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Abstract— This article presents a novel technique for
automatically locating tropical cyclone (TC) centers based on top
cloud motions in consecutive geostationary satellite images. The
high imaging rate and spatial resolution images of the Gaofen-4
geostationary satellite enable us to derive pixel-wise top cloud
motion data of TCs, and from the data, TC spiral centers can be
accurately determined based on an entirely different principle
from those based on static image features. First, a physical
motion field decomposition is proposed to eliminate scene shift
and TC migration in the motion data without requiring any
auxiliary geolocation data. This decomposition does not generate
the artifacts that appear in the results of the previously published
motion field decomposition. Then, an algorithm of a motion
direction-based index embedded in a pyramid searching structure
is fully designed to automatically and effectively locate the TC
centers. The test shows that the TC concentric motions are more
clearly revealed after the proposed motion field decomposition
and the located centers are in good agreement with the cloud
pattern centers in a visual sense and also with the best track
data sets of four meteorological agencies.

Index Terms— Geostationary satellite, motion field decomposi-
tion, tropical cyclone (TC), typhoon eye.

I. INTRODUCTION

TROPICAL cyclones (TCs) are intense warm-cored
cyclonic vortices, developed from low-pressure systems

over the tropical oceans and driven by complex air-sea inter-
action [1]. Recent trend analyses based on both archive data
and future projections consistently suggest an increase of the
mean intensity of global TCs over coming decades [2]–[6],
although there could be a decrease in TC frequency [7], [8].

Manuscript received February 5, 2019; revised June 10, 2019; accepted
July 20, 2019. Date of publication September 4, 2019; date of current version
November 25, 2019. This work was supported in part by the National
Natural Science Foundation of China under Grant 41676167 and Grant
41776183, in part by the National Key Research and Development Program of
China under Grant 2016YFC1401007, and in part by the Project of State
Key Laboratory of Satellite Ocean Environment Dynamics, Second Insti-
tute of Oceanography, under Grant SOEDZZ1804. (Corresponding author:
Gang Zheng.)

G. Zheng and J. Yang are with the State Key Laboratory of
Satellite Ocean Environment Dynamics, Second Institute of Oceanogra-
phy, Ministry of Natural Resources, Hangzhou 310012, China (e-mail:
gang_zheng@outlook.com).

J. Liu is with the Department of Earth Science and Engineering, Imperial
College London, London SW7 2AZ, U.K., and also with the State Key
Laboratory of Satellite Ocean Environment Dynamics, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.

X. Li is with the National Environmental Satellite, Data, and Information
Service, NOAA, College Park, MD 20740 USA.

Digital Object Identifier 10.1109/TGRS.2019.2931795

Research on TCs has, therefore, become more important and
urgent than ever before.

Accurate determination of TC centers is important to
forecast track and intensity of TCs, in order to take tim-
ing prevention measures to reduce damages of hazardous
TCs [9]–[14]. In this article, we present a method for auto-
matically tracking of TC centers reliably and accurately using
high-resolution (50 m) panchromatic images acquired by the
Gaofen-4 (GF-4) satellite in very high imaging rate.

Various spaceborne optical sensors have been widely used
to monitor and study TCs because of their large cover-
age, improving spatial resolution, and high imaging rate.
Visual-near infrared (VNIR) sensors receive radiation reflected
from top clouds of TCs have a typical resolution of hundreds
of meters to few kilometers. Manual TC-center determination
based on image features, such as tracing the movement of
spiral rainbands or overlaying spiral templates on remote
sensing images for the best match [9], is commonly used
but the process is subjective and time-consuming. Therefore,
the relevant research efforts have been focused on objectivity
and automation, as reviewed below.

Spiral structure feature is diagnostic in images of TCs
and provides a cue to find TC centers. In an early spiral
feature-based TC center determination algorithm [15], a skele-
ton of the spiral cloud is extracted, and the points on the skele-
ton are then fitted using logarithmic spiral curve model, and
the rotation center of the model with the best fit is determined
as the TC center. The model was then applied to weather
radar images, where the pixels of a whole image were taken
instead of those on the skeleton, and a genetic algorithm was
used to optimize the parameters (including the rotation center)
of the model [16]. A similar automatic algorithm using IR
satellite images was also given in [17]. The model was further
improved by using the logarithmic spiral band model instead
of the logarithmic spiral curve model to improve the robust-
ness, and the parameters were optimized by a chaos immune
evolutionary algorithm [18]. In addition to the spiral structure
feature, the near elliptic structure feature (surrounding the
cyclone central dense overcast region) in thermal IR images
could also be used to locate TC centers based on the ellipse
curve model to fit the closed brightness-temperature con-
tours near the cyclone center [19]. A brightness-temperature
gradient-based algorithm was proposed for IR images [20].
In the algorithm, the brightness-temperature gradient field is
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calculated from a TC IR image first, using a Sobel operator.
Then, a line aligning with the gradient vector at each pixel
is drawn across the whole image, and the number of lines
passing through each location in the image are counted and
stored in a matrix. The location corresponding to the largest
matrix element is considered as the TC center. A similar
algorithm was also given in [9], where the gradient field of
brightness-temperature variance value in a moving window
is used instead of the brightness-temperature gradient field.
In the algorithm presented in [21], cloud candidate regions are
segmented from an IR satellite image, using image binarization
and morphology operators. Then, the region, including a TC,
is recognized using a so-called weight slice method, and the
centroid of the region is considered as the TC center.

Recently, the application of synthetic aperture radar (SAR)
in TC observation has been a focus of researches [11], [13],
[22]–[34]. By benefiting from high spatial resolution and
cloud-penetrating capability of microwaves, SAR can clearly
capture a TC eye at sea surface level even if the eye is
completely covered by dense clouds [30]. Then, the centroids
of the captured eyes can be used to locate the TC centers.
In order to make SAR-derived TC centers objective, several
studies were carried out to extract TC eyes from SAR images
using various image-processing techniques, including wavelet
analysis, morphology operators, and binarization and water-
shed segmentation [11], [23], [26], [28]–[30]. For the case
of a TC partially covered by a SAR image, salient regions
were extracted based on the gray-level standard-deviation and
Gabor-feature maps, which mainly contain rain bands of the
TC; and then, the pixels on the skeleton of the longest salient
region were used to estimate the TC center, using an analytical
model of storm-relative inflow angle and a particle swarm
optimization algorithm [13].

Above reviewed studies on TC-center determination are
based on static features of TCs in a single remote sensing
image. Motion features of TCs revealed by consecutive
images can be used to locate TC centers as well [35]. One
of such algorithms is inspired by the property of a perfect
logarithmic spiral vector field: the angle between an arbitrary
vector in the field and the radial vector (relative to the field
center) at the same position is constant [35]. If this angle
is approximately compensated, the field will degrade into
an approximate sink vector field, and the location that most
vectors point to is considered as the center. This algorithm
was applied to locate TC centers from vector fields derived
from a sequence of radar intensity images of a 3-km constant
altitude plan position indicator. The algorithm requires several
parameters, including the angle, to be empirically estimated
in advance, and can be improved by adaptive estimation [35].
Overall, compared with the static feature-based methods,
motion feature-based TC-center estimation is less studied and
yet to be further explored.

Winds at cloud level can be estimated from motions of
cloud features in two consecutive VNIR cloud images and
their imaging interval [36]. These wind data are usually
called “atmospheric motion vectors (AMVs)” (sometimes also
called “cloud motion vectors”), which provide valuable motion
information and can be used for TC center determination.

However, most current AMV observations are derived from
medium-size (typically from few to tens of kilometers cloud
features [37], and so, can describe only the general air-
flow [38]. The studies in [38]–[40] show that high spatial and
temporal resolution AMVs can better capture details of airflow
dynamics that are characterized by small and rapidly-changing
cloud features. TC cloud structures are typically fast-evolving
due to deformation, evaporation, and vertical shear [41], [42],
and cloud features are usually too short-lived to be tracked
by routine imaging intervals of meteorological satellites (e.g.,
30 min). The study in [43] demonstrates the significance
and effectiveness of shorter imaging intervals (3–7.5 min)
for improving the observation of rapidly changing features
in TC cloud images. Obviously, improving AMV spatial and
temporal resolution is essential to tracking cloud features
in a TC system, especially in the high-speed zone of the
eyewall [37], [41], [43], [44]. Since the 1960s, when cloud
motion was manually identified and measured initially [45],
various objective methods were developed to extract AMVs,
such as block matching [36], [46]–[48], object feature match-
ing [49]–[51], and optical flow algorithms [52]–[54].

In this article, pixel-wise AMVs were derived from pairs of
TC images of GF-4, using the phase correlation (PC) image
analysis system (PCIAS) [55]–[57]. As migration of a TC
system and translation induced from possible sensor swing
can distort centralized motion (rotation, converge, or radiation)
of TC, a physical meaningful motion field decomposition is
proposed in this article to eliminate the translation components
and extract the centralized motion components from the initial
AMV data. Finally, an algorithm of a motion direction-based
index embedded in a pyramid searching structure is fully
designed to automatically and effectively locate the TC cen-
ters. The whole proposed technique, comprising the motion
field decomposition algorithm and the TC Center determina-
tion algorithm, is new and novel.

II. TOP CLOUD MOTION DATA AND MOTION

FIELD DECOMPOSITION

A. GF-4 Satellite
GF-4 is the first Chinese high-resolution geostationary

satellite launched on December 29, 2015. It stationaries at
35 786 km above the Equator at 105.6◦ E and carries a staring
optical camera [58]. The camera has a panchromatic/NIR
(PNIR) CCD array sensor and an intermediate infrared (IIR)
HgCdTe array sensor, which share the same aperture but
are separated by a color filter. The PNIR sensor has five
spectral bands (0.45–0.90, 0.45–0.52, 0.52–0.60, 0.63–0.69,
and 0.76–0.90 μm) and can acquire images of different
bands successively through a rotary filter. The IIR has one
band (3.5–4.1 μm). For the PNIR sensor, the focal length
is 6600 mm, pixel size 9 μm, image size 10 240 × 10 240,
nominal resolution 50 m, and field of view angle 0.8

◦× 0.8
◦
,

while for the IIR sensor these sensor parameters are 1350 mm,
15 μm, 1024 × 1024, 400 m, 0.6

◦× 0.6
◦
, respectively.

The first PNIR band is a panchromatic band with wider
spectral range and higher signal-to-noise ratio (SNR) than the
other PNIR bands, we used this band images in digital number
for this article, which cover areas of about 512 km × 512 km.
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The high spatial-temporal resolution of GF-4 images
enables derivation of high-resolution AMVs, and thus, provide
a good opportunity to explore TC-center determination based
on its concentric motion characteristics. In a very recent case
study of typhoon Nepartak-2016, GF-4 image derived AMVs
of the TC eye area were used to refine the TC center [59]. This
article is a further advance toward fully automatic locating
TC centers in large regions covering the entire TC system
and adjacent areas using high spatial–temporal resolution
GF-4 images.

B. Top Cloud Motion Data

Consecutive images of several typhoons acquired at inter-
vals of tens of seconds captured the motion of the top clouds of
the typhoons nearly continuously. As thick clouds of a typhoon
are typically opaque to VNIR sensors and of rich texture, it is
possible to estimate the motion of typhoon top clouds at every
pixel by image matching, and thus, to generate time series of
the motion fields from these GF-4 images. This motion field
is limited on the cloud-top altitudes of a typhoon.

An in-house software package, the PCIAS, has been used
to derive typhoon AMVs [60]. PC is one of the most effective,
accurate, and robust techniques for image disparity estimation
at subpixel accuracy [61]–[65]. In principle, it is based on the
well-known Fourier shift property: a linear translation between
two resembling images in the spatial domain results in a
phase shift in the frequency domain of their Fourier transforms
(FT) [66]. Through aerial correlation between two overlapped
images, the shift between them can be identified directly in the
frequency domain at subpixel magnitude, based on the spatial
textures formulated by all the image pixels involved in the
comparison. This matching process can proceed pixel-by-pixel
via scanning, using a correlation window to compare neighbor-
hood patches of each pair of corresponding pixels in the two
images [55]–[57], thus deriving disparity maps (�X , �Y ) of
translation between every pair of corresponding pixels in the
two images. As an aerial matching-based algorithm, PC has
a low tolerance to the geometric distortion between the two
images in matching. Fortunately, the consecutive GF-4 images
are taken by the same camera in nearly identical geometric
status, and therefore, best suited to the PC algorithm. Other
algorithms based on feature points, such as scale-invariant
feature transform [67] and speeded-up robust features [68],
although can cope with considerable geometric distortion, are
not robust for and often not capable of matching the features of
continuous varying clouds because of the lacking of consistent
corresponding feature points for matching.

We have processed GF-4 images of several typhoons,
including Megi-2016, using the PCIAS to derive the motion
field data of typhoon top clouds.

C. Motion Field Decomposition

As described in Section II-A, a top cloud motion field
can be extracted from a pair of consecutive GF-4 images
of a TC; this field includes both translation and concentric
(rotation and radiation) motions of the TC during the time
interval between the two images. The translation includes

Fig. 1. Motion field generated by the PCIAS from a pair of GF-4 images
of Typhoon Nepartak-2016 and denoted with yellow arrows.

not only the migration of the whole TC system but also the
scene shift resulting from steering the camera to chase the
TC system and the minor instability of the imaging platform.
For instance, Fig. 1 presents a motion field generated by the
PCIAS from a pair of GF-4 images of Typhoon Nepartak-
2016. From the GF-4 image, we can see a clear eye in the
cloud structure. However, the motion field of the pair does
not show obvious concentric motion because of the co-existed
translational motion. The translation component of the TC
motion field needs to be removed to estimate the TC center
accurately. In principle, the scene shift can be compensated
using the auxiliary geolocation information, the four corner
geo-coordinates of the two images, but an effective correction
requires very high accuracy of these coordinates. If we can
decompose the TC motion field into translation and concentric
motion components, all the translational motions for whatever
causes can all be removed. We, therefore, designed a motion
field decomposition algorithm to remove the above mentioned
translational components from the top cloud motion field
without requiring any auxiliary geolocation information.

A 2-D motion vector field �V inside a domain � can be
decomposed as follows [69]:

�V = �Vψ + �Vχ + �V0 (1)
�Vψ = ẑ × ∇ψ (2)
�Vχ = ∇χ (3)

where × and ∇ denote cross product and the Nabla operator,
respectively. The symbols → and ^ denote vector and unit
vector, respectively. ẑ is the unit vector perpendicular to the
plane of � inwards, and the scales Ψ and χ satisfy

∇2ψ = ẑ · ∇ × �V (4)

∇2χ = ∇ · �V (5)
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Fig. 2. Motion field in Fig. 1 is decomposed using the previous method [69], and the motion components are denoted with yellow arrows. (a) Rotation
component, (b) divergence component, and (c) harmonic component.

where · denotes dot product and ∇2 is the Laplace operator.
From (2)–(5), it can be proved that �Vψ has the same curl of �V ,
and it is divergence-free while �Vχ , the same divergence of �V ,
and curl-free. Thus, the residual field �V0 is free of both curl and
divergence. Here �Vψ , �Vχ , and �V0 are called the rotation,
divergence, and harmonic components of �V , respectively. The
decomposition based on the above definition is not unique, but
with a physical constrain appropriately relevant to the problem,
a unique decomposition can be resolved. The cloud motion
field should be decomposed with such a physical constrain:
within a limited domain � with open boundary, which means
that there is no real physical interface between the limited
domain and its surrounding free space.

In a commonly used three-component decomposition
approach presented in [69], �Vψ and �Vχ are calculated using (2)
and (3), where Ψ and χ are resolved from the Poisson
equations of (4) and (5) with the Dirichlet boundary condi-
tion of imposing constant Ψ and χ on the boundary of �.
However, the Dirichlet boundary condition is not truly rep-
resentative for a limited domain with open boundary, and it
induces artificial phenomena in �Vψ and �Vχ . For instance,
no matter whatever the distribution of �V is, the �Vψ and
�Vχ decomposed based on the Dirichlet boundary condition
are always parallel and perpendicular to the boundary in the
margin along the boundary, as illustrated in Fig. 2, which
presents the results of decomposing the motion field in Fig. 1.
This is because when imposing the Dirichlet boundary con-
dition, the boundary becomes contour lines of Ψ and χ ,
and thus, the above artificial phenomena appear as implied
by (2) and (3).

In this article, instead of solving (4) and (5) with the
imposed boundary condition, we derived Ψ and χ in � using
the Green function of Poisson equation in free space, and the
final simplified formulas for calculating �Vψ and �Vχ at the
center of the pixel (m, n) are

( �Vψ)m,n = hx hy

8π
ẑ×

M�
m�=1

N�
n�=1

(ẑ · ∇ × �V )m�,n� �Gm−m�,n−n� (6)

( �Vχ)m,n = hx hy

8π

M�
m�=1

N�
n�=1

(∇ · �V )m�,n� �Gm−m�,n−n� . (7)

The derivation of (6) and (7) is given in the Appendix.
M and N are total numbers of rows and columns of an
image, respectively, and hx and hy are the size of a pixel in
column and row directions, respectively. (ẑ · ∇ × �V )m,n and
(∇ · �V )m,n are values of ẑ · ∇ × �V and ∇ · �V at the center of
the pixel (m, n), respectively, and �Gm,n is

�Gm,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0

m = 0 and n = 0� 1
−1

� 1
−1

ξhx x̂/2 + ηhy ŷ/2 − �rm,n

|ξhx x̂/2 + ηhy ŷ/2 − �rm,n |2 dξdη

else cases

(8)

where

�rm,n = �r1,1 + (n − 1)hx x̂ + (m − 1)hy ŷ. (9)

x̂ and ŷ are unit vectors in column and row directions, respec-
tively, and they satisfy the right-hand rule in relation to ẑ. �rm,n

and �r1,1 point to the centers of pixels (m, n) and (1, 1). The
integral in (8) can be conveniently calculated using Gaussian
quadrature. The convolution in (6) and (7) can be effectively
carried out using FT and inverse FT. Fig. 3 shows the results of
the proposed decomposition. It can be seen that the artificial
phenomena no longer appear in the rotation and divergence
components. Moreover, while the rotation component obtained
using the previous decomposition obviously does not center
at the TC eye, as shown in Fig. 2(a), the rotation component
obtained using the proposed decomposition does, as shown
in Fig. 3(a). The harmonic component indicates that there is a
large translation, which severely distorts the rotation and radial
motions and makes them indistinctive in the original motion
field shown in Fig. 1. With the harmonic component removed,
the concentric motion is clearly revealed in the rotation and
divergence components. For a clearer illustration, the eye and
its surrounding area of Figs. 2 and 3 are zoomed in as Fig. 4
in which, the motion components decomposed by the previous
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Fig. 3. Motion field in Fig. 1 is decomposed by the proposed method, and the motion components are denoted with yellow arrows. (a) Rotation component,
(b) divergence component, and (c) harmonic component.

Fig. 4. Eye area of Fig. 1 and the motion components of Figs. 2 and 3 are zoomed in. The motion components decomposed by the previous method [69]
and the proposed method are denoted with cyan arrows and yellow arrows, respectively. (a) Rotation component, (b) divergence component, and (c) harmonic
component.

method and the proposed method are denoted with cyan and
yellow arrows, respectively. Fig. 4(a) clearly demonstrates
that the center of the rotation component derived using the
previous method does not match the image feature of the
typhoon eye, while that derived using the proposed method
achieved a good matching. As indicated in Fig. 4(b), the
corresponding divergence component of the previous method
shows concentration inside a small area of the eye and
radiation outside. Such motion in the opposite direction around
a typhoon eye cannot be explained from the typhoon dynamics.
In contrast, the divergence component of the proposed method
shows consistent radiation in all directions from the eye as
expected for a mature TC system. The harmonic components
by the two methods are basically consistent with the minor
discrepancy in Fig. 4(c).

III. TC CENTER DETERMINATION ALGORITHM

The center of a TC system in its motion field is a point
where motion in all direction (rotation or radiation) converges

with the lowest motion speed, and it is, therefore, possible to
locate the TC center automatically based on the motion direc-
tion in combination with the motion speed of the TC motion
field data.

Considering that motion direction converging at the TC
center is the most typical characteristic of the TC cloud motion
field, a motion direction-based indicator is designed to search
the center of concentric motion in the field. For a motion vector
in any direction, we can represent its motion direction on a unit
circle according to its compass angle as a unit direction vector.
For a perfectly symmetric concentric motion (e.g., rotation
and radiation), the direction vector at any location in the
neighborhood of the motion center has its opposite counterpart
at the symmetric location. Thus, the mean of the direction
vectors should be equal to zero. The greater the magnitude of
the mean of the direction vectors (MMDV), the less concentric
the motion. Therefore, we can use the MMDV as an indicator
to search the center of concentric motion by its minimal.
The MMDV is the distance between the mean position of
the terminal points of direction vectors in the unit circle and
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Fig. 5. Diagram of the pyramid, where the search areas at its levels
(1, 2, 3, …) are represented by solid boxes (�1, �2, �3, ...). The initial
box is the entire image, and the box size at a specific level is a quarter of the
box size at the level below.

the circle center. We could also consider using the standard
deviation (SD) of direction vectors (SDDV) as an indicator,
and the largest SDDV may lead to the center of concentric
motion. As a measure of vector directions deviating from the
mean of the direction vectors, the largest SDDV can only be
reached when MMDV is equal to zero. However, fairly large
SDDV may be produced at nonzero MMDV, and for this
scenario, SDDV becomes a less robust indicator for motion
center. In the experiments so far, both indicators performed
equally competently to locate the TC centers. We choose to use
the MMDV for its better mathematical rationale and simplicity
in the calculation.

The above MMDV-derived TC center determination utilizes
motion direction of motion fields regardless of motion speed.
We can further tune a TC center located based on the MMDV
to the location with the minimum motion speed in its neigh-
borhood as the speed-adjusted TC center. In experiments, it is
not surprising to find that the speed-adjusted TC centers are
usually very close or overlap with the MMDV-derived centers
as the TC rotation center is often of the lowest speed.

We then designed a pyramid searching scheme to locate
the TC centers automatically based on the above indi-
cators (MMDV and the lowest motion speed around the
MMDV-derived TC center). By starting from the total image
area as the initial search area, the scheme is to reduce the
searching area step by step leading to the actual TC center
based on a recursion procedure.

1) Calculate and search for the smallest-MMDV among
candidate areas at the current level of the pyramid as
the possible area, including the TC center.

2) Choose the candidate area with the smallest-MMDV as
the search area for the upper level and partition it into
smaller candidate areas.

3) Repeat 1)–2) till the TC center is located at the pixel
level.

Fig. 6. Search area partition rule used in this article. The search area (big solid
box at the top of the figure) at the current level of the pyramid is partitioned
into nine smaller areas (shaded boxes) with its one-fourth size as candidates
for the search area at the upper level. The nine candidate areas are the top-left,
top-right, bottom-left, bottom-right, top-middle, bottom-middle, middle-left,
middle-right, and center parts of the search area at the current level. Some of
these partitions partially overlap.

Fig. 5 illustrates the scheme in a pyramidal diagram in
which the search area at each level is represented by a
solid box. The center of the final search area at the top of
the pyramid is determined as the MMDV-derived TC center.
Further, as an optional step, the MMDV-derived TC center can
be tuned by searching the location with the minimum motion
speed in its neighborhood as the speed-adjusted TC center.

The above conceptually described pyramid searching
scheme based on the MMDV for locating a TC center is
mathematically implemented in five steps to be described
below. Here we denote the search area and the j th candidate
area at level i of the pyramid as �i and �i, j , respectively. The
initial search area (�1) is the entire search area. The candidate
area set at level i is denoted as {�i, j }.

Step 1: Convert the motion directions of the motion vectors
at all the pixels in the motion field as direction vectors on a
unit compass circle.
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Fig. 7. Flowchart of the proposed TC center determination algorithm.

Step 2: Partition the search area �i at level i into a set
of smaller areas ({�i, j }) as candidates for the search area at
level i+ 1 according to a partitioning rule designed for fair
search. This step is denoted as follows:

{�i, j } = S(�i ) (10)

where S denotes the partition operation. The partition rule
used in this article is illustrated in Fig. 6. The top big solid
box represents the current search area at a particular level in
the pyramid. Nine candidate areas are defined in this search
area, as shown by the small shaded boxes. These candidates
are subareas in the top-left, top-right, bottom-left, bottom-
right, top-middle, bottom-middle, middle-left, middle-right,
and center part of the current search area with its one-fourth
size. Some of these candidate areas are designed to partially
overlap to avoid the concerned TC center area being truncated
by the partition. For rectangular images, the partition at the
first level can be easily modified accordingly, but the chosen
search areas after the first partition will always be square.

Step 3: Calculate the square of MMDV of each candidate
area at level i . The square of MMDV of the j th candidate
area (�i, j ) at level i is

f (�i, j ) = |mean
p∈�i, j

(d̂p)|2 (11)

where p ∈ �i, j denotes pixel p in �i, j , and d̂p denotes the
direction vector at pixel p, which has been calculated in Step 1.
meanp∈�i, j (d̂p) is the mean of the direction vectors for all
pixels in �i, j , which can be represented by the means (denoted
as d̄x and d̄y) of the two orthogonal components (horizontal
and vertical in the compass circle) of the direction vectors
in �i, j . Then, f (�i, j ) = d̄2

x + d̄2
y .

Step 4: Find the candidate area with the minimum of the
square of MMDV and set it to be the search area at the upper
level of the pyramid (�i+1). This operation can be written as
follows:

j � = argmin
j

f (�i, j ) (12)

Fig. 8. Boxes (in cyan) of the search areas at each level illustrate the
searching path from the bottom of the pyramid to the top until the TC center
is located. The red box denotes the neighborhood of the MMDV-derived TC
center for searching for the speed-adjusted TC center. The MMDV-derived
TC center and the speed-adjusted TC center are denoted by yellow dot and
red “×,” respectively. Search of the MMDV-derived TC center in 10 240 ×
10 240 AMVs takes 9 s in a desktop computer with CPU of E5-2630 v3 at
2.40 GHz and MATLAB R2015b.

�i+1 = �i, j � . (13)

Step 5: Repeat Steps 2 to 4. After each recursion, the search
area �i is reduced to a smaller area �i+1 that is 1/4 size of �i .
With the power of 2 reduction after each recursion, �i will
finally converge to an area with only 2 × 2 pixels. The center
of this small area is determined as the MMDV-derived TC
center.

Step 6 (Optional): Smooth the motion magnitude image
in the neighborhood of the MMDV-derived TC center, and
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Fig. 9. Overview of the GF-4 image pairs of Typhoon Megi-2016 taken during 06:00:36 to 06:47:05 UTC on September 26, 2016, and the results of motion
field decomposition and typhoon center determination. The background images are the master (first) images in the pairs. (a)–(d) Top cloud motion fields,
(e)–(h) rotation components of top cloud motion fields, and (i)–(l) divergence components of top cloud motion fields. The MMDV-derived typhoon centers
determined from the rotation components are denoted by yellow dots. The typhoon centers reported in the CMA, HKO, RSMC, and JTWC BT data sets
are denoted by red, cyan, magenta, and blue “+” in (e), respectively. The typhoon centers reported in the CMA, RSMC, and JTWC BT data sets overlap at
06:00:00 UTC.

TABLE I

BT RECORDS OF THE MAXIMUM WIND SPEED AND CENTER PRESSURE OF MEGI-2016

search for the location with minimum motion speed as the
speed-adjusted TC center.

For clarity, the flowchart of the algorithm is summarized
in Fig. 7.

Fig. 8 presents an example of locating the center of a TC
in the rotation component of its cloud motion field using
the algorithm described above. The cyan boxes define the
search area at each level, and they illustrate the searching
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Fig. 10. Overview of the GF-4 image pairs of Typhoon Megi-2016 taken during 02:00:01 to 03:53:02 UTC on September 27, 2016, and the results of motion
field decomposition and typhoon center determination. The background images are the master (first) images in the pairs. (a)–(d) Top cloud motion fields,
(e)–(h) rotation components of top cloud motion fields, and (i)–(l) divergence components of top cloud motion fields. The MMDV-derived typhoon centers
determined from the rotation components are denoted by yellow dots.

path from the bottom of the pyramid to the top until the TC
center is located. The red box denotes the neighborhood of
the MMDV-derived TC center for searching for the speed-
adjusted TC center. The MMDV-derived TC center and the
speed-adjusted TC center are denoted by a yellow dot and
red × mark, respectively; they are usually close to each
other.

IV. TEST AND ASSESSMENT

The automatic TC center determination algorithm based
on the motion field decomposition has been tested using
GF-4 images of several typhoons. The top cloud motion
fields were generated by the PCIAS from consecutive image
pairs and then decomposed by the proposed motion field
decomposition in Section II-B. Considering that rotation is
the main feature of a typhoon during most of its life cycle,
the MMDV-derived typhoon centers were determined in the
rotation components of the motion fields without applying the
lowest speed-based adjustment.

For reference, the International Best Track Archive for
Climate Stewardship (IBTrACS) version 3 was acquired. The
data are provided by the National Centers for Environmental
Information (NCEI), National Ocean and Atmospheric
Administration (NOAA), College Park, MD, USA, including
the best track (BT) data set of China Meteorological
Administration (CMA)—Shanghai Typhoon Institute, the BT
data set of Hong Kong Observatory (HKO), the BT data set
of Regional Specialized Meteorological Center (RSMC) of
Japan, and the BT data set of Joint Typhoon Warning Center
(JTWC). The typhoon center location, maximum wind speed,
and center pressure were normally reported every 6 h in these
BT data sets.

A. Typhoon Megi-2016
Typhoon Megi (2016) was imaged by the GF-4 satellite

in four periods: 06:00:36–06:47:05 UTC, September 26;
02:00:01–03:53:02 UTC, September 27; 05:00:01–
06:53:02 UTC, September 27; and 03:12:34–04:41:37 UTC,
September 28.
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Fig. 11. Overview of the GF-4 image pairs of Typhoon Megi-2016 taken during 05:00:01 to 06:53:02 UTC on September 27, 2016, and the results of motion
field decomposition and typhoon center determination. The background images are the master (first) images in the pairs. (a)–(d) Top cloud motion fields,
(e)–(h) rotation components of top cloud motion fields, and (i)–(l) divergence components of top cloud motion fields. The MMDV-derived typhoon centers
determined from the rotation and divergence components are denoted by yellow dots. The typhoon centers reported in the CMA, HKO, RSMC, and JTWC
BT data sets are denoted by red, cyan, magenta, and blue “+” in (g), respectively. The typhoon centers reported in the CMA and HKO BT data sets overlap
at 06:00:00 UTC.

During the first imaging period (06:00:36–06:47:05 UTC,
September 26, 2016), 17 consecutive image pairs with a 179 or
180 s (six frames) interval from 76 images were processed.
Fig. 9 presents part of them to illustrate the results of motion
field decomposition and typhoon center determination. The
yellow arrows denote the motion vectors. The background
images are the master (first) GF-4 images of the pairs. The
MMDV-derived typhoon centers determined from the rotation
components are denoted by yellow dots in Fig. 9(e)–(h). For
reference, the typhoon centers reported in the four BT datasets
at 06:00 UTC are also shown in Fig. 9(e), and denoted by red,
cyan, magenta, and blue “+” for CMA, HKO, RSMC, and
JTWC data, respectively.

The GF-4 images show that during the first imaging period,
Megi-2016 had already become a typhoon having a typical
structure with a typhoon eye in the center, as a hole, and fast
swirling clouds rotating anticlockwise around the eye forming
a dish. The maximum wind speeds and center pressures at

06:00 and 12:00 UTC, September 26, 2016 (Table I) indicate
that Megi-2016 was in steady status during the period. The
motion fields overall present deformed concentric patterns
with a low-speed area and a high-speed area appearing in
the bottom and top-right parts of the scene. After the motion
field decomposition, the concentric rotation is clearly shown
in the rotation components. The rotation components are
consistent with the spiral cloud structure in the corresponding
GF-4 images, indicating an obvious rotation center with low
motion speed surrounding the eye. The divergence components
also indicate a radiation center slightly deviates from the
eye. The MMDV-derived typhoon centers determined from the
rotation components are in a good agreement with the visual
observation of the typhoon eye and the BT records.

During the second imaging period (02:00:01–03:53:02
UTC, September 27, 2016), 27 consecutive image pairs with
a 206 or 207 s (four frames) interval from 97 images
were processed. Fig. 10 presents an overview of the results
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Fig. 12. Overview of the GF-4 image pairs of Typhoon Megi-2016 taken during 03:12:34 to 04:41:37 UTC on September 28, 2016, and the results of
motion field decomposition. The background images are the master (first) images in the pair. (a)–(d) Top cloud motion fields, (e)–(h) rotation components of
top cloud motion fields, and (i)–(l) divergence components of top cloud motion fields.

illustrated by part of the data. The GF-4 images show that
during the second imaging period, Megi-2016 was still a
cyclone dish with an eye. The maximum wind speeds and
center pressures at 00:00 and 06:00 UTC, September 27, 2016
(Table I) indicate that the intensity of Megi-2016 was decreas-
ing during the period. The motion fields present deformed
concentric patterns with a low-speed area and a high-speed
area appearing in the bottom-right and top-left parts of the
scene. The rotation components of the motion fields, after
decomposition, reveal more typical concentric rotation patterns
with a well-defined rotation center of low motion speed.
The divergence components show two radiation centers: one
slightly deviates from the eye while the other is much farther
away from the eye. The MMDV-derived typhoon centers
determined from the rotation components are in a good
agreement with the visually recognized eye positions in the
GF-4 images.

During the third imaging period (05:00:01–06:53:02 UTC,
September 27, 2016), Megi-2016 made landfall over the city
of Hualien on Taiwan Island around 06:00 UTC. Twenty-six
consecutive image pairs with a 206 or 207 s (four frames)

interval from 93 images were processed, and Fig. 11 presents
an overview of the results illustrated by part of the data. The
GF-4 images show that during the third period, Megi-2016 still
has a spiral cloud structure but no eye anymore. The maxi-
mum wind speeds and center pressures at 00:00, 06:00, and
12:00 UTC, September 27, 2016 (Table I) indicate that the
intensity of Megi-2016 decreased further during the period.
Similar to the first and second periods, the motion fields also
present deformed concentric patterns. The position of the cen-
ter of the rotation component became unstable soon after the
landfall (around 06:00 UTC) of Megi-2016. Complicated inter-
action between the typhoon and the high terrain relief (e.g., the
Central Mountains) of Taiwan Island weakened the typhoon
considerably. The MMDV-derived typhoon centers determined
from the rotation components are shown in Fig. 11(e)–(h).
The typhoon centers at 06:00 UTC, September 27, 2016, in the
BT data sets are shown in Fig. 11(g) for reference, where
we can see that the MMDV-derived typhoon center and the
reported typhoon centers in the BT data sets are in a good
agreement at the BT data point. The MMDV-derived centers
from the divergence component are denoted in Fig. 11(i)–(l).
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Fig. 13. MMDV-derived centers of Typhoon Megi-2016 from GF-4 images
and the typhoon migration tracks in the BT data sets. The MMDV-derived
centers are denoted by dots. The typhoon migration tracks in the CMA, HKO,
RSMC, and JTWC BT data sets are denoted by red, cyan, magenta, and blue
lines. The labeled times in the figure are the times of the first TC center
locations at the beginning of the three imaging periods.

Comparison between Fig. 11(e)–(h) and (i)–(l) indicates that
before the landfall the MMDV-derived center determined from
the rotation component is visually more consistent with the
center of the cloud pattern than that determined from the
divergence component, but soon after the landfall the motion
of the typhoon eye was dominated by radiation rather than
rotation probably as the result of the interaction between the
typhoon and the high relief terrain of the Central Mountains
in Taiwan. In this case, the MMDV-derived TC centers from
the divergence components are more consistent with the cloud
patterns and the BT tracks than those from the rotation
components.

Megi-2016 migrated across Taiwan Strait northwestward
and made its second landfall over Hui’an County of Quanzhou
City around 20:40 UTC, September 27, 2016. The fourth
imaging period (03:12:34–04:41:37 UTC, September 28,
2016) was after the second landfall. Twenty-four consecutive
image pairs with a 206 or 207 s (four frames) interval from
78 images were processed, and Fig. 12 presents part of them
to illustrate an overview of the motion fields and their rotation
and divergence components. From the background images
in Fig. 12, we can see the cloud structures did not have
an eye and nor any obvious concentric feature during the
period. The maximum wind speeds and center pressures at
00:00 and 06:00 UTC, September 28, 2016 (Table I) indicate
that Megi-2016 had degraded to a tropical storm during
the period. The cloud structures and motion fields show no
obvious rotation centers, and Megi-2016 was approaching its
end. We did not locate the center of Megi-2016 system during
this period.

The MMDV-derived centers of Typhoon Megi-2016 deter-
mined from consecutive GF-4 image pairs of the first three
imaging periods and the typhoon migration tracks reported
in the four BT data sets are shown in Fig. 13. The
MMDV-derived typhoon centers are denoted by yellow dots,
and the typhoon migration tracks in the CMA, HKO, RSMC,
and JTWC BT data sets are denoted by red, cyan, magenta, and
blue lines. Because the first imaging period was short, and
the migration speed of Megi-2016 was low during the period

(about 5 m/s estimated from the BT data sets), the centers
cluster at the bottom-right corner of Fig. 13 around 21.58

◦
N,

126.29
◦
E. The centers determined from the rotation compo-

nents show a marginal linear migration track of Megi-2016
before the landfall over Hualien City, and this track is in a
good agreement with those in the BT data sets. After the
landfall, the detailed center positions determined from the
rotation components of typhoon top cloud motion fields using
the MMDV method become scattered though they overall
match the migration tracks of the BT records. As shown
in Fig. 13, the scattered rotation centers imply a drastic
jump in the position of the typhoon center. This revealing
phenomenon is interesting and needs further investigation and
verification. We reckon that the drastic jumping of the center
after the landfall was an internal structural variation inside the
typhoon system possibly in response to the topography of the
Central Mountains, while the typhoon system as a whole did
not jump and remain its steady trajectory toward the west.
As indicated before, the divergence component still kept its
strength while the rotation component weakened. Thus, for
this imaging period, the MMDV-derived centers were also
determined from the radiation components and are denoted
by green dots in Fig. 13, which are less scattered.

B. Other Typhoons

For further verification, the proposed MMDV-pyramid
searching method for TC center determination has also been
tested with the GF-4 cloud images of other five typhoons
(Nepartak-2016, Sarika-2016, Haima-2016, Nesat-2017, and
Talim-2017). Fig. 14 shows the diverse cloud patterns of
these typhoons with or without eyes. The optical flow of
the rotation components of the cloud motion fields derived
from GF-4 image pairs is presented by yellow arrows with
the MMDV-derived rotation centers denoted as yellow dots.
The typhoon centers reported in the CMA, HKO, RSMC, and
JTWC BT data sets are also shown in Fig. 14(b) and (c) for
reference, which are denoted by red, cyan, magenta, and blue
“+,” respectively. We can see that the MMDV-derived centers
are in accordance with the cloud pattern centers in a visual
sense and also with the reported TC centers in the BT datasets.
The results demonstrate the effectiveness and robustness of
the method that works well for typhoon systems with a great
diversity of spatial patterns, even for the very complicated
case, as shown in Fig. 14(k). According to our experiments,
we are confident that the proposed method can reliably locate
the TC rotation center as long as the rotation motion is
dominant in a cloud feature system. This is fundamentally
different from the static image feature-based methods that
rely on recognizing spiral structures based on cloud feature
patterns.

C. Speed-Adjusted Centers

Fig. 15 presents two examples of speed-adjusted cen-
ters determined from rotation components of motion
fields, as marked by green “×,” in comparison with the
MMDV-derived centers marked by yellow dots. In almost all
the image pairs that we tested, speed-adjusted centers and



ZHENG et al.: AUTOMATICALLY LOCATE TC CENTERS 10187

Fig. 14. Rotation components of top cloud motion fields of five typhoons and the MMDV-derived typhoon centers determined from the rotation components
are denoted by yellow arrows and dots. The typhoon centers reported in the CMA, HKO, RSMC, and JTWC BT data sets are also shown in (b) and (c) for
reference, which are denoted with red, cyan, magenta, and blue “+,” respectively. The typhoon centers of Nepartak reported in the CMA, RSMC, and JTWC BT
data sets overlap at 06:00:00 UTC, July 7, 2016. (a) and (b) Nepartak-2016, (c)–(e) Sarika-2016, (f)–(h) Haima-2016, (i)–(k) Nesat-2017, and (l) Talim-2017.

Fig. 15. In almost all the cases that we tested, (a) MMDV-derived centers
(yellow dots) and speed-adjusted centers (green “×”) nearly overlap, and (b) in
a few cases, they are apart in very small differences.

MMDV-derived centers nearly overlap like in Fig. 15(a), and
only in a few cases speed-adjusted centers deviate slightly
from MMDV-derived centers like in Fig. 15(b). This is in

accordance with the fact that at the rotation center of a
typhoon, the speed in the rotation plane is minimum.

V. CONCLUSION

The Chinese GF-4 geostationary satellite is capable of cap-
turing top cloud motions of TCs in the panchromatic band with
high resolution of 50 m, wide coverage of 512 km × 512 km,
and high imaging rate as frequent as 20 s. Such powerful
imaging capability enables derivation of TC top-cloud motion
AMV data at unprecedented high tempo-spatial resolution.
The new data triggered our development of a new method
to automatically and accurately determine TC centers based
on cloud concentric motion, as presented in this article.
The processing procedure of the method comprises three
parts.

1) Generating the pixel-wise motion fields of TCs from
pairs of consecutive GF-4 image using our advanced PC
image matching software with subpixel accuracy.
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2) A refined motion field decomposition with a
physics-based meaningful constraint is designed to
decompose a motion field to rotation and divergence
components and meanwhile remove all possible
translational components, including both TC migration
and scene shift, without introducing artifacts as did by
the previously published decomposition algorithm.

3) Considering that rotation is the diagnostic feature of a
TC during most of its life cycle, its center can be deter-
mined based on the rotation component of its motion
field. Thus, a rotation center locating method based on
a simple indicator (MMDV) executed with a pyramid
search scheme is developed to effectively locate rotation
center by using motion direction information in the rota-
tion component extracted via the decomposition of cloud
motion field data. For further refinement, the location
with the minimum motion speed in the neighborhood of
the MMDV-derived center can be searched to adjust the
position and called speed-adjusted center.

The above TC center determination method has been tested
using the GF-4 images of six typhoons. TC centers are accu-
rately tracked in all cases. For almost all cases, the MMDV-
derived and speed-adjusted typhoon centers entirely or nearly
overlap; this is in accordance with our intuition that the
rotation center of a typhoon is also the location with minimum
motion speed in the rotation plane. The located typhoon
centers are in good agreement with cloud pattern centers
in a visual sense and also with those reported in the four
BT datasets of CMA, HKO, RSMC, and JTWC. However,
the dense TC center data that we derived reveal that after land-
fall of a typhoon, the position of the typhoon rotation center
can become scattered as the case of the Megi-2016 landfall
over the city of Hualien on Taiwan Island. The phenomenon
may have resulted from the interaction between the typhoon
and the high terrain relief of the Taiwan Central Mountains.
Further investigation is pending.

In fact, conventional methods such as manual recognition
via visual interpretation could achieve higher accuracy in some
cases but often subject to human errors. Our technique can
fully automatically and accurately locate the TC centers, and
the results are consistent with visual assessment in most cases.
The process is efficient, objective, and repeatable.

For the purpose of automatic tracking a TC, many short
imaging periods with high imaging rates are preferable than a
few long periods. Decreasing the length of the imaging period
but increasing the number of periods could be a more effective
and economic imaging process for typhoon monitoring.

APPENDIX

Using the Green function (denoted as g) of Poisson equation
in free space, Ψ and χ in � can be written as follows:

ψ = P.V.
��

�
gẑ · ∇ × �V d�� (A1)

χ = P.V.
��

�
g∇ · �V d�� (A2)

where P.V. denotes Cauchy principal value, and g is

g(�r , �r �) = ln |�r − �r �|/2π + c (A3)

where |·| denotes vector magnitude. �r denotes position vectors,
and c is a constant.

Applying (A1)–(A3) to (2)–(3) gives

�Vψ = 1

2π
P.V.

��
�

ẑ × �r − �r �

|�r − �r �|2 ẑ · ∇ × �V d�� (A4)

�Vχ = 1

2π
P.V.

��
�

�r − �r �

|�r − �r �|2 ∇ · �V d��. (A5)

Equations (A4) and (A5) are physical constrain. (1)/(2π)ẑ ×
(�r − �r �)/(|�r − �r �|2) and (1)/(2π)(�r − �r �)/(|�r − �r �|2) are the
rotation and radiation fields in free space derived from rotation
and divergence point sources at position �r �. �Vψ and �Vχ are the
rotation and divergence components of �V derived from the
distributed rotation and divergence sources (i.e., ẑ · ∇ × �V d��
and ∇ · �V d��) inside �. Thus, the motions of rotation and
divergence inside � are extracted. The residual �V0 of � after
the extraction of �Vψ and �Vχ is curl- and divergence-free,
which includes both TC migration and scene shift without any
contribution to �Vψ and �Vχ according to (A4) and (A5).

Equations (A4) and (A5) can be simplified to (6) and (7)
for calculating �Vψ and �Vχ at the center of the pixel (m, n).
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