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Abstract— Multi-modal data fusion has recently been shown
promise in classification tasks in remote sensing. Optical data
and radar data, two important yet intrinsically different data
sources, are attracting more and more attention for poten-
tial data fusion. It is already widely known that a machine
learning-based methodology often yields excellent performance.
However, the methodology relies on a large training set, which is
very expensive to achieve in remote sensing. The semi-supervised
manifold alignment (SSMA), a multi-modal data fusion algo-
rithm, has been designed to amplify the impact of an exist-
ing training set by linking labeled data to unlabeled data
via unsupervised techniques. In this paper, we explore the
potential of SSMA in fusing optical data and polarimetric
synthetic aperture radar (SAR) data, which are multi-sensory
data sources. Furthermore, we propose a MAPPER-induced
manifold alignment (MIMA) for the semi-supervised fusion of
multi-sensory data sources. Our proposed method unites SSMA
with MAPPER, which is developed from the emerging topological
data analysis (TDA) field. To the best of our knowledge, this is
the first time that SSMA has been applied on fusing optical data
and SAR data, and also the first time that TDA has been applied
in remote sensing. The conventional SSMA derives a topological
structure using k-nearest neighbor (kNN), while MIMA employs
MAPPER, which considers the field knowledge and derives a
novel topological structure through the spectral clustering in a
data-driven fashion. The experimental results on data fusion with
respect to land cover land use classification and local climate zone
classification suggest superior performance of MIMA.

Index Terms— Hyperspectral image, MAPPER, multi-modal
data fusion, multi-sensory data fusion, multispectral image,
polarimetric synthetic aperture radar (PolSAR), semi-supervised
manifold alignment (SSMA), topological data analysis (TDA).

I. INTRODUCTION

IN RECENT decades, data fusion has attracted a lot
of attention in the remote sensing community [1]–[4],
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motivated by the simple fact that multiple data sources reveal
complementary physical properties of observed scenes. For
example, optical RGB data normally possess high spatial
resolution [5], while multi/hyperspectral data contain spec-
tral information [6], and synthetic aperture radar (SAR) data
give dialectic and geometric properties. Thus, it is valu-
able to develop algorithms that are able to take advantage
of different data sources for applications. In this regard,
machine learning techniques are becoming increasingly impor-
tant due to their excellent performance [7]–[9]. As is generally
known in machine learning, the training data set is of great
importance [10]. Most successful techniques require a large set
of training data [11]. However, accessing a large training data
set is very expensive, especially in remote sensing, because
labeling a training data set in this field requires expertise that
is more complicated than identifying dogs and cats. Therefore,
a semi-supervised learning technique is a good option for
remote sensing tasks, as the unlabeled data set is linked
to the training data set by unsupervised approaches in the
learning of the technique. It amplifies the effect of the existing
training data set. Considering the importance of data fusion
and precious training data, this paper studies a semi-supervised
learning technique, named manifold alignment, to fuse optical
image and polarimetric SAR (PolSAR) data for the purpose
of classification.

A. Fusion of Optical and SAR Data

Due to the rapid development of remote sensing missions,
such as LandSat-8, Sentinel-2, and EnMAP for optical remote
sensing and TerreSAR-X, Tandem-X, and Sentinel-1 for radar
remote sensing, a huge amount of optical data and SAR data
have been collected; the data volume can be expected to
increase over time. The fusion of the two data sets holds
great potential for use in various applications [12]. Besides
the data availability, the other reason to fuse them is that
dialectic and geometric properties provided by SAR data are
complementary to the spectral information of optical data.
However, fusing them, in practice, is not as straightforward
as the argument for doing it. The difficulty lies in the
intrinsic differences in their imaging geometry. Because of
the slanted looking angle of the SAR sensor, SAR images
have an oblique appearance with distortions of foreshortening,
shadowing, and layover. This results in image geometry that is
severely dissimilar to the nadir looking optical data. The extent
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of SAR distortions is positively correlated with height. This
will pose substantial challenges when fusing these two data
sets, especially in urban areas with large height fluctuations.
To date, some studies have explored fusing these two data
sources. We categorize those studies into three types based on
their purposes: 1) registration oriented; 2) detection oriented;
and 3) classification oriented.

1) Registration: It is actually a prerequisite of any further
fusion. However, precise registration of SAR and optical image
is very challenging due to geometric differences. A conditional
generative adversarial network [13] was trained to generate
an artificial SAR image given a real-world optical image,
and the optical image and SAR data are then registered by
matching the artificial SAR data with the real-world SAR data.
This technique was shown to be effective in a suburban area.
A 3-D registration is introduced in [14] to align optical and
SAR data by imitating the physical procedure of optical and
SAR imaging based on a digital surface model. A pseudo-
siamese convolutional neural network (CNN) architecture [15]
was trained to identify corresponding optical and SAR data
in image patches and showed promising preliminary results.
By far, although progress has been made in recent years,
precise SAR and optical data registration has not achieved
a robust solution yet, especially for complex urban areas.
Thus, for other purposes of fusing these two data sources,
the straightforward approach is registration by geographic
coordinates.

2) Detection: Detection tasks have been proven successful
by using optical and SAR data for the purpose of detecting
building outlines [16], crops [17], water [18], [19], and urban
areas [20]. Since the detection task focuses on specific targets,
studies extract representation of those targets from each of the
two data sources so that they can work together to identify
targets. For example, for detecting crops, optical data provide
spectral signatures and SAR provides scattering mechanisms
of interested targets; these characteristics are extracted and
used together to identify the target under detection.

3) Classification: It is more challenging than detection tasks
for more than one class of interest is under consideration. This
paper focuses on these challenges [21]. Recently, a number of
studies [22]–[25] have tried to solve classification tasks by
using both optical and SAR data. In general, these fusing
strategies all extract features from the individual data set,
then concatenate all the features, and feed them into various
classifiers. The most important part of this procedure is to
extract hand-crafted informative features [26] regarding clas-
sification. A two-stream CNN [27] derives high-level features
of individual data sets by utilizing the power of CNN and
then concatenates those features for classification. In brief,
concatenation is the main strategy for fusing SAR and optical
data so far, which is an effective and straightforward approach.

B. Semi-Supervised Manifold Alignment

Semi-supervised manifold alignment (SSMA) pursues a
projection for each input data source and maps corresponding
data into a shared latent space [28], [29]. These properties
hold within this space: 1) data of the same classes locate

close to each other; 2) data of different classes locate far
from each other; and 3) the topological property of individual
data is preserved. These three properties make SSMA to be
a promising candidate for our task from a methodological
perspective for two reasons. First, the first two properties pro-
mote classification-wise advantageous information from any
data source to be used. Second, the final property implicitly
connects unlabeled data to training data, which amplifies the
functionality of the training data. These two factors meet our
need for an algorithm that fuses data sets with the maximum
usage of the training data.

In the remote sensing community, SSMA has been inves-
tigated for various applications. It was applied to fuse an
RGB image and hyperspectral image so that the visualiza-
tion of hyperspectral image could be achieved in the latent
space, exhibiting more spectral information than conventional
visualization methods in [30]. A kernel manifold alignment
was introduced in [31] to fuse multiple optical remote sens-
ing data into a latent space by nonlinear projections for a
classification task. Manifold alignment was also used in [32]
to align spectral signatures from different optical data sets by
projecting them into a latent space so that object detection was
achieved.

In regard to remote sensing data fusion, different data
sources observe the same region of interest. Essentially,
the observed target is a single object that appears differently in
data sources due to sensor specifications. Thus, this question
arises. Although SSMA is a good choice in theory, does one
latent space where data sources can be aligned exist? If it
exists, can we find that space by using SSMA? Tuia et al. [33]
applied SSMA to find the underlying space of multiple optical
data sets under three scenarios: different looking angles, multi-
temporal, and different sensors. In this paper, we aim to fuse
multi-sensory data sets, namely optical image and PolSAR
data, by SSMA.

C. Topology and MAPPER

One important feature of SSMA resides its exploration
of the topological structure of data. The conventional
manifold-based method [28], [29], [34]–[36] approximates
topological properties by using the kNN. They essentially
assume that the underlying manifold of the data is a Rie-
mannian manifold, which can be locally approximated by
Euclidean measurement [37]–[39]. Recently, topological data
analysis (TDA) has emerged as a new mathematical sub-field
of big data analysis by means of studying topological proper-
ties in the data [40]–[43]. One TDA tool, named MAPPER,
resolves a computable approximation of the Reeb graph, which
represents the topological structure of a data with respect to
one interested intrinsic property of the data [44], [45].

A general explanation of topology is that it is an art of
simplification. It ignores complex information of the object
under studying, and rather focuses on one meaningful aspect
of it. On this regard, conventional manifold methods focus on
the aspect of the local connection or the local structure. On the
side of MAPPER (Reeb graph), it focuses on the topological
structure of data related to the interested intrinsic property.
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In real applications, the MAPPER has been proven capa-
ble of revealing unknown knowledge in medical studies by
interpreting topological structures of data sets. The tool was
applied to analyze breast cancer transcriptional data and
uncover a subgroup of estrogen receptor-positive (ER+) breast
cancers. Patients suffering from this kind of cancer exhibit
100% survival and no metastasis. This finding was previ-
ously unknown and is invaluable for future treatment [46].
MAPPER was also applied to analyze the data of preclinical
traumatic brain injury (TBI) and spinal cord injury (SCI).
It revealed a previously unknown pattern of co-occurring TBI
and SCI, as well as a previously unknown harmful effect
of an experimental drug treatment [47]. With the help of
MAPPER, Li et al. [48] explored complex medical records
of type 2 diabetes (T2D) patients and revealed previously
unknown subgroups within T2D. All the above discoveries are
invaluable and contribute to greater precision in the practice of
medicine.

Besides the inspiration of these successful studies in
medicine and the sound theoretical foundation of the
MAPPER [44], the other reasons that motivated the authors
to utilize the MAPPER to explore the topological structure of
the remote sensing data are listed as follows.

1) Field Knowledge: The MAPPER focuses on the topo-
logical structure of data related to an intrinsic property.
In practice, the intrinsic property is quantitatively derived
from the data by an expert-designed filter function. The
quantified property operates as a lens through which the
MAPPER observes the data and extracts the topological struc-
ture of the data. Therefore, the choice of the lens, equally
the filter function, introduces a field knowledge into the
procedure of extracting topological structure. To the best of
our knowledge, the ability of extracting topological structure
from a field-knowledge perspective is unprecedented for the
manifold-related technique in remote sensing.

2) Regional-to-Global Topological Structure: Instead of
focusing on local structures of data points in conventional
manifold-based techniques, the MAPPER focuses on an intrin-
sic property introduced by the filter function. Under the
guidance of the filtered values, MAPPER divides the data
into several bins, derives topological structure of each bin, and
collects those structures together as a global one. This results
in a regional-to-global topological structure. For the complex
remote sensing data, especially SAR data, the regional derived
structure is more robust to outliers than the local derived
structure.

3) Data-Driven and Optimized Topology: The spectral clus-
tering is embedded into MAPPER in this paper, leading to a
data-driven and optimized topological structure.

1) A Data-Driven Topology: The eigen-gap concept in the
spectral clustering detects the number of clusters [49].
This ensures that the derived topological structure suits
the distribution of the data. Rather, conventional tech-
niques derive the topological structure of the whole data
set with the kNN of a fixed k [50].

2) An Optimized Topology: The spectral clustering is an
optimized graph-cut algorithm, which is capable of
unbiased grouping [51], [52]. However, a conventional

manifold technique directly relies on the precision of
the similarity measurement. Although sophisticated sim-
ilarity measurements have been developed in remote
sensing, the high dimensionality and the complexity of
the data still pose challenges on the measurement.

D. Summary

The contributions of this paper are threefold.

1) This paper studies the fusion of heterogeneous remote
sensing data sources, namely, the optical data and the
PolSAR data, with the SSMA technology.

2) To the best of our knowledge, this is the first time
that the TDA technique has been applied in the remote
sensing community.

3) A novel MAPPER-induced manifold alignment (MIMA)
is proposed for semi-supervised data fusion. Its perfor-
mance on the fusion of polarimetric data and optical data
regarding classifications is quantitatively analyzed.

The remainder of this paper is organized as follows.
In Section II, MAPPER and SSMA are reviewed, and MIMA
is introduced. The experimental setup, results, and compar-
isons are provided in Section III. Finally, Section IV provides
conclusions and remarks of this paper.

II. METHODOLOGY

In this section, we first introduce the background of the TDA
tool called MAPPER. Then, we review the basics of SSMA.
Finally, the novel MIMA is introduced.

A. MAPPER

In order to introduce MAPPER [44] in a comprehensive
and understandable way, we first provide an intuitive example
shown in Fig. 1. The theoretical foundation of MAPPER is
then introduced from the perspective of applied topology. Due
to heavy reliance on mathematical concepts for this paper,
we note that the notations in Section II-A represent separate
meaning from the other notations in the rest of this paper.

1) Intuitive Explanation: MAPPER is a mathematical tool
developed from applied topology to analyze and visualize
big data sets [44]. The algorithm essentially consists of three
components.

1) Filter Function Selection: MAPPER first requires a filter
function, which derives a filtering space where the inter-
ested intrinsic property is quantified. The chosen filter
function should reveal physical meaning or geometric
property of the data. It allows a specialist to introduce
field knowledge into data analysis. For the example
shown in Fig. 1, the filter function is chosen as the
distance to the wrist, so that a filtering space in Fig. 1(b)
is derived from the data point cloud.

2) Data Separation: In the filtering space, the continuous
value range is sliced into overlapped intervals with
a given overlap percentage and the number of inter-
vals, as shown in Fig. 1(c). Guided by the overlapped
intervals [54], the original input data can be sepa-
rated into overlapped data bins accordingly, as shown
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Fig. 1. Example of MAPPER approach to derive the topological structure
of the point cloud of a human hand. (a) Data space X , point cloud data
of a human hand. (b) Filtered space Z , points colorized by the filter value;
filter function f : assigning data points with their horizontal distances to the
right end. (c): U covering of Z, overlapped intervals of the filtered value.
(d): f −1(Uα) covering of X , separating original data into bins according to
the intervals in (c), data in bins retain their original dimension. (e) f −1(Uα)
covering of X , achieved by clustering bins of data. Modified from [53].

in Fig. 1(d). The separated data in bins have the same
dimension as the original data.

3) Clustering and Visualization Construction: Clustering is
applied on each data bin. Clusters of adjacent data bins
might include common data points. MAPPER constructs
a graph, where a node represents a cluster and an edge
represents a link of two clusters. The link is generated
for two clusters if they share common data points.
Therefore, the graph serves as a simplified visualization
of the topological structure of a data set. For example,
the graph in Fig. 1(e) is derived by MAPPER to repre-
sent the topological structure of the point cloud data of
a human hand.

It is worth to highlight that the filter function is not seen as
a dimension reduction, but quantifies a filtered space, which
guides the separation of the original data. As mentioned above,
topology is an art of simplification. The conventional manifold
learning focuses on the local structure of individual data
points. On the other hand, MAPPER derives the topological
structure of data while focusing on the property quantified by
the filter function.

2) Theoretical Foundation: First, it is necessary to introduce
the concept of covering in topology. In [55], it is explained as:
let p : U → Z be continuous and surjective. If every point z
of Z has a neighborhood C that is evenly covered by p, then
p is called a covering map, and U is defined to be a covering
space of Z , then p is a local homeomorphism of U with Z .
It means that, in terms of function p, the preimage in U and
the image in Z share the same topological properties locally.

The rest of the theoretical foundation is introduced in blocks
corresponding to the three components of the MAPPER.

1) Filter Function Selection: According to MAPPER [44],
data are situated in a topological space X , as shown
in Fig. 1(a). A continuous function f : X → Z projects
space X to another space Z , as shown in Fig. 1(b).

2) Data Separation: The space Z is equipped with a
covering space U , as shown in Fig. 1(c). Assuming
that covering space U is a k-simplex spanned by a
set {α1, α2, . . . , αk} so that U = {Uα}, since f is
continuous, f −1(Uα) forms a covering of space X and
could be used to represent topological space X of given
data, as shown in Fig. 1(d).

3) Clustering and Visualization Construction: The set
{α1, α2, . . . , αk}, as the vertices of k-simplex, is
k-connected components in topological space X which
can be achieved by clustering. Thus, f −1(Uα) is
achieved to represent data space X , as shown
in Fig. 1(e).

B. Semi-Supervised Manifold Alignment

Let Xi = [x1
i , . . . , xk

i , . . . , xni
i ] ∈ R

mi ×ni be a matrix
representing the i th data source, with mi dimensions by ni

instances. The term xk
i denotes the kth instance of the i th

data source. Let K denote the total number of data sources.
SSMA learns a set of K projections { f1, . . . , fK }. The i th
projection fi maps the i th data source Xi into the latent
space, where all the K data sources are aligned in terms
of the three desired properties discussed in the Introduction.
The properties are formulated by three matrices, called the
similarity matrix, the dissimilarity matrix, and the topology
matrix. More specifically, the similarity matrix (1) is computed
by labeled information to pursue property 1: the data of same
class located close to each other

Ws =
⎛
⎝

W 1,1
s · · · W 1,K

s
· · · · · · · · ·

W K ,1
s · · · W K ,K

s

⎞
⎠ . (1)

The dissimilarity matrix is formed as (2) to accomplish prop-
erty 2: data of different classes located far from one another

Wd =
⎛
⎝

W 1,1
d · · · W 1,K

d· · · · · · · · ·
W K ,1

d · · · W K ,K
d

⎞
⎠ . (2)

The topology matrix (3) describes the topological structure of
the data, which aims at property 3: the topological property
of individual data is preserved

Wt =
⎛
⎝

W 1,1
t 0 0
0 · · · 0
0 0 W K ,K

t

⎞
⎠ . (3)

Each of the matrices (1)–(3) is a matrix with the size (n1 +
n2 +· · ·+ nk)× (n1 + n2 +· · ·+ nk). In each matrix, the W i, j

is a matrix representing the relationship between the i th and
j th data sources on the individual property.

Similarity matrix Ws and dissimilarity matrix Wd are gen-
erated based on label information. If x p

i and xq
j share the

same label, then W i, j
s (p, q) = 1, otherwise W i, j

s (p, q) = 0.
If x p

i and xq
j belong to different classes, then W i, j

d (p, q) = 1,

otherwise W i, j
s (p, q) = 0.

Since the topological structure of the individual data set
is preserved, the matrix Wt is a block-wise diagonal matrix.
The topological structure is conventionally given by the kNN,



HU et al.: MIMA FOR SEMI-SUPERVISED FUSION OF OPTICAL IMAGE AND POLSAR DATA 9029

which means W i,i
t (p, q) = 1 if x p

i and xq
i are neighbors in a

given kNN neighborhood. Otherwise, W i,i
t (p, q) = 0.

In order to simultaneously model the three properties of the
latent space, three terms are formulated for the cost function

A =
K∑

i=1

K∑
j=1

ni∑
p=1

n j∑
q=1

‖ f T
i x p

i − f T
j xq

j ‖2W i, j
s (p, q). (4)

Minimizing (4) has the effect of pulling data of the same class
together in the latent space, which meets property 1

B =
K∑

i=1

K∑
j=1

ni∑
p=1

n j∑
q=1

‖ f T
i x p

i − f T
j xq

j ‖2W i, j
d (p, q). (5)

Maximizing (5) tends to push data of different classes away,
which is consistent with property 2

C =
K∑

i=1

ni∑
p=1

ni∑
q=1

‖ f T
i x p

i − f T
i xq

i ‖2W i,i
t (p, q). (6)

Minimizing (6) preserves the topological structure of indi-
vidual data set corresponding to property 3. Equations (4)–
(6) can be combined into the final cost function, which is
formulated as follows:

L( f1, . . . , fK ) = (A + C)/B (7)

and hence, an optimization problem (8) can be written as

argmin
f1,..., fK

L( f1, . . . , fK ). (8)

Proven in [29], the solution f1, . . . , fK that minimizes the
cost function L( f1, . . . , fK ) is given by the smallest nonzero
eigenvectors of the generalized eigenvalue decomposition
of (9). And, the matrices D and L in (9) are the degree matrix
and the Laplacian matrix, respectively

Z(μLt + Ls)Z T x = λZ Ld Z T x (9)

where

Z =
⎛
⎝

X1 0 · · · 0
· · · · · · · · · · · ·
0 · · · 0 X K

⎞
⎠

La = Wa − Da, a ∈ {s, d, t}

Da(p, q) =

⎧⎪⎪⎨
⎪⎪⎩

m1+···+mk∑
q=1

Wa(p, q) p = q

0 p �= q.

C. MAPPER-Induced Manifold Alignment for
Semi-Supervised Data Fusion

As introduced in Section II-B, three properties are pursued
in SSMA while projections are being learned. Essentially,
the first two properties seek to minimize intra-class variance
and maximize inter-class variance for the projected data by
using label information. This is a goal commonly pursued
by many classification strategies, such as linear discrimi-
nant analysis [56]. The third property, preserving topological
structure, brings two powerful characteristics to SSMA. First,
the topological structure is extracted from data, both with and

Algorithm 1: MAPPER (Xi , b, c, F)

Input: Xi ∈ R
mi ×ni : the i th data source with ni

instances and mi dimensions, b: the number of
bins, c: overlapping percentage of adjacent
bins, F: filter function.

Output: Wi,i
c : adjacent matrix with the size of ni × ni .

1 calculate the parameter space Xi F
2 divide Xi F into b intervals with c% overlap of adjacent

intervals
3 divide data Xi into b data bins corresponding to intervals

achieved in 2
4 for (each data bin):
5 Spectral clustering
6 end for
7 Construct topological matrix

Wi,i
c (p, q) =

⎧⎪⎨
⎪⎩

1, if p and q in the same cluster;

1, if p and q in the linked clusters;

0, otherwise.
8 Return Wi,i

c

Algorithm 2: MIMA ({Xi , Yi }, b, c, F)
Input: {Xi ,Yi }, i ∈ {1, . . . , K }: K data sources and

label, b: the number of bins, c: overlapping
percentage of adjacent bins, F: filter function.

Output: X̂i , i ∈ {1, . . . , K }: the learned latent features
of the K data sources.

1 Construct Ws by labeled data Yi , i ∈ {1, . . . , K };
2 Construct Wd by labeled data Yi , i ∈ {1, . . . , K };
3 for (i = 1:K):
4 Wi,i

c = MAPPE(Xi , b, c, F)
5 end for

6 Construct Wc =
⎛
⎝

W 1,1
c 0 0
0 · · · 0
0 0 W K ,K

c

⎞
⎠

7 Compute the projections { f1, . . . , fK } by solving Eq (9)
8 for (i = 1:K):
9 X̂i = Xi fi

10 end for
11 Return X̂i , i ∈ {1, . . . , K }

without a label. Thus, SSMA builds up connections among
them, which implicitly propagates the label information to
unlabeled data. This would amplify the usage of existing
labels. Since the label is valuable, the propagation property
of the topological term is highly valued. Second, topology
emphasizes a notion of nearness, but it can distort or even
ignore large distances [44]. This is a desirable property for
the purpose of classification. For instance, data of one class
located in a certain extent of feature space and locations with
large distance to the extent are meaningless for classifying the
specific class. This is also a proven truth in classification using
topology [35], [36].

In order to achieve the topological term, kNN commonly
serves as the tool to approximate topological structure in
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Fig. 2. Flowchart of the algorithm MIMA. (a) Training phase: a topological graph (Wc) is derived from the optical data and the SAR data by MAPPER.
A similarity graph (Ws ) and a dissimilarity graph (Wd ) are formed by using the label information. Therefore, three regularization terms A, B , and C are
formulated as (4)–(6), respectively. Finally, the projection to the latent space is learned by optimizing argmin

f1,..., fK

L( f1, . . . , fK ), where L( f1, . . . , fK ) =
(A + C)/B . (b) Testing phase: the out-of-sample optical data and SAR data are projected into the latent space to accomplish fusion.

conventional methods [29], [57], chosen for its simplicity.
In our proposed MIMA, we utilize MAPPER to extract
topological structure. There are two reasons to do so. First,
when applying MAPPER, field knowledge could be introduced
by choosing the filtering function F. In remote sensing clas-
sification, field knowledge is essential for the complicity of
data. Second, when using kNN, nearness is decided solely
by the parameter K, which is manually given. Once the K is
determined, it is applied to all data without any adaptation.
However, nearness is achieved by clustering in MAPPER,
which is a more robust approach than deciding nearness by
giving a threshold value K. Furthermore, in order to empower
MAPPER to decide the nearness in an adaptive manner,
the original single-linkage clustering [44], [58] is replaced by
the spectral clustering [51] in MIMA. The reason is that the
spectral clustering is able to detect the number of clusters by
the concept of the eigen-gap [51]. Thus, when clustering each
data bin, the number of clusters is decided based on the data
itself, meaning that the nearness is derived in a data-driven
manner. For different data bins, the numbers of clusters are
different, meaning that the nearness is derived for different
parts of data in adaptive fashion. Thus, our improved version

of MAPPER is capable of deriving topological structure in an
automatic and adaptive fashion.

Although the original goal of MAPPER is to provide a
simplified visualization of a complicated data set, as shown
in Fig. 1, one can also derive the comprehensive topological
structure of all data points using MAPPER. The topological
structure of data source Xi could be represented as an ni × ni

matrix W i
c , where ni is the number of instances: W i

c (p, q) = 1,
when data instances p and q are in the same cluster or in linked
clusters, otherwise, W i

c (p, q) = 0. In MIMA, the topological
matrix Wt in (3) is replaced by Wc as follows:

Wc =
⎛
⎝

W 1,1
c 0 0
0 · · · 0
0 0 W K ,K

c

⎞
⎠. (10)

The detailed steps of MIMA are summarized as a flowchart
in Fig. 2, and also as pseudo-code in Algorithm 1, and
Algorithm 2.

III. EXPERIMENTS AND DISCUSSION

A. Data Set and Feature Design
1) Land Cover Land Use Data Set: As shown in Fig. 3,

the Land Cover Land Use data set (LCLU data set) consists of
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Fig. 3. LCLU data set. (From left to right) RGB components of simulated EnMAP data, RGB component of Sentinel-1 dual-Pol data, LCLU training set,
and LCLU testing set.

three data sources: a hyperspectral image, dual-Pol SAR data,
and ground truth data. The hyperspectral image is a simulated
spaceborne EnMAP scene with a size of 817 × 220, a 30-m
ground sampling distance (GSD), and 244 spectral bands
ranging from 400 to 2500 nm [59]. The dual-Pol SAR data
are a VH-VV polarized Sentinel-1 single look complex (SLC)
data collected by an interferometric wide swath mode.1 The
Sentinel-1 SLC data are preprocessed by the ESA SNAP
toolbox.2 The processed dual-Pol SAR data have a GSD
of 13 m and a size of 1723 × 476. It is organized as
the commonly used PolSAR covariance matrix. The ground
truth is an LCLU data set derived from an Open Street Map
data.3

2) Local Climate Zone Data Set: The local climate zone
data set (LCZ data set) is demonstrated in Fig. 4. It consists
of a multispectral image, the dual-Pol SAR data, and the
ground truth data. The multispectral image is a scene of
LandSat-8 data with a size of 2220 × 2143, a 30-m GSD, and
11 bands. The dual-Pol SAR data are also a VV-VH polarized
Sentinel-1 data processed by the ESA SNAP toolbox. It has a
13.9-m GSD and a size of 4795 × 4632 and is organized as
the commonly used PolSAR covariance matrix. The ground

1https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-
modes/interferometric-wide-swath

2http://step.esa.int/main/toolboxes/snap/
3http://download.geofabrik.de/

truth is an LCZ label released by the IEEE GRSS IADF for
the data fusion contest in 2017.4

3) Label Configuration: For both the LCLU data set and
the LCZ data set, as shown in Figs. 3 and 4, the training
label and the testing label are block-wise separated so that the
transferring ability of algorithms is under examination and the
risk of implicitly including testing samples into the training
procedure is avoided [60]. The label information is detailed
in Tables I and II.

4) Unlabeled Data: Regarding SSMA and MIMA,
the training procedures involve both labeled data and unlabeled
data. The unlabeled data were selected by the clustering strat-
egy in [16] so that the cluster centers of unlabeled data were
selected. In this paper, for a more general case, the unlabeled
data for training are randomly selected outside the extent of
training set. For both the LCLU data set and the LCZ data
set, 6000 unlabeled data instances are selected to be involved
in training.

5) Feature Design of the LCLU Data Set: In order to
conduct fair comparisons among algorithms, two principles
are pursued on the design of input features of individual
data sources. The first principle is simply that the input
features of each data source should be the same for all
algorithms. The second principle is that, when an individual
data source is used for classification, the input feature should
enable reasonably good performance. This is to ensure that

4http://www.grss-ieee.org/
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Fig. 4. LCZ data set. (From left to right) First row: RGB components of LandSat-8 data and RGB component of Sentinel-1 dual-Pol data; second row: LCZ
training set and LCZ testing set.

TABLE I

SUMMARY OF TRAINING AND TESTING FOR LCLU DATA SET

later improvements do not originate from the unexplored
potential of one data source, but from the fusion or the
fusion algorithms. For example, due to the well-known curse-
of-dimensionality [61], conducting classification on selected
dimensions of hyperspectral images could result in better
performance than using the data with all dimensions [62].
If the original full dimensional data were used in our case,
it would then be unclear later whether the improvement comes
from the fusion or from the dimension reduction.

Regarding the feature design of the simulated EnMAP
data, the spectral–spatial feature concept is adopted by
extracting morphological profiles from extracted informative

TABLE II

SUMMARY OF TRAINING AND TESTING FOR LCZ DATA SET

sub-dimensions [63], [64]. Specifically, the first four principal
components (PCs) are extracted, which accounts for 99% of
the variances of the simulated EnMAP data. The morphologi-
cal profile is then extracted from these four PCs with a radius
equal to one, two, and three. In total, 28 features are extracted
from the simulated EnMAP data set.

Regarding the feature design of Sentinel-1 dual-Pol data,
four polarimetric features are derived: the intensity of the
VH channel, the intensity of the VV channel, the coherence
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TABLE III

NINE ALGORITHMS IN EXPERIMENTAL COMPARISONS. THEIR FUSION STRATEGIES ARE MA-FUSION (MANIFOLD ALIGNMENT FUSION) AND
DR-FUSION (JOINT DIMENSION REDUCTION FUSION). THE LEARNING RESOURCES ARE THE LABEL (ANNOTATED DATA-LABEL RECORDS),

THE PSEUDO-LABEL (PREDICTION FROM A CLASSIFIER), AND THE DATA STRUCTURE (THE DISTRIBUTION OF DATA IN FEATURE SPACE).
THE PARAMETERS OF THESE ALGORITHMS ARE k: THE kTH NEIGHBOR IN KNN FOR APPROXIMATING TOPOLOGICAL STRUCTURE,

dn: THE NUMBER OF DIMENSIONS IN THE PROJECTED SPACE, μ: THE IMPORTANCE WEIGHTING OF TOPOLOGICAL
STRUCTURE, AND α AND β : LEARNING RATES

of VV and VH, and the intensity ratio of VV and VH. Since
the morphological profile was proven to promote classification
of PolSAR [25], [65], [66], it is also used to extract spatial
information from dual-Pol data here with a radius equal to
one, two, and three. In total, it results in 28 features from
Sentinel-1 dual-Pol data.

6) Feature Design of the LCZ Data Set: The feature design
for the LCZ data set also follows principles described in the
feature design of the LCLU data set.

Regarding the feature design of the LandSat-8 data, in order
to achieve feature combination for reasonable good perfor-
mance, the feature extraction and selection follows the strategy
in the first prize work from the GRSS IADF data fusion contest
in 2017 [8]. Local statistical parameters (mean and standard
deviations in a 100×100 m2 neighborhood) and morphological
profiles are extracted from original LandSat-8 data. For details,
please refer to [8]. In total, 34 features are used in this
paper.

Regarding the feature design of Sentinel-1 dual-Pol data in
the LCZ data set, the data source and the preprocessing are the
same as those in the LCLU data set. The prepared fundamental
features are the four polarimetric features. However, due to
that the LCZ describes an urban local neighborhood at a grid
with a 100×100 m2 unit cell, feature extraction is different in
the LCZ data set than in the LCLU data set. Local statistical
parameters, mean and standard deviation of local 100×100 m2

cell, are derived from all four polarimetric features, resulting in
eight features. Morphological profiles are, therefore, extracted
from these eight features with a radius equal to one and three.
Thus, 40 features are prepared in total.

B. Experiments Setting

In experiments, nine algorithms, which are listed
in Table III, are applied to extract features from optical
and dual-Pol SAR data. Hereafter, three classifiers are
used to test the performance of these algorithms in terms of
classification accuracy. The seven algorithms are: (A) dual-Pol
SAR data (POL); (B) optical data (OPT); (C) fusing of optical
and dual-Pol SAR data by feature concatenation (OPT-POL);
(D) fusing optical and dual-Pol SAR data by COSPACE [67];

(E) fusing optical and dual-Pol SAR data by LeMA [68]; (F)
fusing optical and dual-Pol SAR data by unsupervised joint
dimension reduction using locality preserving projection [35]
(LPP); (G) fusing optical and dual-Pol SAR data by
semi-supervised joint dimension reduction using locality
preserving projection (LPP-SE); (H) fusing optical and
dual-Pol SAR data by SSMA [33]; and (I) fusing optical and
dual-Pol SAR data by the proposed MIMA.

Among these nine algorithms, parameter tuning is required
by (D) COSPACE, (E) LeMA, (F) LPP, (G) LPP-SE, (H)
SSMA, and (I) MIMA, as shown in Table III. For the (D)
COSPACE and (E) LeMA, two learning rates, α and β, need
to be set for the optimization. They are tuned by searching in
a grid of {10−1, 10−2, 10−3, 10−4}. Regarding the parameter
k in (F) LPP, (G) LPP-SE, and (H) SSMA, it has been
reported in [33] that the parameter does not have significant
influence on the result and is recommended to be nine. For
the parameters dn and μ, they will be discussed later in
our experiments. In MIMA, two more parameters have to be
decided: 1) b : the number of intervals for dividing the data
and 2) c: the overlapping rate. These two parameters have
limited influences, as discussed in Section III-F, especially
when compared with the other parameters. Their values are
chosen as 5% and 50%, respectively, which is a result of
consulting other studies [46], [48] and summarizing practical
experiences of the author.

Besides the parameter tuning, one important part of MIMA
is to select the filtering function. As discussed before, the fil-
tering function provides a perspective of observing the data
and introduces field knowledge. As PCs are widely used in the
classification of remote sensing data and have been proven to
be effective, and this is the first attempt of applying MAPPER
in remote sensing, the first and second PCs are chosen to serve
as the field knowledge in this paper.

As shown in Table III, (D) COSPACE, (E) LeMA, (H)
SSMA, and (I) MIMA all fall into the manifold alignment
fusion strategy. However, their learning resources are different.
COSPACE is designed to learn a joint latent space via the
existed labeled data. In addition to the labeled data, LeMA
also uses the pseudo-labeled data, predictions of a trained
classifier on unlabeled data, to include unlabeled data into
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Fig. 5. Classification performance in terms of OA for the experiments applied on the LCLU data set. The charts show the results of the three classifiers.
(From left to right) ONE-NN, LSVM, and KSVM.

TABLE IV

QUANTITATIVE PERFORMANCE COMPARISON WITH THE DIFFERENT ALGORITHMS ON THE LCLU DATA IN TERMS OF CLASS-SPECIFIC ACCURACY,
KAPPA COEFFICIENT, AVERAGE ACCURACY, OA, AND MEAN OA. THE BEST PERFORMANCE ACHIEVED IS SHOWN IN BOLD. POWER (a, b) OF

LEARNING RATES α = 10a AND β = 10b ARE SHOWN FOR COSPACE AND LEMA IN TERMS OF THE BEST PERFORMANCE. NUMBER OF

DIMENSIONS (dn) IS INDICATED AS (dn) FOR THE BEST PERFORMANCE OF LPP AND LPP-SE. PARAMETER VALUES OF μ AND THE

NUMBER OF DIMENSIONS (dn) ARE INDICATED AS (μ, dn) FOR THE BEST PERFORMANCE OF SSMA AND MIMA

the procedure of data fusion. For SSMA and MIMA, they
utilize the labeled data and extract the data distribution under
the guidance of mathematical assumptions to achieve data
fusion. Therefore, when a large amount of labeled data exists
or the data distribution is not correlated with labels, LeMA
would be more appropriate than SSMA and MIMA, and vice
versa.

Since our goal is to assess the performance of fusion,
three classical classifiers are chosen: the one-nearest-neighbor
(ONE-NN) classifier, the linear support vector machine
(LSVM), and the Gaussian kernel support vector machine
(KSVM). In this paper, parameter tuning of LSVM and KSVM
are done in a heuristic procedure [69].

C. Classification on the LCLU Data Set

This section demonstrates and discusses the experimental
results obtained on the LCLU data set.

1) Fusion Versus Non-Fusion: As shown in Fig. 5 and
Table IV, classification on fused hyperspectral imagery and
dual-Pol SAR data outperforms classification on the individual
data source in terms of classification accuracies. Among the
fusion algorithms, our proposed MIMA provides the best
classification performance, which, in terms of overall accuracy
(OA), exceeds classifications on dual-Pol SAR data by 25%,
20%, and 21% and exceeds classifications on hyperspectral
imagery by 7%, 4%, and 5%, using ONE-NN, LSVM, and
KSVM, respectively. This proves that fusion of hyperspectral
imagery and dual-Pol SAR data is advantageous to LCLU
classification.

2) Fusion Categories: Based on the properties of fusion
algorithms listed in Table III, to simplify the discussion,
we would like to divide these seven fusion algorithms into
four categories: 1) feature concatenation (OPT-POL); 2) joint
dimension reduction fusion (LPP and LPP-SE); 3) label-
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Fig. 6. Visualization of the optical data and the PolSAR data of the LCLU data set, using t-SNE [70] in their original and projected spaces. The x- and
y-axes are the first and second dimensions resulted from the t-SNE. First row: the PolSAR data in the original space, the optical data in the original space, LPP
jointly projected space, LPP-SE jointly projected space, and COSPACE projected space. Second row: the PolSAR data in SSMA projected space, the optical
data in SSMA projected space, the PolSAR data in MIMA projected space, the optical data in MIMA projected space, and LeMA projected space.

driven manifold alignment (COSPACE and LeMA); and
4) data-driven manifold alignment fusion (SSMA and MIMA).
According to the classification accuracy in Table I, with the
feature concatenation (OPT-POL) serves as the benchmark,
it is obvious to find that:1) joint dimension reduction fusion
algorithms achieve similar classification accuracy to the fea-
ture concatenation fusion; 2) the OA provided by label-driven
manifold alignment is around 7% lower than the accuracy
achieved by the feature concatenation; and 3) the data-driven
manifold alignment fusion outperforms the feature concate-
nation by 2%. Discussions regarding the three findings are
detailed as follows.

It is well known that the dimension reduction technique
is capable of boosting the classification accuracy due to the
curse of dimensionality [61]. However, according to finding 1,
this does not suit the feature concatenation fusion in our
experiment. Because the curse of dimensionality has been
tackled in our feature design, finding 2 also validates that the
improvement of our proposed method is not a side effect of
dimension reduction.

The label-driven manifold alignment fusion learns projec-
tions that map original data sources to a latent space purely
based on the label and applies learned projections on the unla-
beled data to accomplish fusion. Finding 2 gives a clear clue
that this type of fusion cannot provide a proper fusion result
for the LCLU data set. This could because the label-driven
learned latent space is not applicable to a general case, namely
the unlabeled data. Thus, the label-driven manifold alignment
fusion might provide a destructive fusion when the label data
cannot represent the data distribution, which is often the case
in remote sensing.

The data-driven manifold alignment fusion also learns pro-
jections that map original data sources to a latent space.
However, the latent space is jointly defined by the label and the
data structure explored from the original data sources, includ-
ing labeled and unlabeled data. Finding 3 suggests that the
data-driven manifold alignment fusion is an effective fusion
strategy, which improves the OA about 2% by comparing to
the feature concatenation fusion.

3) MIMA Versus SSMA: As shown in Fig. 5 and Table IV,
the proposed MIMA has superior performance to SSMA.
In Fig. 5, verified with three different classifiers, classifi-
cations on MIMA-fused data outperform classifications on
SSMA-fused data, when parameter μ and the number of
dimensions are the same for both fusion strategies. The
classification performance of the best parameter combinations
is shown in Table IV. It is clear that the novel MIMA strategy
still outperforms SSMA strategy, not only verifying the supe-
rior performance of the proposed novel MIMA algorithm but
also proving that a MAPPER-derived topological structure is
more effective than a kNN-derived structure regarding LCLU
classification.

4) Parameter μ: As shown in Fig. 5, with ONE-NN and
KSVM classifiers, a higher value of μ results in a better clas-
sification performance for both SSMA and MIMA algorithms.
Recalling that a higher value of μ assigns stronger weight on
topological structure of data in the fusing phase, this is solid
evidence that topological structure benefits our classification
task. We also find that the way MIMA derives the structure
is more beneficial to this LCLU classification than the way
SSMA accomplishes it.

5) Fusion Visualization: In Fig. 6, we visualize the
fused features of different algorithms using the t-SNE
algorithm [70]. It is obvious that the joint dimension reduction
technique results in a set of features which is less discrim-
inative than the original feature. This is also reflected on
the classification results, shown in Fig. 5. On the other side,
when using manifold alignment techniques, it is clear that the
derived feature is more discriminative than the original ones.

D. Classification on the LCZ Data Set

This section demonstrates and discusses the experimental
results obtained on the LCZ data set.

1) LeMA: The most outstanding phenomenon appears
in Fig. 7 and Table V shows that LeMA outperforms all the
other algorithms by 2%–6%, which is considered as a large
margin in this experiment. Since LeMA and COSPACE both
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Fig. 7. Classification performance in terms of OA for the experiments applied on the LCZ data set. The charts show results for the three classifiers. (From
left to right) ONE-NN, LSVM, and KSVM.

TABLE V

QUANTITATIVE PERFORMANCE COMPARISON WITH THE DIFFERENT ALGORITHMS ON THE LCZ DATA IN TERMS OF CLASS-SPECIFIC ACCURACY,
KAPPA COEFFICIENT, AVERAGE ACCURACY, OA, AND MEAN OA. THE BEST PERFORMANCE ACHIEVED IS SHOWN IN BOLD. POWER (a, b) OF

LEARNING RATES α = 10a AND β = 10b IS SHOWN FOR COSPACE AND LEMA IN TERMS OF THE BEST PERFORMANCE. THE NUMBER

OF DIMENSIONS (dn) IS INDICATED AS (dn) FOR THE BEST PERFORMANCE OF LPP AND LPP-SE. PARAMETER VALUES OF μ AND

THE NUMBER OF DIMENSIONS (dn) ARE INDICATED AS (μ, dn) FOR THE BEST PERFORMANCE OF SSMA AND MIMA

accomplish the fusion by using the labeled data and have
similar performance in the experiment of LCLU data set, it is
very interesting to find out the reason why LeMA not only
outperforms COSPACE but also all the other fusion algo-
rithm with a large margin. The difference between COSPACE
and LeMA is that, while learning the projections from the
labeled data, LeMA, additionally, includes pseudo-label into
the learning phase. The pseudo-labels are the predictions of
unlabeled data inferred by a trained classifier. LeMA has a
strategy of selecting pseudo-label, which has a high probability
to be correctly labeled. In our classification evaluation, those
correct-prone pseudo-labels are also used for training classi-
fiers of fused data. In the case of the experiment on the LCZ
data set, by comparing to original 3170 training records and
18 205 testing records, there are 1231 additional pseudo-labels
selected from the test data set, which are used for training
classifiers. It increases the training data set by 38.83% and
occupies 6.76% of the testing data for validation. We believe
that the change in classification setting is the main reason that
LeMA performs the best in the experiment of LCZ data set.

On the other hand, in the experiment of the LCLU data set
(3116 training records and 441 778 testing records), LeMA
has 721 additional pseudo-labels, which increases the training
data set by 23.14% and occupies 0.16% of the testing data for
validation.

2) Fusion: According to Table V, all fusion algorithms,
except LeMA, have similar performance to the classification
using only the multispectral imagery. Based on the 0.19%
difference between OPT-POL and OPT, we might infer that
features extracted from dual-Pol SAR data do not benefit the
LCZ classification scheme in terms of OA. However, the dual-
Pol SAR data do benefit classifications of certain classes,
namely, scattered trees, low plants, bare soil or sand, and
water. By comparing COSPACE, LPP, LPP-SE, SSMA, and
MIMA to OPT, mean OA improves by −3.32%, −1.1%,
−0.72%, −0.59%, and 0.49%, respectively. This infers that
few can be done by these fusion algorithms. However,
among these fusion algorithms, our proposed MIMA outper-
forms these four former algorithms by 3.81%, 1.59%, 1.21%,
and 1.08%.
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Fig. 8. Visualization of the optical data and the PolSAR data of the LCZ data set, using t-SNE [70] in their original and projected spaces. The x- and y-axes
are the first and second dimensions resulted from the t-SNE. First row: the PolSAR data in the original space, the optical data in the original space, LPP
jointly projected space, LPP-SE jointly projected space, and COSPACE projected space. Second row: the PolSAR data in SSMA projected space, the optical
data in SSMA projected space, the PolSAR data in MIMA projected space, the optical data in MIMA projected space, and LeMA projected space.

3) Data-Driven Manifold Alignment: When the fusion is
carried out by the OPT-POL, essentially, the information given
by the label decides the classification boundary. However,
in addition to the label, the data-driven manifold alignment
involves the topological structures of the data to find the
classification boundary. As shown in Fig. 7, SSMA cannot
compete with OPT-POL. This means that data structure is
not beneficial with respect to LCZ classification. This is
actually reasonable. The LCZ classification scheme describes
the contents of an urban local neighborhood relating to the
morphological structure, man-made or natural components,
and height of structures. However, the topological structure
derived from the remote sensing data reveals data structure in
terms of its physical meanings, such as covering materials for
multispectral images and geometric information for SAR data.
Thus, the structure is not directly related to LCZ concepts.
On this regard, the data-driven manifold alignment is more
appropriate for the LCLU classification, since the information
derived in the topological structure is directly related to LCLU
classes.

Despite the challenges that LCZ classes pose, when compar-
ing to OPT-POL, the proposed MIMA slightly improves 1.02%
OA with the LSVM. Comparing to LeMA, the performance
of MIMA differs by −3.83%, −0.79%, and 0.23% in terms
of OA with three different classifiers. We consider that the
performance is comparable. Only the −3.83% indicates a
big difference. However, this is because 38.83% and 6.76%
differences of training and testing records have a huge impact
on the ONE-NN classifier. With the two other classifiers, even
with fewer training samples, the proposed MIMA is able to
provide comparable classification accuracy.

4) Parameter μ: According to Fig. 7 and Table V, trends
in terms of μ show that SSMA achieves its best performance
when parameter μ equals one and performances are down-
graded by increasing μ without a pattern. However, MIMA
exhibits a pattern that classification accuracy increases as the
value of parameter μ increases. This means that putting higher
weights on the topological structure while fusing with MIMA

TABLE VI

COMPUTATIONAL COST OF ALGORITHMS IN COMPARISON. THE TIME

LISTED IN THIS TABLE ARE MEANS OF TEN REPETITIONS ON EACH
ALGORITHM CARRIED OUT ON THE LCZ DATA SET. THE UNIT IS

REPORTED IN SECOND

would provide better classification performance in terms of
OA.

5) Fusion Visualization: We visualize the fused features of
different algorithms by t-SNE, as shown in Fig. 8. However,
it is difficult to carry out a detailed analysis according to the
visualization results. In general, the manifold alignment-based
fusion provides spaces where classes concentrate well. To the
best of our knowledge, the optical data are projected into a
more discriminative subspace via the proposed MIMA.

E. Computational Cost

In order to show the computational efficiency of algorithms
in comparison, experiments of ten repetitions over the LCZ
data set had been carried out for every algorithm in compari-
son. All the experiments are accomplished on a desktop with
a processor of Intel Core i7-4790 CPU (3.60 GHz). The mean
time of these repetitions is listed in Table VI.

Our proposed MIMA do suffer from comparably high
computational cost, as shown in Table VI. This is due to
the high computational cost of the spectral clustering [51] in
MIMA. If the algorithm efficiency is of key importance for
a targeted application, more studies could be carried out to
find a less demanding clustering algorithm as a substitute.
However, considering 9170 optical pixels with 34 dimensions
and 9170 SAR pixels with 40 dimensions are involved in the
training of the algorithm, we think 2 min which is required
by MIMA is still acceptable.

F. Data Bins and Overlap Rates

As described in Section II-C, there are two parameters
brought to MIMA by the MAPPER. They are: the number of
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Fig. 9. Plots of the classification OAs achieved by applying the classifiers: the ONE-NN, the LSVM, and the KSVM on MIMA fused feature, while only
values of two parameters vary, the number of data bins and the overlap rate. (From left to right) Plot of OAs achieved on the LCLU data set (the curve
and the error bar represent the mean and the standard deviation, which achieved statistically with varying overlap rates), plot of OAs achieved on the LCLU
data set (the curve and the error bar represent the mean and the standard deviation, which achieved statistically with varying number of bins), plot of OAs
achieved on the LCZ data set (the curve and the error bar represent the mean and the standard deviation, which achieved statistically with varying overlap
rates), and plot of OAs achieved on the LCZ data set (the curve and the error bar represent the mean and the standard deviation, which achieved statistically
with varying number of bins).

data bins and the overlap rate of adjacent data bins. Among
all experiments in Sections III-C and III-D, the number of
data bins is chosen as 5 and the overlap rate is selected as
50% based on the experience of medical studies [46], [48].
However, in this section, the impact of those two parameters
is discussed in terms of the remote sensing data.

Theoretically, the number of data bins has a similar effect
to the value k of the kNN, which controls the extent of a
local neighborhood. The local topological structure is derived
by the clustering in smaller slices of the data, when a larger
number of bins is applied. On the other hand, the overlap rate
controls the strength of the connection between adjacent local
neighborhoods. Although the theoretical concept is clear, their
impacts are really depending on the data set which it works
with.

Fig. 9 shows the impact of the number of data bins and the
overlap rate by using the LCLU data set and the LCZ data set
in terms of classification accuracy. The number of bins is set
to values from 5 to 50 with an interval of 5. The overlap rate
is set to values from 0.1 to 0.9 with an interval of 0.1. For the
sake of simplicity, the parameter μ is set to 2 and the latent
space dimension is set to 50 for the analysis in this section.

According to the top two plots in Fig. 9, regarding the
LCLU classification, the number of bins and the overlap
rate do not have a significant influence in terms of the OA.
However, based on the bottom two plots in Fig. 9, regarding
the LCZ classification, one can recommend a large overlap rate
around 90% and the number of data bins around 10. Thus,
the decision of both parameters really depends on the data
set and the targeted classification scheme. Last but not least,
it also relates to the choices of the filtering function. One more
interesting point is that by comparing the fluctuation of curves

in Figs. 5, 7, and 9, we can observe that impacts of μ and dn
are much larger than the impacts of the number of bins and
the overlap rate.

IV. CONCLUSION

In this paper, we propose an MIMA for semi-supervised
fusion of optical data and PolSAR data, inspired by the
semi-supervised technique and the emerging field of TDA.
Specifically, we embed a successful TDA tool, MAPPER, into
SSMA to accomplish heterogeneous data fusion. Furthermore,
our modified version of MAPPER functions adaptively to data
by improving clustering. The performance of MIMA on fusing
optical data and PolSAR data is superior to that of SSMA, LPP,
COSPACE, LeMA, and the feature concatenation with respect
to LCLU classification and LCZ classification. An SSMA-
based method is applied to fuse optical data and SAR data for
the first time. This is also the first time that TDA is applied
in the remote sensing field.

In the future, further experiments will be conducted to
explore the potential of the proposed MIMA by selectively
introducing field knowledge of remote sensing data. In this
manner, physical meanings of different remote sensing data
can be explicitly introduced into data fusion, instead of treating
it as a data-driven machine learning problem. We believe that
an expert knowledge-driven MIMA can further improve the
fusion performance.
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[7] M. Belgiu and L. Drǎgut, “Random forest in remote sensing: A review
of applications and future directions,” ISPRS J. Photogramm. Remote
Sens., vol. 114, pp. 24–31, Apr. 2016.

[8] N. Yokoya, P. Ghamisi, and J. Xia, “Multimodal, multitemporal, and
multisource global data fusion for local climate zones classification
based on ensemble learning,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2017, pp. 1197–1200.

[9] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented
linear mixing model to address spectral variability for hyperspectral
unmixing,” IEEE Trans. Image Process., vol. 28, no. 4, pp. 1923–1938,
Apr. 2019.

[10] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,
vol. 1. Cambridge, MA, USA: MIT Press, 2016.

[11] Z.-H. Zhou, “A brief introduction to weakly supervised learning,” Nat.
Sci. Rev., vol. 5, no. 1, pp. 44–53, 2017.

[12] J. Hu, D. Hong, Y. Wang, and X. X. Zhu, “A comparative review of
manifold learning techniques for hyperspectral and polarimetric SAR
image fusion,” Remote Sens., vol. 11, no. 6, p. 681, 2019.

[13] N. Merkle, S. Auer, R. Müller, and P. Reinartz, “Exploring the potential
of conditional adversarial networks for optical and SAR image match-
ing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11,
no. 6, pp. 1811–1820, Jun. 2018.

[14] S. Auer, I. Hornig, M. Schmitt, and P. Reinartz, “Simulation-based
interpretation and alignment of high-resolution optical and SAR images,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 11,
pp. 4779–4793, Nov. 2017.

[15] L. H. Hughes, M. Schmitt, L. Mou, Y. Wang, and X. X. Zhu, “Identifying
corresponding patches in SAR and optical images with a pseudo-siamese
CNN,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 784–788,
May 2018.

[16] F. Tupin and M. Roux, “Detection of building outlines based on the
fusion of SAR and optical features,” ISPRS J. Photogramm. Remote
Sens., vol. 58, nos. 1–2, pp. 71–82, 2003.

[17] M. Campos-Taberner et al., “Exploitation of SAR and optical sentinel
data to detect rice crop and estimate seasonal dynamics of leaf area
index,” Remote Sens., vol. 9, no. 3, p. 248, 2017.

[18] K. Irwin, D. Beaulne, A. Braun, and G. Fotopoulos, “Fusion of SAR,
optical imagery and airborne LiDAR for surface water detection,”
Remote Sens., vol. 9, no. 9, p. 890, 2017.

[19] C. Lamarche et al., “Compilation and validation of SAR and optical data
products for a complete and global map of inland/ocean water tailored
to the climate modeling community,” Remote Sens., vol. 9, no. 1, p. 36,
Jan. 2017.

[20] L. Fatone, P. Maponi, and F. Zirilli, “Fusion of sar/optical images to
detect urban areas,” in Proc. IEEE/ISPRS Joint Workshop Remote Sens.
Data Fusion Urban Areas, Nov. 2001, pp. 217–221.

[21] R. Hang, Q. Liu, D. Hong, and P. Ghamisi, “Cascaded recur-
rent neural networks for hyperspectral image classification,” 2019,
arXiv:1902.10858. [Online]. Available: https://arxiv.org/abs/1902.10858

[22] D. Dimov, F. Löw, M. Ibrakhimov, G. Stulina, and C. Conrad, “SAR and
optical time series for crop classification,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), Jul. 2017, pp. 811–814.

[23] R. Gaetano, D. Cozzolino, L. D’Amiano, L. Verdoliva, and G. Poggi,
“Fusion of sar-optical data for land cover monitoring,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2017, pp. 5470–5473.

[24] G. Laurin et al., “Optical and SAR sensor synergies for forest and land
cover mapping in a tropical site in West Africa,” Int. J. Appl. Earth
Observ. Geoinf., vol. 21, pp. 7–16, Apr. 2013.

[25] Z. Zhu, C. E. Woodcock, J. Rogan, and J. Kellndorfer, “Assessment
of spectral, polarimetric, temporal, and spatial dimensions for urban
and peri-urban land cover classification using Landsat and SAR data,”
Remote Sens. Environ., vol. 117, pp. 72–82, Feb. 2012.

[26] D. Hong, Z. Pan, and X. Wu, “Improved differential box counting with
multi-scale and multi-direction: A new palmprint recognition method,”
OPTIK, vol. 125, no. 15, pp. 4154–4160, Aug. 2014.

[27] J. Hu, L. Mou, A. Schmitt, and X. X. Zhu, “FusioNet: A two-
stream convolutional neural network for urban scene classification using
PolSAR and hyperspectral data,” in Proc. Joint Urban Remote Sens.
Event (JURSE), Mar. 2017, pp. 1–4.

[28] J. Ham, D. D. Lee, and L. K. Saul, “Semisupervised alignment of
manifolds,” in Proc. AISTATS, 2005, pp. 120–127.

[29] C. Wang and S. Mahadevan, “A general framework for manifold
alignment,” in Proc. AAAI Fall Symp. Ser., 2009, pp. 53–58.

[30] D. Liao, Y. Qian, J. Zhou, and Y. Y. Tang, “A manifold alignment
approach for hyperspectral image visualization with natural color,” IEEE
Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3151–3162, Jun. 2016.

[31] D. Tuia, D. Marcos, and G. Camps-Valls, “Multi-temporal and
multi-source remote sensing image classification by nonlinear rela-
tive normalization,” ISPRS J. Photogramm. Remote Sens., vol. 120,
pp. 1–12, Oct. 2016.

[32] M. Volpi, G. Camps-Valls, and D. Tuia, “Spectral alignment of multi-
temporal cross-sensor images with automated kernel canonical corre-
lation analysis,” J. Photogram. Remote Sens., vol. 107, pp. 50–63,
Sep. 2015.

[33] D. Tuia, M. Volpi, M. Trolliet, and G. Camps-Valls, “Semisupervised
manifold alignment of multimodal remote sensing images,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 12, pp. 7708–7720, Dec. 2014.

[34] D. Hong, N. Yokoya, and X. X. Zhu, “Learning a robust local manifold
representation for hyperspectral dimensionality reduction,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2960–2975,
Jun. 2017.

[35] X. He and P. Niyogi, “Locality preserving projections,” in Proc. Adv.
Neural Inf. Process. Syst., 2004, pp. 153–160.

[36] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.

[37] A. Hatcher, Algebraic Topology. Beijing, China: Tsinghua Univ. Press,
2005.

[38] T. Lin and H. Zha, “Riemannian manifold learning,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 30, no. 5, pp. 796–809, Mar. 2008.

[39] D. Hong, N. Yokoya, J. Xu, and X. Zhu, “Joint and progressive
learning from high-dimensional data for multi-label classification,” in
Proc. ECCV, 2018, pp. 478–493.

[40] H. Chintakunta, M. Robinson, and H. Krim, “Introduction to the
special session on topological data analysis, ICASSP 2016,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2016,
pp. 6410–6414.

[41] F. Chazal and B. Michel, “An introduction to topological data analy-
sis: Fundamental and practical aspects for data scientists,” 2017,
arXiv:1710.04019. [Online]. Available: https://arxiv.org/abs/1710.04019

[42] A. Zomorodian and G. Carlsson, “Computing persistent homology,”
Discrete Comput. Geometry, vol. 33, no. 2, pp. 249–274, 2005.

[43] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persis-
tence and simplification,” in Proc. 41st Annu. Symp. Found. Comput.
Sci., Nov. 2000, pp. 454–463.

[44] G. Singh, F. Mémoli, and G. E. Carlsson, “Topological methods for the
analysis of high dimensional data sets and 3D object recognition,” in
Proc. SPBG, 2007, pp. 91–100.

[45] M. Carriere, B. Michel, and S. Oudot, “Statistical analysis and parameter
selection for mapper,” J. Mach. Learn. Res., vol. 19, no. 1, pp. 478–516,
2018.

[46] M. Nicolau, A. J. Levine, and G. Carlsson, “Topology based data
analysis identifies a subgroup of breast cancers with a unique mutational
profile and excellent survival,” Proc. Nat. Acad. Sci. USA, vol. 108,
no. 17, pp. 7265–7270, 2011.

[47] J. L. Nielson et al., “Topological data analysis for discovery in preclin-
ical spinal cord injury and traumatic brain injury,” Nature Commun.,
vol. 6, Oct. 2015, Art. no. 8581.

[48] L. Li et al., “Identification of type 2 diabetes subgroups through
topological analysis of patient similarity,” Sci. Transl. Med., vol. 7,
no. 311, 2015, Art. no. 311ra174.



9040 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019

[49] D. Hong, N. Yokoya, and X. X. Zhu, “The K-LLE algorithm for
nonlinear dimensionality ruduction of large-scale hyperspectral data,”
in Proc. WHISPERS, Aug. 2016, pp. 1–5.

[50] D. Hong, W. Liu, J. Su, Z. Pan, and G. Wang, “A novel hierarchical
approach for multispectral palmprint recognition,” Neurocomputing,
vol. 151, pp. 511–521, Mar. 2015.

[51] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Proc. Adv. Neural Inf. Process. Syst., 2002,
pp. 849–856.

[52] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[53] P. Y. Lum et al., “Extracting insights from the shape of complex data
using topology,” Sci. Rep., vol. 3, Feb. 2013, Art. no. 1236.

[54] D. Hong, W. Liu, X. Wu, Z. Pan, and J. Su, “Robust palmprint recog-
nition based on the fast variation Vese–Osher model,” Neurocomputing,
vol. 174, pp. 999–1012, Jan. 2016.

[55] J. R. Munkres, Topology. Upper Saddle River, NJ, USA: Prentice-Hall,
2000.

[56] G. McLachlan, Discriminant Analysis and Statistical Pattern Recogni-
tion, vol. 544. Hoboken, NJ, USA: Wiley, 2004.

[57] D. F. Hong, N. Yokoya, and X. X. Zhu, “Local manifold learning with
robust neighbors selection for hyperspectral dimensionality reduction,”
in Proc. IGARSS, Jul. 2016, pp. 40–43.

[58] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1988.

[59] A. Okujeni, S. Van Der Linden, and P. Hostert, “Berlin-urban-gradient
dataset 2009—An EnMAP preparatory flight campaign (datasets),” GFZ
Data Services, 2016.

[60] R. Hänsch, A. Ley, and O. Hellwich, “Correct and still wrong: The rela-
tionship between sampling strategies and the estimation of the general-
ization error,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2017, pp. 3672–3675.

[61] D. L. Donoho et al., “High-dimensional data analysis: The curses and
blessings of dimensionality,” AMS Math Challenges Lect., vol. 1, p. 32,
Aug. 2000.

[62] M. D. Farrell and R. M. Mersereau, “On the impact of PCA dimension
reduction for hyperspectral detection of difficult targets,” IEEE Geosci.
Remote Sens. Lett., vol. 2, no. 2, pp. 192–195, Apr. 2005.

[63] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–491,
Mar. 2005.

[64] B. Rasti, P. Ghamisi, and R. Gloaguen, “Hyperspectral and LiDAR
fusion using extinction profiles and total variation component analysis,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3997–4007,
Jul. 2017.

[65] M. Wurm, H. Taubenböck, M. Weigand, and A. Schmitt, “Slum mapping
in polarimetric SAR data using spatial features,” Remote Sens. Environ.,
vol. 194, pp. 190–204, Jun. 2017.

[66] J. Hu, P. Ghamisi, and X. Zhu, “Feature extraction and selection of
sentinel-1 dual-pol data for global-scale local climate zone classifica-
tion,” ISPRS Int. J. Geo-Inf., vol. 7, no. 9, p. 379, 2018.

[67] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “Cospace: Common
subspace learning from hyperspectral-multispectral correspondences,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 4349–4359,
Jul. 2019.

[68] D. Hong, N. Yokoya, N. Ge, J. Chanussot, and X. X. Zhu, “Learnable
manifold alignment (LeMA): A semi-supervised cross-modality learning
framework for land cover and land use classification,” ISPRS J. Pho-
togramm. Remote Sens., vol. 147, pp. 193–205, Jan. 2019.

[69] B. Schölkopf et al., Learning With Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT
Press, 2002.

[70] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

Jingliang Hu (S’19) received the B.Sc. degree in
geographic information system from the Chengdu
University of Technology, Chengdu, China, in 2011,
the M.Sc. degree in cartography and geographic
information system from Wuhan University, Wuhan,
China, in 2014, and the M.Sc. degree in space
science and technology from the Technical Univer-
sity of Munich (TUM), Munich, Germany, in 2014,
where he is currently pursuing the Ph.D. degree in
signal processing in earth observation.

Since July 2015, he has been a Research Associate
with the Remote Sensing Technology Institute (IMF), German Aerospace
Center (DLR), Bremen, Germany. His research interests include topological
data analysis (TDA), data fusion, machine learning, and deep learning.

Danfeng Hong (S’16) received the B.Sc. degree
in computer science and technology from the Neu-
soft College of Information, Northeastern University,
Shenyang, China, in 2012, and the M.Sc. degree in
computer vision from Qingdao University, Qingdao,
China, in 2015. He is currently pursuing the Ph.D.
degree in signal processing in earth observation with
the Technical University of Munich (TUM), Munich,
Germany.

Since 2015, he has been a Research Associate with
the Remote Sensing Technology Institute (IMF),

German Aerospace Center (DLR), Oberpfaffenhofen, Germany. In 2018, he
was a Visiting Student with the GIPSA-lab, Saint-Martin-d’Hères, France, the
Grenoble INP, Grenoble, France, the CNRS, Paris, France, and the Université
Grenoble Alpes, Grenoble, under the supervision of Prof. J. Chanussot.
His research interests include signal/image processing and analysis, pattern
recognition, and machine/deep learning and their applications in earth vision.

Xiao Xiang Zhu (S’10–M’12–SM’14) received the
M.Sc., Dr.-Ing., and Habilitation degrees in signal
processing from the Technical University of Munich
(TUM), Munich, Germany, in 2008, 2011, and 2013,
respectively.

She is currently a Professor of signal processing
in earth observation with the TUM and the German
Aerospace Center (DLR), Bremen, Germany, and the
Head of the Department EO Data Science, Earth
Observation Center im DLR, Weßling, Germany.
She is also the Head of the Helmholtz Young Investi-

gator Group SiPEO with the DLR and TUM. She is currently co-coordinating
the Munich Data Science Research School, TUM. She is also leading the
research field of aeronautics, space, and transport with the Helmholtz Artificial
Intelligence Cooperation Unit (HAICU). She was a Guest Scientist or a
Visiting Professor with the Italian National Research Council (CNR-IREA),
Naples, Italy, in 2009, Fudan University, Shanghai, China, in 2014, The
University of Tokyo, Tokyo, Japan, in 2015, and the University of California
at Los Angeles, Los Angeles, CA, USA, in 2016. Her main research interests
include remote sensing and earth observation, signal processing, machine
learning, and data science, with a special application focus on global urban
mapping.

Dr. Zhu is a member of Young Academy (Junge Akademie/Junges Kolleg)
with the Berlin-Brandenburg Academy of Sciences and Humanities, Berlin,
Germany, the German National Academy of Sciences Leopoldina, Schwe-
infurt, Germany, and the Bavarian Academy of Sciences and Humanities,
Munich, Germany. She is an Associate Editor of IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING.


