMSs

Method Average run time per image (seconds)
COPD 1.16

RICNN 8.47

VGG16 0.11
RICA 2.89

CA-CNN 2.82

Fig. 8 shows the mined Context-Rols and Conv5_3 feature
maps. The left column shows the ground truth (yellow), mined
Context-Rols (red dotted box), and the detected boxes (red),
and the middle and right columns show the Conv5_3 feature
maps of the CA-CNN method and VGGI16, respectively.
As shown in Fig. 8, Context-Rols are larger than the ground
truth and contain both the background information and the
central object. The feature maps indicate that except for the
tennis court and storage tank categories, the Context-Rols
mining method makes the objects visually more significant
and easier to detect compared with VGG16. However, for
tightly arranged objects such as storage tanks, the Context-
Rols mining method may introduce interference features from
the neighboring storage tanks, resulting in a lower confidence
fused feature and, thus, in missed detection and a reduction in
precision.

3) Comparisons With Other Methods: To quantitatively
evaluate the performance of our proposed method, we com-
pared it with several state-of-the-art methods. The results
are shown in Table VII. We implemented the HyperNet
on our data set, while the detection results for Exemplar-
SVMs, rotation-invariant CNN (RICNN), the collection of part
detectors (COPD) method, and the rotation-insensitive and
context-augmented (RICA) methods were reported in [18],
[30], [39], and [45]. Clearly, our proposed CA-CNN model
achieves the best performance among all the methods consid-
ered in Table VII, with an improvement of 3.85% compared
to RICA, nearly 2.27% compared to HyperNet, 18.34% com-
pared to RICNN, 10.29% compared to COPD, and 44.38%
compared to the Exemplar-SVMs model. Although our pro-
posed method outperforms these other methods, it achieves
a lower AP for the storage tanks and tennis court classes
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Context-Rols CA-CNN VGG16

Fig. 8.

Context-Rols

CA-CNN

VGGI16

Context-Rols mined by CA-CNN and Conv5_3 feature maps of CA-CNN and VGG16. (Left column) Ground truth (yellow), mined Context-Rols

(red dotted box), and detected boxes (red). (Middle and right column) Conv5_3 feature maps of the CA-CNN method and VGG16, respectively.

TABLE VIII
COMPUTATION TIME COMPARISON OF THE FIVE DIFFERENT METHODS
. . . tennis baseball . basketball

Category mAP ship airplane  storage tank  vehicle  harbor court diamond bridge conrt ground track field
Exemplar-SVMs  0.4659  0.3704  0.8411 0.7087 0.4600 0.3307 0.3145 0.8091 0.2414 0.4378 0.2457
COPD 0.8068  0.8173 0.8911 0.9732 0.8330 0.7339  0.7327 0.8938 0.6286 0.7341 0.8299
RICNN 0.7263  0.7734  0.8835 0.8527 0.7110  0.6860  0.4083 0.8812 0.6151 0.5845 0.8673
HyperNet 0.8870 0.8976  0.9947 0.9869 0.8865  0.8037  0.9067 0.9091 0.6890 0.9030 0.8927
RICA 0.8712  0.9080  0.9970 0.9061 0.8714  0.8029  0.9029 0.9291 0.6853 0.8013 0.9081
CA-CNN 0.9097  0.9055 0.9991 0.9001 0.8900 0.8897 0.9016 0.9965 0.7962 0.9091 0.9091

than does HyperNet. Table VIII shows the computation times
of the five different methods. Compared with other methods,
the Context-Rol mining process consumes more computation
time.

V. CONCLUSION

In this article, we propose an end-to-end CA-CNN that
simultaneously extracts the features from Rols and Context-
Rols and fuse them for object detection. The experiments
demonstrate the effectiveness of our CA-CNN. Our contri-
butions are summarized in the following.

1) Context-Rols Mining Layer: We propose a Context-Rols

mining layer that is integrated into the CA-CNN and
proved to be effective for most objects. The experiments

2)

demonstrated that the Context-Rols mining method
achieves the mAP of 89.85% over all the test images,
which is 2.2% higher than that of VGGI16 (Faster
RCNN). Compared with methods that use manually
designed spatial windows (a range of context window
sizes from 1.5x to 3.0x), Context-Rols mining method
also achieves the best performance.

End-to-End Structure The process of feature extrac-
tion and feature fusion is all integrated into CA-CNN.
Moreover, instead of extracting object features at only
one scale, it extracts the Rol and Context-Rol features
from both multilevel feature maps. The experiments
demonstrated that the use of multilevel features further
improved the mAP from 89.85% to 90.97%, substan-
tially improving the object detection performance.



GONG et al.: CA-CNN FOR OBJECT DETECTION IN VHR REMOTE SENSING IMAGERY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

J. Han, D. Zhang, G. Cheng, L. Guo, and J. Ren, “Object detection in
optical remote sensing images based on weakly supervised learning and
high-level feature learning,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 6, pp. 3325-3337, Jun. 2015.

J. Leitloff, S. Hinz, and U. Stilla, “Vehicle detection in very high
resolution satellite images of city areas,” IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 7, pp. 2795-2806, Jul. 2010.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based
convolutional networks for accurate object detection and segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142-158,
Jan. 2016.

Y. Long, Y. Gong, Z. Xiao, and Q. Liu, “Accurate object localization in
remote sensing images based on convolutional neural networks,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2486-2498, May 2017.
S. Tuermer, F. Kurz, P. Reinartz, and U. Stilla, “Airborne vehicle
detection in dense urban areas using HoG features and disparity maps,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 6,
pp. 2327-2337, Dec. 2013.

H. Grabner, T. T. Nguyen, B. Gruber, and H. Bischof, “On-line boosting-
based car detection from aerial images,” J. Photogramm. Remote Sens.,
vol. 63, no. 3, pp. 382-396, 2008.

0. Aytekin, U. Zongiir, and U. Halici, “Texture-based airport run-
way detection,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 3,
pp. 471475, May 2013.

G. Tang, Z. Xiao, Q. Liu, and H. Liu, “A novel airport detection method
via line segment classification and texture classification,” IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 12, pp. 2408-2412, Dec. 2015.

Z. Xiao, Y. Gong, Y. Long, D. Li, X. Wang, and H. Liu, “Airport
detection based on a multiscale fusion feature for optical remote sensing
images,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 9, pp. 1469-1473,
Sep. 2017.

J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and
A. W. M. Smeulders, “Selective search for object recognition,” Int.
J. Comput. Vis., vol. 104, no. 2, pp. 154-171, Apr. 2013.

C. L. Zitnick and P. Dollar, Edge Boxes: Locating Object Proposals
from Edges. Springer, 2014.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jun. 2005, pp. 886-893.

C. Chen, B. Zhang, H. Su, W. Li, and L. Wang, “Land-use scene
classification using multi-scale completed local binary patterns,” Signal
Image Video Process., vol. 10, no. 4, pp. 745-752, 2016.

D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. 7th IEEE Int. Conf. Comput. Vis., Sep. 1999, pp. 1150-1157.

A. Ukil, “Support vector machine,” Comput. Sci., vol. 1, no. 4, pp. 1-28,
2002.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,” 2013,
arXiv:1311.2524. [Online]. Available: https://arxiv.org/abs/1311.2524
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2012, pp. 1097-1105.

G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convo-
lutional neural networks for object detection in VHR optical remote
sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12,
pp. 7405-7415, Dec. 2016.

C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” in Proc. Adv. Neural Inf. Process. Syst., vol. 26, 2013,
pp. 2553-2561.

M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional
networks for mid and high level feature learning,” in Proc. Int. Conf.
Comput. Vis., Nov. 2011, pp. 2018-2025.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2015, pp. 91-99.

C. Szegedy, S. E. Reed, D. Erhan, and D. Anguelov, “Scalable, high-
quality object detection,” CoRR, vol. abs/1412.1441, 2014. [Online].
Available: http://arxiv.org/abs/1412.1441

W. Kuo, B. Hariharan, and J. Malik, “DeepBox: Learning objectness
with convolutional networks,” in Proc. IEEE Int. Conf. Comput. Vis.,
Dec. 2015, pp. 2479-2487.

A. Torralba, “Contextual priming for object detection,” Int. J. Comput.
Vis., vol. 53, no. 2, pp. 169-191, 2003.

B. Li, T. F. Wu, and S.-C. Zhu, “Integrating context and occlusion for
car detection by hierarchical And-Or model,” in Proc. ECCV, vol. 8694,
2014, pp. 652-667.

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

43

T.-H. Vu, A. Osokin, and I. Laptev, “Context-aware CNNs for person
head detection,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 2893-2901.

S. S. M. Salehi, D. Erdogmus, and A. Gholipour, “Auto-context
convolutional neural network (auto-net) for brain extraction in mag-
netic resonance imaging,” IEEE Trans. Med. Imag., vol. 36, no. 11,
pp- 2319-2330, Nov. 2017.

S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert,
“An empirical study of context in object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1271-1278.

L. Wolf and S. Bileschi, “A critical view of context,” Int. J. Comput.
Vis., vol. 69, no. 2, pp. 251-261, 2006.

K. Li, G. Cheng, S. Bu, and X. You, “Rotation-insensitive and context-
augmented object detection in remote sensing images,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 4, pp. 2337-2348, Apr. 2018.

S. Bell, C. L. Zitnick, K. Bala, and R. Girshick, “Inside-outside net:
Detecting objects in context with skip pooling and recurrent neural net-
works,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016,
pp- 2874-2883.

I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz, “Scene perception:
Detecting and judging objects undergoing relational violations,” Cogn.
Psychol., vol. 14, no. 2, pp. 143-177, 1982.

T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via
error-correcting output codes,” J. Artif. Intell. Res., vol. 2, pp. 263-286,
Jan. 1995.

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and
S. Belongie, “Objects in context,” in Proc. IEEE Int. Conf. Comput.
Vis., Oct. 2007, pp. 1-8.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” 2015,  arXiv:1511.07122. [Online].  Available:
https://arxiv.org/abs/1511.07122

T. Kong, A. Yao, Y. Chen, and F. Sun, “HyperNet: Towards accurate
region proposal generation and joint object detection,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 845-853.
Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale
deep convolutional neural network for fast object detection,” in Proc.
Eur. Conf. Comput. Vis., Oct. 2016, pp. 354-370.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.

G. Cheng, J. Han, P. Zhou, and L. Guo, “Multi-class geospatial object
detection and geographic image classification based on collection of part
detectors,” ISPRS J. Photogramm. Remote Sens., vol. 98, pp. 119-132,
Dec. 2014.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Comput. Vis.
Pattern Recognit., Jun. 2009, pp. 248-255.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in Proc. Int. Conf. Artif. Intell. Statist., Jun. 2011, pp. 315-323.
G. Cheng et al., “Object detection in remote sensing imagery using a
discriminatively trained mixture model,” ISPRS J. Photogramm. Remote
Sens., vol. 85, no. 9, pp. 3243, 2013.

D. Zhang, J. Han, G. Cheng, Z. Liu, S. Bu, and L. Guo, “Weakly
supervised learning for target detection in remote sensing images,” IEEE
Geosci. Remote Sens. Lett., vol. 12, no. 4, pp. 701-705, Apr. 2015.

J. Han et al., “Efficient, simultaneous detection of multi-class geospatial
targets based on visual saliency modeling and discriminative learning of
sparse coding,” ISPRS J. Photogram. Remote Sens., vol. 89, pp. 3748,
Mar. 2014.

T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-
SVMs for object detection and beyond,” in Proc. IEEE Int. Conf.
Comput. Vis., Nov. 2011, pp. 89-96.

Yiping Gong received the B.S. degree from Lanzhou
University, Lanzhou, China, in 2015, and the M.S
degree from Wuhan University, Wuhan, China,
in 2018, where she is currently pursuing the Ph.D.
degree with the State Key Laboratory of Informa-
tion Engineering in Surveying Mapping and Remote
Sensing.

Her research interests include object detection
from remote sensing images and instance segmen-
tation in 3D space.



44 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 1, JANUARY 2020

Zhifeng Xiao received the Ph.D. degree in pho-
togrammetry and remote sensing from Wuhan Uni-
versity, Wuhan, China, in 2008.

From 2014 to 2015, he was a Visiting Scholar with
the Computational Biomedicine Imaging and Model-
ing Center, Rutgers University, New Brunswick, NJ,
USA. He is currently an Associate Professor with
the State Key Laboratory of Information Engineering
in Surveying Mapping and Remote Sensing, Wuhan
University. His work consists of object detection
in remote sensing images, large-scale content-based
remote sensing image retrieval, and scene analysis on remote sensing images.
His research interests include remote sensing image processing, computer
vision, and machine learning.

Xiaowei Tan received the B.S. degree from the
China University of Geosciences, Wuhan, China,
in 2017. She is currently pursuing the master’s
degree in photogrammetry and remote sensing with
the State Key Laboratory of Surveying, Mapping and
Remote Sensing Information Engineering, Wuhan
University, Wuhan.

Her research interests include the application of
semantic segmentation in remote sensing.

Haigang Sui received the B.S. degree and the Ph.D.
degree in photogrammetry and remote sensing from
Wauhan University, Wuhan, China, in 1996 and 2002,
respectively.

He is currently a Professor with the State Key
Laboratory of Information Engineering in Survey-
ing, Mapping and Remote Sensing, Wuhan Univer-
sity. His research interests include change detection
of remote sensing, target recognition, and disaster
analysis.

Chuan Xu received the B.S. degree from Huazhong
Agricultural University, Wuhan, China, in 2006, and
the M.S. and Ph.D. degrees from Wuhan University,
Wauhan, in 2009 and 2013, respectively, where she
is currently pursuing the Ph.D. degree with the
State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing.

Her research interests include algorithm develop-
ment and application for synthetic aperture radar
image segmentation, classification, image registra-
tion, and target recognition.

Haiwang Duan received the M.S. degree from the
State Key Laboratory of Information Engineering
in Surveying Mapping and Remote Sensing, Wuhan
University, Wuhan, China, in 2017.

He is currently with an intelligence company,
SZ DII Technology Co., Ltd., Shenzhen, China. His
research interests include object classification and
detection.

Deren Li received the Ph.D. degree in photogram-
metry from the University of Stuttgart, Stuttgart,
Germany, in 1986.

He was the President of the former Wuhan Tech-
nical University of Surveying and Mapping from
1996 to 2000. He is currently a Professor and the
Chair of the Academic Committee of the State Key
Laboratory for Information Engineering in Survey-
ing, Mapping and Remote Sensing, Wuhan Univer-
sity, Wuhan, China. He has published eight books
and more than 400 papers. His research interests
include photogrammetry and remote sensing, global navigation satellite
systems, and geographic information systems (GISs), and their innovation
integrations and applications in China.

Dr. Li was elected as an Academician of the Chinese Academy of Sci-
ences in 1991, the Chinese Academy of Engineering, and the Euro-Asia
Academy of Sciences in 1995. He was the founding President of the Asia
GIS Association from 2003 to 2006. He was the President of the Chinese
Society of Geodesy, Photogrammetry and Cartography and the International
Society for Photogrammetry and Remote Sensing Commissions III and VI.
He is also the Vice President of the China Society of Image and Graphics,
a Chief Scientist of the Optics Valley of China, and the Co-Chair of the
Committee on Earth Observation and Satellites and the Integrated Global
Observing Strategy Partnership. In the 1980s, his research findings on a
posterior variance estimation-based iteration weighted method for bundler
location was recognized internationally and named the Deren Li Method.
His research on the separability theory of model errors scientifically solved
a hundred-year baffling problem in geodetic science and earned him the
1988 Best Paper Award of the German Society for Photogrammetry and
Remote Sensing and the Hansa Luftbild Award. He was a recipient of more
than ten national- and provincial-level awards and prizes, such as the Sci-tech
Progress Award, the National Excellent Textbook Award, and the Excellent
Educational Achievement Awards.



