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Abstract— Climate change and anthropogenic pressure are
causing an indisputable decline in biodiversity; therefore,
the need of environmental knowledge is important to develop the
appropriate management plans. In this context, remote sensing
and, specifically, hyperspectral imagery (HSI) can contribute to
the generation of vegetation maps for ecosystem monitoring.
To properly obtain such information and to address the mixed
pixels inconvenience, the richness of the hyperspectral data allows
the application of unmixing techniques. In this sense, a problem
found by the traditional linear mixing model (LMM), a fully
constrained least squared unmixing (FCLSU), is the lack of
ability to account for spectral variability. This paper focuses
on assessing the performance of different spectral unmixing
models depending on the quality and quantity of endmembers.
A complex mountainous ecosystem with high spectral changes
was selected. Specifically, FCLSU and 3 approaches, which
consider the spectral variability, were studied: scaled constrained
least squares unmixing (SCLSU), Extended LMM (ELMM) and
Robust ELMM (RELMM). The analysis includes two study cases:
1) robust endmembers and 2) nonrobust endmembers. Perfor-
mances were computed using the reconstructed root-mean-square
error (RMSE) and classification maps taking the abundances
maps as inputs. It was demonstrated that advanced unmixing
techniques are needed to address the spectral variability to get
accurate abundances estimations. RELMM obtained excellent
RMSE values and accurate classification maps with very little
knowledge of the scene and minimum effort in the selection of
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endmembers, avoiding the curse of dimensionality problem found
in HSI.

Index Terms— CASI, hyperspectral image classification, spec-
tral unmixing, Hughes phenomenon, endmembers, spectral vari-
ability.

I. INTRODUCTION

DURING the past decades, the increasing loss of
biodiversity has become a global concern [1]. For

instance, variations in vegetation lead to an alteration of
the habitat structure, causing the changes in the ecosystem
biodiversity. Thus, knowledge on the conservation status and
habitat structure of natural areas becomes essential for envi-
ronmental management. Nowadays, most conservation status
assessments are based on field observations and/or aerial photo
interpretations, being a very labor-intensive process and a
time-consuming process. Instead, remote sensing is a valuable,
accurate, and repeatable tool for mapping and monitoring
ecosystems and to study their conservation status [2], [3].
Specifically, hyperspectral image analysis techniques have
significantly contributed to these tasks. However, it remains
a challenge, requiring sensors and methods that can deal with
complex habitats structures present in ecosystems [1], [4].

Hyperspectral imagery (HSI) is built by hundreds of
narrow and contiguous spectral bands covering the electro-
magnetic spectrum, typically from the visible to the near-
infrared, and sometimes also shortwave infrared spectral bands
(0.3–2.5 μm) [5], [6]. The rich spectral information available
in HSI increases the capability of precisely discriminating the
materials or covers of interest [7], [8].

Hyperspectral image classification has been a very active
area of research in the lpast years [9], [10]. Even though
HSI is a suitable tool for source separation and classification
processes, conventional HSI classification methods suffer from
important limitations for detailed ecosystem mapping due to
the limited degree of detail that can be mapped. It also
increases the computational load because of the enhancement
of spectral resolution, which leads to high-dimensional data
that can degrade the classification process [11]. Another limita-
tion of HSI classification is the little availability of the ground
truth data in practice. For instance, supervised classification
is generally a difficult task due to the ratio between the
high dimensionality of the data and the limited availability
of labeled training samples [7]. The rule of thumb is that
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the required number of training samples is linearly related
to the dimensionality of the data. This problem is called the
curse of dimensionality or Hughes phenomenon [10], [12],
which specifies that the size of training samples set required
for classification increases exponentially with the number of
spectral bands [13].

On the other hand, when more details are required in the
classification process, the more difficulties arise, such as mixed
pixels, leading to lower accuracy in classification maps [2].
In addition, the spatial resolution of a sensor could be too low
to distinguish materials, leading to a composite of individual
spectra in the same pixel. Thus, the recognition of pixels
is frequently a combination of numerous materials, which
introduces a need to quantitatively decompose, or unmix, this
mixture [14]. In this context, hyperspectral unmixing may be
the right tool to move beyond the pixel-based limitations for
ecosystem mapping and monitoring [2].

Spectral unmixing refers to any process that retrieves the
pure spectral components, called endmembers, and a set of
fractional abundances, which indicate the proportion of each
endmember [7], [14]. Endmembers are, generally, assumed to
represent the pure materials present in the image, whereas the
set of abundances at each pixel represents the percentage of
each endmember present in the pixel [5], [7]. The potential
of spectral unmixing to estimate the spatial distribution and
abundances of invasive species and vegetation has been stud-
ied [2], [15]–[17]. Thus, spectral unmixing could be a suitable
methodology for environmental management. However, there
are some issues found in unmixing techniques: 1) the notion
of a pure material can be subjective and problem dependent,
hence leading to a definition of endmembers that depends on
the application and spatial resolution [5] and 2) most studies
assume that a proportion represents the percentage of material
associated with an endmember present in a pixel. However,
Hapke [18] states that the abundances in a linear mixture
represent the relative area of the corresponding endmembers
in a pixel [5].

Unmixing models can be, either, linear or nonlinear [5].
In most applications, the linear mixing model (LMM) is
assumed considering that contributions of each endmember
sum up in a linear way [5]. According to the LMM definition,
data lie into a simplex whose vertices are defined by the
endmembers [19]. However, LMM is not accurate since many
real physical processes are inherently nonlinear, e.g., multiple
scattering and intimate mixing, contribute to the measured
radiance or reflectance. The most important source of the error
in LMM lies in the lack of ability to account for sufficient
temporal and spatial spectral variability. This can result in
significant estimation errors being propagated throughout the
unmixing process [6], [20]–[22].

This paper focuses on spectral unmixing models in which
the spectral variability is considered, as well as the spatial
information. The main objectives can be divided into the
following.

1) Analysis of the Endmember Variability: The endmember
spectral signature can change depending on the geom-
etry and topography of the scene, atmospheric effects,
and noise in the image or variation in a hidden parameter

(e.g., water content in vegetation). Considering end-
member variability, a significant improvement can be
achieved.

2) Analysis of the use of classification maps to assess the
performance of the unmixing models.

3) Obtaining accurate classification maps in a mountain-
ous ecosystem with high spectral variability using few
training samples, solving the issues caused by the hyper-
dimensionality of the data.

In this context, different unmixing models are evaluated:
1) fully constrained least squares unmixing (FCLSU),
a traditional LMM; 2) scaled constrained least squares unmix-
ing (SCLSU) approach [19], [23]; 3) extended LMM (ELMM)
that extends the LMM by considering endmember vari-
ability while preserving the LMM framework, and allow-
ing the pixelwise variation of the endmembers according
to scaling factors [19], [24]; and finally 4) robust ELMM
(RELMM) [25], a refined formulation of ELMM. The effects
of the endmembers’ purity and quantity for each class are also
analyzed. Accurate classification maps are obtained, taking the
abundance maps as inputs, to avoid the Hughes phenomenon,
and using a hard classification method.

This paper is structured as follows. Section II contains the
study area and the description of the data sets. Section III
presents the analyzed unmixing algorithms. Section IV
describes the applied methodology. Section V includes the
main results and a critical analysis. Finally, Section VI sum-
marizes the main outcomes and contributions.

II. STUDY AREA

The study is focused on a volcanic vulnerable and
heterogenic ecosystem of Tenerife island (Canary Islands,
Spain), the Teide National Park (28° 06’ N 15° 24’ W). The
climate of the National Park is conditioned by the extreme
altitude conditions (ranging between 2000 and 3718 m),
strong insolation, and thermal variations. It can be defined
as a subalpine continental climate, very different from the
prevailing one in the low and middle areas of the island [26].
It is a remarkable biodiversity hotspot with high variability
of endemic species vulnerable to environmental changes [27],
making Teide National Park an ecosystem with a high interest
of study from an ecological point of view. The discrimination
of the heterogeneous vegetation communities found in the
study area is a challenging task because different vegetation
may have similar spectral response and even the same plant
species has phenological changes depending on its location
in the Park. In addition, due to the climate change and the
increment of the European rabbit population, Spartocytisus
supranubius, a very important species in the Teide National
Park, is showing a negative density damage, leading to an
absence of rejuvenation, while Pterocephalus lasiospermus has
increased its distribution and abundance despite the presence
of a nonnative generalist herbivore [28]. For these reasons, it is
important to carry out a detailed study of the Teide National
Park in order to develop a suitable management plan by the
managers of the Park.

The nonherbaceous vegetation species, selected for the
study due to their abundance and importance at the ecological
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Fig. 1. Teide National Park. (a) Geographic location. (b) True color composite (CASI bands X, Y, and Z nm) highlighting the four subsets used in the study.
(c) Digital elevation model and the swath limits in red.

level, were: Pinus canariensis, Spartocytisus supranubius, Pte-
rocephalus lasiospermus, and Descurainia bourgaeana. The
period of the year was an important factor in the selection of
the acquisitions, since the relevant species bloom during spring
and species are at their greatest point of spectral difference.
However, plant individuals do not bloom at the same time in
every part of the study area, due to climatic differences through
the Park, leading to an additional spectral variation within the
same plant species.

In this context, the image used for this study was acquired
on June 1, 2017 through the Compact Airborne Spectrographic
Imagery (CASI) sensor configured with 68 spectral bands,
covering a range from 0.3969 to 1.0390 μm and a spatial res-
olution of 0.75 m. It was radiometrically and atmospherically
corrected as well as georeferenced (Product Level 2c) [29].
Four different subsets (Fig. 1) were selected to evaluate the
algorithms in an image with spectral variability related to the
topography changes due to the mountainous ecosystem (Areas
3 and 4) and radiometric changes between different swaths
that appear when acquiring the CASI imagery (Areas 2 and
4). Area 1 was chosen as a control subset in a zone without
either topographic or radiometric changes. Finally, the four
subsets have another intrinsic spectral variability due to the
blooming of plant individuals.

III. UNMIXING ALGORITHMS

A. Linear Mixing Model

Several studies have investigated the mixing scales and
linearity. Singer and McCord [30] found that if the scale
of the mixing is large (macroscopic), mixing occurs in a
linear fashion. For microscopic or intimate mixture, the mixing
is generally nonlinear [30], [31]. The LMM assumes no
interaction within materials: the incident light interacts with

just one material [5]. LMM considers a linear combination of
the pure spectral of the materials located in the pixel area,
weighted by their fractional abundance (1). P is the number
of endmembers considered, sp is a reference endmember
providing the direction of a straight line joining the origin
at that point on which each local endmember lies, apn is the
abundance coefficient of the endmember in pixel n, en is the
additive noise

xn =
P∑

p=1

apnsp + en . (1)

However, LMM shows some limitations such as nonlinear-
ities in the mixing processes and material variability. End-
member variability comprehends that each material cannot be
completely represented by a single spectrum, being a subject
of intraclass variations [20]. Traditional FCLSU [32] has been
used in this paper.

In the literature, endmember variability has been addressed
using endmember bundles [33], which incorporate variability
by representing each endmember by a set of spectra, each
of which could reasonably be the reflectance of an instance
of the endmember. Thus, endmember unmixing needs to be
extended to bundle unmixing and using multiple signatures
for each endmember class may provide more accurate frac-
tions [34], [35]. In this context, several studies have imple-
mented different methods, which deal with the endmember
spectral variability, such as multiple endmember spectral mix-
ture analysis (MESMA) [36], AutoMCU [37], and perturbed
LMM (PLMM) algorithm [6].

B. Scaled Constrained Least Squares Unmixing

The SCLSU (2) model is based on LMM. It uses the non-
negative least squares to estimate the spectral variability [19],
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[23]. ψk is added as a scaling factor considering the brightness
changes in the spectral signature of a pixel

xn = ψk

P∑
p=1

apnsp + en. (2)

Yet, SCLSU cannot consider other types of variability than
scaling factors. It is a simple approach to address spectral
variability assuming a scaling factor that affects equally to all
the endmembers present in a pixel. Thus, a more complex
version was proposed, the ELMM, which is next described.

C. Extended Linear Mixing Model

Spectral variability can be modeled using an accurate radia-
tive transfer-based model such as the Hapke model [18].
This physical model allows accessing the reflectance value
of a material for one wavelength, knowing the corresponding
single scattering albedo, the photometric parameters of the
material, and the incidence, emergence, and azimuth angles
during the acquisition. ELMM was derived from this model
using simplifying physical assumptions [38]. ELMM [19], [24]
allows a pixelwise variation of each endmember (the code
is available in: http://openremotesensing.net/knowledgebase/
spectral-variability-and-extended-linear-mixing-model/). The
data points are assumed to lie in a convex cone spanned by
the reference endmembers. The scaling factors, combined with
the abundance sum-to-one constraint (ASC) and abundance
nonnegativity constraint (ANC), constrain each pixel to lie
in a simplex whose vertices are variants of the reference
endmembers, situated on straight lines joining the origin and
each of the reference endmembers, thus defining the simplex
orientation in the cone. In [24], a criterion to perform spectral
unmixing using the ELMM is defined in (3), where ψ is
the scaling factor rearranged in a R

Px N matrix and by S =
[Sn] being n = 1, . . . , N , the collection of pixel-dependent
endmember matrices, A ∈ �p means that each abundance
vector an ∈ R

P in each pixel belongs to the unit sim-
plex with P vertices, S0 is a matrix containing reference
endmembers, || · ||F denotes the Frobenius norm. The term
λS || Sn − S0ψn ||2F forces each endmember to be close (but
not equal) to scaled versions of the (unit norm) representatives
of the reference directions depending on the value λS , which
is the regularization parameter on the ELMM tightness. The
scaling factors capture illumination-induced variability, while
Sn can further consider the intrinsic variability effects. Spatial
regularizations incorporate two regularization parameters to
tune, R(A) and R(ψ), which are applied to the abundances
and the scaling factors, respectively. R(A) is the total variation
regularization term on the abundances, promoting smooth
abundances while allowing sharp discontinuities when nec-
essary (at the border between objects for instance); R(ψ) is
a Tikhonov regularization on the gradient of the abundances
to promote spatial smoothness in the scaling factors. They
penalize the norm of the spatial gradient of the abundance
maps or scaling factors, using the total variation regularization
related for the scaling factors and incorporate the constraints

Fig. 2. Geometric interpretation of the ELMM in the case of three
endmembers. Red: two data points. Blue: reference endmembers. Green:
scaled versions for the two considered pixels [33].

on the variables to enforce spatial smoothing

J (A, S, ψ) = 1

2

N∑
n=1

(||xn − Snan||22 + λS ||Sn − S0ψk ||2F
)

+ R(A)+ R(ψ). (3)

The data lies in a convex cone whose edges are the
endmembers and each pixel belong to a simplex (Fig. 2).
However, this formulation relies on the reference endmembers,
S0, and if they are poor representatives of the spectra of
the materials, they can cause errors in the estimation of the
unmixing parameters. Hence, a new RELMM is proposed [25],
which does not rely on the reference endmembers.

D. Robust Extended Linear Mixing Model

RELMM [25] shows endmembers as directions in the fea-
ture space, as directional data. The added values of RELMM
are the iterative update of S0 using the volume regularized [39]
adapted to a conic model via the unit norm constraints.
It allows to iteratively adjust the position of the reference
endmember lines in the feature space. Thus, it proposed a
new model [25] (4), where tr denotes the trace of a matrix,
and V = P IP −�P�

T
P (�P , being a column vector of P ones),

such that tr(S0V ST
0 ) = ∑P−1

i=1
∑P

j=i+1 ||s0i − s0 j ||22. λS and
λS0 are the regularization parameters

J (A, S, ψ, S0) = 1

2

N∑
n=1

(||xn − Snan||22 + λS ||Sn − S0ψn ||2F
)

+ λS0

2
tr
(

S0V ST
0

) + R(A)+ R(ψ). (4)

The fact that the reference endmembers are normalized
has also the advantage of easily allowing to compare the
magnitude of the scaling factors across different materials and
images. Moreover, spatial regularizations [R(A) and R(ψ)]
can be added as in the ELMM model.

RELMM has the same geometric interpretation as ELMM;
however, the reference endmembers in RELMM lie on the unit
hypersphere leading to be more accurate than ELMM even
when the initialization is poor [25].
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Fig. 3. Flowchart of the unmixing and classification assessment procedure.

IV. METHODOLOGY

A. Study Cases

The analysis can be divided in two different study cases.
First, different abundances maps were obtained by FCLSU,
SCLSU, ELMM, and RELMM, using robust reference end-
members with many representative pixels for each class under
different conditions and, second, using very few nonrobust
endmembers (Fig. 3).

For the first part of the study, an extensive field campaign
was carried out and the field observation data were acquired to
provide accurately located and quantitative ground reference
data. Then, regions of interest (ROIs) were manually selected
in the original HSI to create accurate training and testing
sample sets. Candidate pixels were selected in areas where
the vegetation types appeared to be pure and were relatively
homogeneous. This procedure was difficult to implement due
to the small scale of species spatial distribution and the small
size of some vegetation patches. Thus, the samples from the
vegetation species mentioned above were identified in the
HSI, as well as bare soil and road endmembers. The set of
ROIs was divided into a training set to obtain the robust
reference endmembers (in average 1400 pixels per class), and
the testing set to provide an independent data set to evaluate
the classification performances (in average 4500 pixels per
class). Robust endmembers used in the first study case were
calculated getting the average value of each class for the whole
training set of ROIs. Fig. 4 shows the spectral signature of each
endmember as well as the picture of each vegetation class.
Thus, the robust endmembers used in this section of the study
consider every type of spectral variability found in different
classes.

In the second part of the study, the performances of ELMM
and RELMM are investigated, in order to show the necessity
to apply unmixing models, which take the spectral variability
into account for obtaining good unmixing results. Thus, non-
robust endmembers were acquired getting the average of 1,
3, 5, and 10 pixels per class. They are called nonrobust
endmembers because using 1 or 3 pixels for each class,
spectral variability is not considered. For instance, nonrobust
endmembers obtained from 10 pixels will higher consider
spectral variability (its robustness increase) rather than non-
robust endmembers obtained from 1 pixel. Thus, it might be
seen how ELMM and RELMM models can properly adjust the
nonrobust endmembers, allowing to refine and correct those
endmembers [25].

B. Methodology Assessment

The quality of the unmixing results can be measured by
the reconstruction error calculated by the root-mean-squared
error (RMSE) given the set of the original pixels (xlntrue) and
the reconstruction data from the corresponding abundances
obtained from the pixels and the mixing model (x̂ln). N and
L are the given pixel and band, respectively [24], [40] (5)

RMSE = 1

N

N∑
n=1

√√√√ 1

L

L∑
l=1

(
xlntrue − x̂ln

)2 (5)

However, RMSE is an indirect measure, which only shows
how the model fits the data, though it is possible to achieve
good reconstruction errors with poor abundance and/or spectral
variability retrieval. In this context, classification maps were
additionally used to assess the methodology. Even though
there exists some studies using abundances maps as inputs



4780 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 7, JULY 2019

Fig. 4. Endmember spectral signatures used in the study and vegetation of interest. (a) S. supranubius. (b) P. lasiospermus. (c) D. bourgaeana.
(d) P. canariensis.

for classification [41], [42], classification maps are used as
another evaluation process of different unmixing models as
well as to solve the hyperdimensionality of the data.

C. HSI Hyperdimensionality Solving Proposal

As dimensionality increases in HSI, more training samples
are demanded to obtain thematic maps with higher accuracy.
In [10] and [43]–[46], to solve this curse of dimensionality
problem, data reduction through band selection or feature
extraction reduces dimensionality without the need to increase
the number of training samples [43], [47], [48]. Usually,
feature extraction and feature selection methods were used
by selecting the optimal bands or the optimal subset from the
HSI [3]. These techniques significantly reduce the number of
suitable components compared to the original dimension [49].
During the past decades, researchers have studied several
approaches to alleviate the Hughes phenomenon such as
principal component analysis (PCA), minimum noise fraction
(MNF), or independent component analysis (ICA). On the
other hand, Kernel-based methods, such as support vector
machine (SVM), have demonstrated their performance in
handling high-dimensional data [50].

Thus, the study proposed to use spectral unmixing models
that consider the spectral variability of different classes in
order to obtain reasonable abundances maps that will be used
for obtaining accurate thematic maps.

In this context, maximum abundance classification (MAC)
is proposed, which takes in the abundance maps, the largest
abundance vector into the pixel, to set it as a class. Finally,
the performance of the classification maps is assessed both

in terms of visual comparisons with general field informa-
tion on known vegetation structures and using the confusion
matrix, whose information is summarized by the overall accu-
racy (OA) defined as the ratio of the number of validation
pixels that are correctly classified to the total number of
validation pixels irrespective of the class [51]. In order to
obtain the confusion matrices, the testing samples obtained
in the first study case were used.

V. RESULTS AND DISCUSSION

This section presents the results of different spectral unmix-
ing methods in different scenes.

The first step was to set the spatial regularization parameters
for ELMM and RELMM. Specifically, the values used were
λS = 0.01, λa = 0.01, and λpsi = 0.02, which are the part of
Sk , R(A), and R(ψ) in (3) and (4), for ELMM and RELMM
and λS0 = 10, in the RELMM model. They were selected
by trial and error, leaving at the beginning λa and λpsi at
zero, in order to set a suitable λS , which is the most crucial
parameter to tune. It is observed visually both the abundance
and scaling factor maps. A high value of λS means that local
variants of the endmembers will not drift too far away from
the (scaled) reference, whereas a small value means that the
local endmembers will get further away from the actual lines.
In the last case, the data fit will be better, and the abundance
maps will be sparser as a result, since local endmembers will
tend to match individual pixels. To get an insight of what
happens, scatterplot of the data and local endmembers should
be performed, using the first three principal components. Once
λS is well set up, it is better to choose small λa and λpsi
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Fig. 5. RMSE maps for FCLSU, SCLSU, ELMM, and RELMM of (a) Area 1, (b) Area 2, (c) Area 3, and (d) Area 4.

TABLE I

RMSE VALUES FOR EACH SCENE USING ROBUST ENDMEMBERS

FOR THE UNMIXING (×10−3)

values. If they look very similar to the ones without the spatial
regularizations, the values can be increased. On the other hand,
if the abundance maps look too smooth (or even completely
uniform), they are way too large and the user could decrease
both λa and λpsi.

Next, the results of the two study cases are presented.

A. Study Case 1: Spectral Unmixing Using Robust
Endmembers

As it was explained in Section III, the study is divided in
two study cases. This section shows the results of different
spectral unmixing methodologies when the robust endmembers
are used as inputs.

Table I shows the average reconstructed RMSE obtained for
the four different methods in different scenes (in bold appears
the best RMSE value for each scene), whereas Fig. 5 shows
the RMSE maps. ELMM and RELMM outperform the FCLSU
and SCLSU approaches as it was expected. It can be clearly
appreciated the worst accuracy of FCLSU and SCLSU in
areas with considerably spectral variation (Areas 2–4) and
the good performances of ELMM and RELMM even in such
complex scenes. The spatial regularization on the abundances
improves the results for ELMM and RELMM, being more
robust to noise on the measured data, as well as on the spectral

signatures. The spatial regularization allows to precisely esti-
mate the spatially correlated abundances, removing the noise
and the uncertainty that affects to FCLSU and SCLSU [24].

A visual representation of the extracted abundances for
Area 2 is shown in Fig. 6. Regarding the abundance maps,
every model, except for FCLSU, obtain plausible estimations
at visual level. However, most of endmembers are purer for
RELMM and ELMM than for SCLSU. The scaling factors
extracted by SCLSU, ELMM, and RELMM are displayed
in Fig. 7. They show the spectral variation of different classes.
As extracting spectral variability is difficult or even impossible
when the materials have low abundances, pixels with abun-
dance below 0.5 are removed from the scaling factor maps for
a better interpretation. SCLSU scaling factor maps are difficult
to interpret as only one scaling factor is estimated for all the
endmembers. ELMM and RELMM scaling factor maps show
correlation with radiometric and topographic changes, being
more evident in P. lasiospermus and bare soil maps. In case of
Area 2, RELMM gets higher values regarding the radiometric
variability due to the sensor pass, being more evident in P.
lasiospermus map, leading ELMM and RELMM to deal with
the induced spectral variability. Again, RELMM obtains higher
scaling factor values than ELMM due to its ability to better
adjust the references. Therefore, ELMM and RELMM obtain
the best results in terms of abundance estimation, as well as
spectral variability recovery.

In the case of ELMM and RELMM, the spatial coherency
of the abundances and the scaling factors allows to recover
the parameters more precisely. In addition, the explicit com-
putation of different scaling factors for each pixel and material
allows obtaining sparser variability maps, which also makes
ELMM and RELMM stronger in terms of interpretability.
Moreover, the spatial regularization parameters of ELMM and
RELMM allow to estimate the spatially correlated abundances,
removing the noise and the uncertainty, which affects SCLSU,
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Fig. 6. Abundance maps estimated by FCLSU, SCLSU, ELMM, and RELMM of Area 2. (a) P. canariensis. (b) S. supranubius. (c) D. bourgaeana.
(d) P. lasiospermus. (e) Urban. (f) Road amd. (g) Bare soil.

Fig. 7. Scaling factor maps from SCLSU (one scaling factor for all the endmembers), ELMM and RELMM with > 0.5 abundances of Area 2.
(a) P. canariensis. (b) S. supranubius. (c) D. bourgaeana. (d) P. lasiospermus. (e) Urban. (f) Road. (g) Bare soil.

when two endmember variations of two different materials
share a common global shape, and can look quite similar after
appropriate scaling [24].

Fig. 8 shows a scatterplot of the data set (in blue) and
the endmembers generated by the model (in red) using the
first three components of a PCA for Area 2. It can be
observed that different materials are equally affected by the
spectral variability, being the shape of the variability (red data)
or the manifold of the endmember variants, complex. All
materials are affected by spectral variability and the conic
model advocated by the ELMM and RELMM seems to fit the
data. In addition, RELMM scatterplot is sparser than ELMM,
meaning that RELMM can adjust the reference and, thus,
is able to obtain sparser abundances maps.

Finally, Table II and Fig. 9 show the OA values and the
MAC classifications maps obtained from the abundance maps
of the unmixing models, respectively. As it was expected,
ELMM and RELMM obtain the highest OA, whereas FCLSU
obtains the lowest OA. Area 1 shows less difference within
the OA obtained from different unmixing models, as this

TABLE II

OA VALUES IN PERCENTAGE (%) RESULTING FROM THE ABUNDANCES

MAPS OBTAINED WITH ROBUST ENDMEMBERS

area lacks spectral variability. The difference between the
OA values obtained from ELMM and RELMM abundances
maps is small (less than 2% in case of Area 1 and less
than 0.36% in Areas 2–4). Regarding the classification maps,
there is no great visual differences within SCLSU, ELMM,
and RELMM, whereas FCLSU classification map clearly
shows the radiometric change in the scene, showing how the
model does not consider the spectral variability. Regarding
the results presented in Fig. 9, some misclassifications can be



IBARROLA-ULZURRUN et al.: HYPERSPECTRAL CLASSIFICATION THROUGH UNMIXING ABUNDANCE MAPS ADDRESSING SPECTRAL VARIABILITY 4783

Fig. 8. PCA scatterplot for (a) ELMM and (b) RELMM of Area 2. Blue: data. Red: extracted endmembers.

Fig. 9. (a) Ground truth samples and classification maps obtained by (b) FCLSU, (c) SCLSU, (d) ELMM, and (e) RELMM after applying a MAC classification
in Area 2.

identified. For instance, some pixels classified as urban (red)
or roads (black) appear in bare soil areas. Moreover, in the
FCLSU map, S. supranubius is incorrectly assigned to urban
and road pixels in some areas. Specifically, classes with
lower classification accuracy in the four areas analyzed are
S. supranubius and urban (ca. 60% well classified versus ca.
80% for the remaining classes). Finally, analyzing the (OA%)
results, it is obvious how SCLSU, ELMM, and RELMM are
considering the spectral variability regarding the blooming of
plant individuals.

B. Study Case 2: Spectral Unmixing Using
Nonrobust Endmembers

As it was observed in Tables I and II, even though ELMM
and RELMM got better results, there is not too much dif-
ference between them. Both models consider the spectral
variability of endmembers, but if this spectral variability is
included in the model by taking many robust endmembers,
the robustness of RELMM is not significant. Thus, it seems
RELMM will not improve the results much, leading to even
slightly worse performance.

In addition, as it is explained in [24], if the abundance of
one material is low in a pixel, a different scaling factor for this

material will change the orientation of the simplex related to
this pixel, but the edge of the simplex, linking the other two
(scaled) endmembers, will not change. Hence, the abundance
coefficients for the other two materials will not change much
either. In this context, both ELMM and RELMM do not
require pure pixels to extract the spectral variability of a mate-
rial efficiently, but only a significant abundance contribution
of this material in the considered pixel, or in the neighboring
area. Taking this fact into consideration, in this part of the
study, nonrobust endmembers were acquired selecting 1, 3, 5,
and 10 pixels per class. In this way, the spectral variability
is not considered in the endmembers. Since the objective was
to observe the robustness of RELMM and ELMM, only both
models are included in this study case.

Table III shows the RMSE values for ELMM and RELMM
using 1, 3, 5, and 10 pixels to obtain and average endmember
for each class. The RMSE values are mostly the same for
both methods, except in some cases (Areas 2 and 3), where
RELMM got slightly better RMSE. Moreover, the values
show a minimum change when more than 1 pixel is taken
as reference endmember.

Abundances and scaling factor maps (removing abundances
<0.5) for ELMM and RELMM using endmembers from 1 and
10 pixels in Area 4 are shown in Figs. 10 and 11, respectively.
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Fig. 10. Abundance maps estimated in ELMM and RELMM of Area 4 using 1 and 10 pixels for averaging the reference endmembers. (a) S. supranubius.
(b) P. canariensis. (c) P. laiospermus. (c) Bare soil. (d)D. bourgaeana.

Fig. 11. Scaling factor maps estimated by ELMM and RELMM in Area 4 using 1 and 10 pixels for averaging the reference endmembers. (a) S. supranubius.
(b) P. canariensis. (c) P. laiospermus. (c) Bare soil. (d)D. bourgaeana.

It can be observed that even considering 1 or 10 pixels
to obtain the reference endmembers, both methods obtain
plausible abundances, although abundances values are higher

in the case of taking 10 pixels for the reference endmember.
Finally, we can assume the good performance of both methods
as the radiometric change is solved even taking only 1 pixel for
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Fig. 12. PCA scatterplot for ELMM and RELMM of Area 4 using (a) 1 and (b) 10 pixels for averaging the reference endmembers. Blue: data. Red: extracted
endmembers.

Fig. 13. OAs results from MAC classification applied to (a) ELMM and (b) RELMM abundances maps from nonrobust to robust endmembers in each area
of study.

TABLE III

RMSE VALUES FOR EACH SCENE USING NONROBUST

ENDMEMBERS FOR THE UNMIXING (×10−4)

each class and using it as a reference endmember. Regarding
the scaling factor maps, it is observed that the values decrease
if 10 pixels are considered for the references endmembers, that
is, when more spectral variability is taken for the reference

endmembers. In this case, S. supranubius, P. lasiospermus,
and bare soil get lower scaling factors in the center of the
ravine, as well as in the bottom of the image where sensor
swath changes, again, both models have to deal with the induce
spectral variability.

The qualitative results of Area 4, using scatterplots of the
data in the recovered endmembers of ELMM and RELMM
using endmembers obtained from 1 and 10 pixels, are shown
in Fig. 12. It is observed how the endmembers in red are close
to the edge of the cone defined by the data when the number
of averaged endmembers is higher, meaning that they capture
more spectral variability. Moreover, RELMM scatterplots are
sparser than ELMM, as it occurs in Fig. 8, leading to a better
adjustment of the reference endmembers.

OA results obtained from MAC classification are given
in Table IV. Accurate classification maps with OA over 70%
and achieving values over 84% for the best case depending on
the area. Moreover, in most of the cases, RELMM outperforms
ELMM. Finally, Fig. 13 shows that classification goodness,



4786 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 7, JULY 2019

TABLE IV

OA VALUES IN PERCENTAGE (%) RESULTING FROM THE ABUNDANCES
MAPS OBTAINED WITH NONROBUST ENDMEMBERS

using ELMM and RELMM, does not improve when the
robustness of the endmembers increases. 3–5 pixels are enough
to generate the reference endmembers in order to obtain an
accurate classification map.

It is observed how in this part of the study, it is not necessary
to get an accurate set of training samples as in the first study
case. Only few pixels per class are needed for the spectral
unmixing and none for the classification, obtaining accurate
classification maps with few knowledge and information of
the scene and less effort, avoiding the Hughes phenomenon.

VI. CONCLUSION

This paper analyzes different spectral unmixing models:
a traditional LMM, the FCLSU, and three models in which
the spectral variability as well as the spatial information are
considered, SCLSU, assuming a scaling factor that affects
equally to all the endmembers present in a pixel, and ELMM
and RELMM that assume different scaling factors for each
endmembers. The study has been conducted in an ecosystem
with high spectral variability within the endmembers due
to topography changes, sensor’s radiometric change, and an
intrinsic spectral variability due to the blooming of plant
individuals. In order to evaluate the methods, quantitative
results using reconstructed RMSE, as well as classification
maps obtained from the abundances maps, are presented.

The analysis has been divided in two different study cases.
In the first one, the four models were analyzed by tak-
ing a robust set of endmembers that considers the spectral
variability of the classes. Regarding the challenge that the
ecosystem represents, ELMM and RELMM have shown good
performance in terms of abundance estimation and spectral
variability retrieval, obtaining a significant lower RMSE than
FCLSU and SCSLU and higher OA in the classification. Thus,
both models can be successfully applied in images with high
spectral variability due to topographic changes but also in
images with radiometric differences in each track during the
airborne image sensing and the intrinsic spectral variability of
plant species blooming, being experimentally confirmed to be
well modeled by them.

The second study case proves that ELMM and, specifically,
RELMM are useful techniques for obtaining accurate classi-
fication maps with both a minimum knowledge of the scene
and less effort. Thus, very few pixels were taken to obtain
an average reference endmember for each class. In case, this
RMSE does not decrease when increasing the endmembers

robustness (from endmembers obtained from 1 to 10 pixels),
meaning that increasing the endmembers robustness does not
increase the precision of the abundance maps. Moreover,
classification maps resulted by taking the abundance maps
as inputs, using a hard classification model, RELMM obtains
higher OA rather than ELMM, demonstrating that RELMM
is more precise in an image with high spectral variability.
Thus, the second study case allows analyzing the properties
of each pixel, including additional information about the
characterization of mixed pixels in the HSI by adding spectral
variability. Hence, it proves that RELMM is robust to the
absence of pure pixels in the scene, as well as to noise.
Moreover, it is confirmed that classification does not improve
when the robustness of the endmembers increases. Therefore,
it is not necessary a high number of training samples, avoiding
the Hughes phenomenon by using the abundances maps.

Consequently, an analysis of the endmember variability has
been carried out in both study cases, confirming the impor-
tance to use unmixing models, which consider the spectral
variability. Moreover, it can be concluded from the study,
the good performance of the classification maps obtained from
the abundance maps, as a tool for evaluating the unmixing
models as well as for providing accurate classifications results.
Nowadays, obtaining accurate thematic maps are very impor-
tant in order to study climate changes concerns, population
dynamics, anthropogenic pressure, and so on, which are the
essential issues for developing ecosystem management plans.

Finally, it would be interesting to test both ELMM and
RELMM on other habitats with high heterogeneity and spec-
tral variability. Future research would be devoted to study
the spectral variability not only produced by the topographic
changes but also by the health status of the species, drought
effects, and vegetation canopy. In addition, both models will
be analyzed using drone imagery with higher spatial resolution
(ca. 10 cm) in which the swath width is narrower and radio-
metric changes are more evident, as well as the topographic
changes and different structures of plant species, i.e., leaves,
branches, flowers, and shadows.
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