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Abstract— Tomographic synthetic aperture radar (TomoSAR)
inversion of urban areas is an inherently sparse reconstruction
problem and, hence, can be solved using compressive sensing (CS)
algorithms. This paper proposes solutions for two notorious
problems in this field. First, TomoSAR requires a high number of
data sets, which makes the technique expensive. However, it can
be shown that the number of acquisitions and the signal-to-noise
ratio (SNR) can be traded off against each other, because it is
asymptotically only the product of the number of acquisitions
and SNR that determines the reconstruction quality. We propose
to increase SNR by integrating nonlocal (NL) estimation into the
inversion and show that a reasonable reconstruction of buildings
from only seven interferograms is feasible. Second, CS-based
inversion is computationally expensive and therefore, barely
suitable for large-scale applications. We introduce a new fast
and accurate algorithm for solving the NL L1-L2-minimization
problem, central to CS-based reconstruction algorithms. The
applicability of the algorithm is demonstrated using simulated
data and TerraSAR-X high-resolution spotlight images over an
area in Munich, Germany.

Index Terms— Compressive sensing (CS), interferometric
synthetic aperture radar (InSAR), nonlocal (NL) filtering, tomo-
graphic SAR (TomoSAR).

I. INTRODUCTION

SYNTHETIC aperture radar tomography (TomoSAR) is
an advanced SAR interferometric technique that can not

only retrieve 3-D spatial information but also assess the
4-D temporal information, e.g., deformation, in millimeter
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scale, of individual buildings from meter-resolution SAR
satellite data. Repeat-pass multibaseline TomoSAR has been
intensively developed in the past two decades [1]–[6] and
shows promising results on 3-D reconstruction of urban areas.
However, for urban monitoring, there are still several issues
that need to be solved: improving the elevation resolution,
i.e., providing super-resolution (SR) for layover separation;
achieving high 3-D localization accuracy even in the presence
of unmodeled, non-Gaussian noise; and retrieving nonlinear
motion, e.g., due to seasonal thermal dilation. Driven by
these requirements, new algorithms have been invented in the
past few years that take advantage of recent developments in
signal processing [7]–[13], such as sparse reconstruction and
compressive sensing (CS), and can provide height estimates
with unprecedented accuracy compared with the state-of-the-
art multibaseline InSAR algorithms [14].

However, CS-based TomoSAR still suffers from two prob-
lems for practical use. First, a large number of images are
required, typically a stack of 20–100 images over the illumi-
nated area. For instance, it is demonstrated in [15] that by
using even the most efficient algorithms, such as nonlinear
least squares and Scale-down by L1 norm Minimization,
Model selection, and Estimation Reconstruction (SL1MMER),
a minimum number of 11 acquisitions are required to achieve
a reasonable reconstruction in the interesting parameter range
of spaceborne SAR. In [16], a joint sparsity concept was
applied to obtain precise TomoSAR reconstruction with only
six images by incorporating building a priori knowledge to the
estimation. However, due to its demand on precise geometric
prior, this method can only be used to reconstruct buildings
where the geographic information system data are available.
The second practical drawback of CS-based TomoSAR is
that it suffers from a high computational expense and is
hard to extend to large-scale practice. Wang et al. [17] pro-
posed an efficient approach to address this issue, which uses
the well-established and computationally efficient persistent
scatterer interferometry to obtain a priori knowledge of the
estimates, followed by the linear method and the CS-based
SL1MMER algorithm applied to different preclassified groups
of pixels. This approach speeds up the processing, but only to
the extent that it reduces the percentage of pixels that require
sparse reconstruction.

In this paper, we propose a novel framework for TomoSAR
with a minimum number of acquisitions to obtain a fast
and accurate estimation of elevation without any a pri-
ori knowledge. It is mainly motivated by the recent
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advances in nonlocal (NL) means approaches [18], [19] in
image restoration. NL-means approaches successfully achieve
the state-of-the-art performance in image restoration [19] by
seeking the correlation of image patches. As a common
prior in natural images, the patch correlation should help
increase the signal-to-noise ratio (SNR) of the original signal.
As comprehensively investigated in [15], the product of the
number of acquisitions and SNR determines the reconstruction
quality, which means that an increase of SNR can dramatically
reduce the number of acquisitions needed for reconstruction.

The main contributions of this paper are listed as follows.
1) We propose a novel framework, “NLCS-TomoSAR,”

to produce accurate estimates of scatterers’ position
without any a priori knowledge, using as few images
as possible.

2) We further propose an efficient algorithm to solve the
NLCS model, containing an optimized parallelization
scheme for an NL process and a fast and accurate solver
for complex-valued L1 least squares minimization.

3) Systematic performance evaluation of the proposed
approach has been carried out using both simulated and
real data. The results show that the proposed method can
produce very accurate estimations of elevation without
notable resolution distortion.

This paper is organized as follows. In Section II, the SAR
imaging model and TomoSAR inversion with CS approach
are introduced. In Section III, a novel approach called
“NLCS-TomoSAR” is introduced. Experiments using simu-
lated data and real data are presented in Sections IV and VI.
Finally, conclusions are given in Section VII.

II. CS-BASED SAR TOMOGRAPHY

A. SAR Imaging Model

The typical multibaseline SAR imaging model can be
expressed as follows:

gn =
∫
�s
γ (s) · exp( j2πξns)ds (1)

where gn is the complex-valued measurement at an
azimuth-range pixel for the nth acquisition at time tn(n =
1, 2, . . . , N). The term γ (s) represents the reflectivity function
along elevation s with an extent of �s. The spatial frequency
ξn = 2bn/λr is proportional to the respective aperture position
(baseline) bn , λ is the wavelength of the radar signals, and
r denotes the range between radar and the observed object,
respectively (see Fig. 1).

In the presence of noise ε, the discrete-TomoSAR system
model can be rewritten as

g = Rγ + ε (2)

where g is the measurement vector with N elements and γ

is the reflectivity function along elevation uniformly sampled
at sl(l = 1, 2, . . . , L). R is an N × L irregularly sampled
discrete Fourier transformation mapping matrix. The inher-
ent (Rayleigh) elevation resolution ρs of the tomographic
arrangement is related to the elevation aperture extent �b

ρs = λr

2�b
. (3)

Fig. 1. TomoSAR imaging geometry with an artistic view of
TerraSAR-X/TanDEM-X.

B. SL1MMER Algorithm

To solve (2), Zhu and Bamler [10] proposed SL1MMER.
They demonstrated its SR power and robustness for space-
borne TomoSAR in [14]. The SL1MMER algorithm improves
the CS algorithm and estimates these parameters in a highly
accurate and robust way. It consists of three main steps.

1) L1LS minimization

γ̂ = arg min
γ

{‖Rγ − g‖2
2 + λ1‖γ ‖1}. (4)

Model-order
2) selection

K̂ = arg min
K

{−2 ln p(g|θ)+ 2C(K )}. (5)

3) Dealiasing

γ̂ = (RH R)−1RH g. (6)

Here, K is the number of scatters. C(k) is a complexity
penalty, from which we can see that model selection is actually
a tradeoff between how well the model fits the data and the
complexity of the model. p(g|θ) is the likelihood function,
which is defined in Section II-C.

Within the framework of SL1MMER, sparse reconstruction
and ordinary least squares join forces to incorporate both
robust identification of scatterers’ elevation positions and
accurate amplitude estimation. However, as mentioned earlier,
the CS-based approach has two downsides that can prevent
its application. In order to solve those two issues, we need to
analyze the estimation accuracy of TomoSAR.

C. Estimation Accuracy

Assume that θ is a set of parameters for a given observation
g and p(g|θ) is the likelihood function. The Cramer–Rao lower
bound (CRLB) BC R can be calculated from the inverse of the
Fisher information matrix J, which is

BC R = J−1 (7)
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Fig. 2. Workflow of NLCS-TomoSAR.

and

J = −E

{
∂2 ln p(g|θ)
∂θ∂θ H

}
. (8)

Since the analytical inversion of J leads to a complicated
expression, the relevant elements of the CRLB matrix can
be retrieved by solving the inversion numerically. The CRLB
on the elevation estimates of two scatterers can, therefore,
be defined as

σsq = c0 · σsq ,0 (9)

where

σsq ,0 = λr

4π · σb · √
2 · N · SNR

(10)

is the CRLB of the elevation estimates of the qth scatterer in
the absence of the other one and σb is the standard deviation
of baseline. The essential interference correction factor for
closely spaced scatterers is denoted by c0. It has been sys-
tematically investigated in [15] that c0 is almost independent
of N and SNR, which is defined as

c0 = max

⎧⎨
⎩
√

40κ−2(1 − κ/3)

9 − 6(3 − 2κ) cos(2�ϕ)+ (3 − 2κ)2
, 1

⎫⎬
⎭

(11)

where κ = �s/ρs is the normalized distance between two
scatterers and �ϕ is the phase difference.

As shown in (10), the estimation accuracy of SL1MMER
asymptotically depends on the product N · SNR. Therefore,
in order to maintain the estimation accuracy and reduce the
number of measurements, SNR needs to be improved. A suc-
cessful approach to reducing the noise as well as increasing
the SNR is the NL framework, where the value is sum
weighted with respect to the similarity between the central
and other pixels in the search window. NL-means filtering is

consistent with the state of the art in image denoising and
other applications. Hence, we introduce the NL framework
into SL1MMER to achieve good performance with a minimal
number of acquisitions.

III. NONLOCAL CS-BASED SAR TOMOGRAPHY

The NL concept proposed in [18] takes advantage of the
high degree of redundancy of any natural image. This means
that every feature edge, point, and so on in an image can be
found similarly many times in the same image. Inspired by
the neighborhood filters, such as boxcar and adaptive filters,
the NL-means concept redefines the neighborhood of a pixel
c in a very general sense as any set of pixels s in the image
(local or NL) such that a small patch around s is similar to the
patch around c. Fig. 2 shows the workflow of the proposed
NLCS-TomoSAR method.

A. Nonlocal Compressive Sensing

In the cases where there is no prior knowledge about the
number of scatters and in the presence of measurement noise,
the NLCS-based TomoSAR inversion can be written as

γ̂ = arg min
γ

{‖Rγ − N (g)‖2
2 + λ1‖γ ‖1} (12)

where N (.) is the NL estimator and N (g) = f (�̂). The
expression �̂ = (ψ̂, μ̂, σ̂ 2) denotes the parameters, where ψ̂
is the estimate of the interferometric phase, μ̂ is the coherence
magnitude, and σ̂ 2 is the variance, which will be introduced
later. NL-means can combine similar patches into a weighted
maximum likelihood estimator (WMLE)

�̂c = argmax
∑

s

w(is, js) log p(gs|�). (13)

The measure of the patch similarity that leads to the weights
w(is, js) depends on the statistical model of the imaging
process. In our case, it is derived from the InSAR statistics.
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B. Interferometric SAR Statistics

The underlying statistical model for a fully developed
speckle field is that of a circular complex Gaussian random
process that yields the M-dimensional Gaussian probability
density function (PDF) [21]

p(g|C) = 1

πM |C| exp(−gHC−1g) (14)

where C is the covariance matrix. A special case of interest
is M = 2 for InSAR, which leads to the simplified form for
the joint PDF of g(I1, I2, φ)

p(I1, I2, φ) = 1

16π2σ 4(1 − μ2)

× exp

[
− I1 + I2 − 2

√
I1 I2μ cos(φ − ψ)

2σ 2(1 − μ2)

]
(15)

where I1 and I2 are the intensities of two coregistered SAR
images, and it has been assumed that 〈I1〉 = 〈I2〉 = 2σ 2. φ is
the noisy interferometric phase. By imposing a scale-invariant
similarity criterion, the weight is set as a function of likelihood

w(is, js) =
∏
m

p(I1,m, I2,m , φm)
1/h (16)

where h is a filtering parameter, the same as in [20]. By apply-
ing the maximum likelihood estimation of (15) derived in [22],
the estimated parameters can be formulated as

ψ̂wmle = − arg

(∑
s

wsg1,sg∗
2,s

)
(17)

μ̂wmle = 2
∑

s ws |g1,s||g2,s|∑
s ws(|g1,s|2 + |g2,s|2) (18)

σ̂ 2
wmle =

∑
s ws(|g1,s|2 + |g2,s|2)

4
∑

s ws
. (19)

IV. EFFICIENT ALGORITHM FOR SOLVING

THE NLCS MODEL

NL filtering and sparse reconstruction algorithms are usually
computationally expensive and are difficult to extend to large
scales. In this section, we introduce an approach for solving the
NLCS model, which can retain the SR power of the standard
basis pursuit denoising solver and considerably speed up the
processing for matrix R of the random Fourier transform,
as used in SL1MMER.

A. Optimized Parallelization of Nonlocal Process

Note that pixels outside searching windows do not con-
tribute to the value of the central pixel in an NL process.
This property allows us to separate the image into independent
disjoint pieces and process them in parallel, as it is done
in domain decomposition schemes. In [23], we proposed a
sophisticated and optimized parallelization scheme for NL
processing. A message passing interface was adopted for
NL processes, enabling us to use thousands of cores for
large-scale processing. The bottleneck of this process is the

communication between cores. We introduced a synchro-
nized communication scheme to avoid the bottleneck and
the speedup increased dramatically with the increase in the
number of cores.

B. Fast and Accurate Solver for L1

Least Squares Minimization

In SL1MMER, the second-order method, primal–dual
interior-point method, with self-dual embedding technique was
adopted to solve the second-order cone program, which is
extremely expensive with respect to computation. The algo-
rithm proposed in [24], “randomized blockwise proximal gra-
dient,” splits the unconstrained optimization problems into two
parts, the convex differentiable part and the convex nondiffer-
entiable part, leading to the so-called proximal gradient (PG)
method. The iterative approach to solve (12) can be written as

γ k+1 =arg min

(
〈∇ f (γ k), γ −γ k〉+ 1

2αk
‖γ −γ k‖2

2+r(γ )

)
(20)

where f is ‖Rγ − N (g)‖2
2 and ∇ f is the partial gradient of

function f . The PG formulation is

γ k+1 = proxαkr (γ
k − αk∇ f (γ k)) (21)

where αk > 0 is the step size and can be constant or deter-
mined by line search. For r(γ ) = ‖γ ‖1, the proximal operator
can be chosen as soft-thresholding.

After applying Nesterov’s acceleration scheme and block
coordinate techniques, (20) can be written as

γ k+1
ik

= arg min

(〈∇ fik

(
γ k

ik

)
, γ ik − γ k

ik

〉

+ 1

2αk
ik

‖γ ik − γ k
ik
‖2

2 + rik (γ )

)
(22)

where ik is the index of a block. The choice of the update
index ik for each iteration is crucial for good performance.
Often, it is easy to switch index orders. However, the choice
of index affects convergence, possibly resulting in faster
convergence or divergence. In this paper, we choose a random-
ized variants scheme, whose strengths include less memory
consumption, good convergence performance, and empirical
avoidance of the local optima. The block index ik is chosen
randomly following the probability distribution given by the
vector:

Pik = Lik∑J
j=1 L j

, ik = 1, . . . , J (23)

where Lik is the Lipschitz constant of ∇ik f (x), the gradient of
f (x) with respect to the ik th group (in our case L = ||RT R||).
However, setting αk = 1/L usually results in very small step
sizes; hence, the time step αk is adaptively chosen by using
the backtracking line search method.
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Fig. 3. Simulated data with SNR = 3 dB. (a) One interferogram. (b) Corresponding amplitude. (c) Filtered interferogram. (d) Ground truth of height.
(e) Reconstructed height by TomoSAR. (f) Reconstructed height by NLCS-TomoSAR.

TABLE I

PARAMETERS OF NUMERICAL SIMULATION

V. NUMERICAL RESULTS WITH SIMULATED DATA

In this section, we perform our proposed NLCS approach
on simulated data. The simulated complex data have been
generated from the height profile and different SNR values.
An urban-like scene has been generated with rectangular
geometric shapes.

The characteristics of the profile and the scene are reported
in Table I. The noise-free phase of each interferogram was cal-
culated by using a realistic TerraSAR-X baseline distribution
with 29 interferograms

φsim = 4πbnhs

λr sin θinc
. (24)

Two stacks of complex data were generated with SNR = 3,
−8 dB.

Fig. 3 shows the example of one interferogram and its
corresponding amplitude, the interferogram after NL filter-
ing, the ground truth of the buildings’ height, the recon-
structed height by TomoSAR, and the reconstructed height by
NLCS-TomoSAR. As is apparent, the estimation of height by
the original TomoSAR can give an acceptable result when the
SNR is relatively high. Compared with the original TomoSAR,

NLCS-TomoSAR shows a more accurate result and small loss
of resolution at the edges.

Fig. 4 shows the result of the same configuration as in Fig. 3,
but with a different SNR (= −8 dB). It can be seen that
the interferogram in Fig. 4(a) is strongly blurred and the
pattern cannot be easily recognized. After applying the NL
filter, the structure of the buildings is visible in Fig. 4(c). The
height estimation produced very noisy estimates by TomoSAR
for low SNR and the accuracy of the estimates is quite low.
In contrast, the estimates of the height by NLCS are extremely
good. There is only resolution loss at the edges due to very
low SNR.

Fig. 5 presents the slice of height profile along with the
black solid line for both SNR = 3 and −8 dB. The black line
in Fig. 5(b) and (c) is the ground truth of the height profile
and the red dots are the height in each pixel estimated by
NLCS-TomoSAR. It can be seen that, for relatively high SNR
(3 dB), the spatial bias is not notable and variance is quite
small. The standard deviation is 0.23 and 0.24 m, and the
mean error is 0.21 and 0.15 m for shapes 1 and 2, respectively.
For the low SNR case, both the spatial bias and the variance
increase. The detailed results are shown in Table II.

VI. PRACTICAL DEMONSTRATION WITH

TERRASAR-X DATA

In this section, we evaluate the performance of the proposed
method using the real TerraSAR-X data.

A. Data Description

The test area in this paper is the headquarters of the German
Railway, the “Deutsche Bahn” (DB) in Munich. We chose
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Fig. 4. Simulated data with SNR = −8 dB. (a) One interferogram. (b) Corresponding amplitude. (c) Filtered interferogram. (d) Ground truth of height.
(e) Reconstructed height by TomoSAR. (f) Reconstructed height by NLCS-TomoSAR.

Fig. 5. Height profile of reconstructed result. (a) Position of height profile. (b) Height profile of the case (SNR = 3 dB). (c) Height profile of the case
(SNR = −8 dB). Black solid line: ground truth of the height. Red dots: estimated height by the proposed method.

TABLE II

STATISTICS OF HEIGHT ESTIMATION

TerraSAR-X high-resolution spotlight data with a slant-range
resolution of 0.6 m and an azimuth resolution of 1.1 m, which
consists of 64 interferograms in one stack acquired with a
range bandwidth of 300 MHz. The elevation aperture size �b
is about 254.07 m. The detailed parameters of TerraSAR-X
acquisition are shown in Table III. The preprocessing, includ-
ing atmosphere phase screen correction, was performed by

TABLE III

TERRASAR-X ACQUISITION PARAMETERS

the German Aerospace Center PSI-GENESIS system on a
persistent scatterer network of high-SNR pixels containing
only single scatterers [25]. The SL1MMER algorithm with
a Bayesian information criterion [26] as the model selection
scheme was applied to each pixel of the test area.

B. Experimental Results

In order to compare the performance of different algorithms,
we extracted two new stacks from the original 64 images with
7 images and 14 images, respectively.



SHI et al.: NLCS-TOMOSAR 3021

Fig. 6. Test building: DB Headquarters in Munich. (a) Optical image (Copyright Google). (b) Mean amplitude. (c) Elevation estimated by SL1MMER with
64 images. (d) Elevation estimated by SL1MMER with seven images. (e) Elevation estimated by Boxcar + SL1MMER with seven images. (f) Elevation
estimated by proposed method with seven images.

Fig. 7. Averaged equivalent number of looks by the NL filter for the
test site.

The corresponding test area of the optical image and
the mean amplitude of InSAR stack are shown in
Fig. 6(a) and (b), respectively. Fig. 6(c) shows the elevation
estimated by the SL1MMER approach with 64 images and
Fig. 6(d) shows the elevation estimated by the SL1MMER
approach with seven images. Note that the reconstructed result
is not satisfactory with only seven images. The estimated ele-
vation exhibits strong noise due to the small number of images.

In addition, the successfully reconstructed elevation is sig-
nificantly less than the reconstructed result with 64 images.
As a comparison, we show the reconstructed result with a
boxcar filter. Fig. 6(e) is the elevation estimated by a boxcar
filter with a window size of 5. It is clear that the loss of
resolution is dramatic compared with the original TomoSAR.
Boxcar filtering blurs edges and small structures present in
the images. As can be seen in Fig. 6(e), the proposed method
can obtain an extraordinarily good estimated result with only
seven images. In contrast with the boxcar filter, the building
structures are retrieved by our method, both in terms of shapes
and elevations, without notable resolution loss.

Fig. 7 shows the averaged equivalent number of looks by
an NL filter for the test site. From this figure, we can see
that the elevation is estimated in a spatially adaptive manner.
The number of looks at the buildings is quite lower than in
the homogeneous area, which indicates that pixels chosen by
an NL filter should have similar properties, such as similar
elevation, reflectivity, scattering characteristics, and so on.

In [15], it was shown that a 90% detection rate of two
scatterers with a distance of ρs can be achieved, while
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Fig. 8. Test building: DB Headquarter in Munich. Elevation estimates of the separated double scatterers. (a) Top layer (64 images + TomoSAR), mostly caused
by returns from building facade. (b) Ground layer (64 images + TomoSAR), mostly caused by returns from ground structures. (c) Top layer (14 images +
TomoSAR). (d) Ground layer (14 images + TomoSAR). (e) Top layer (14 images + Boxcar-TomoSAR). (f) Ground layer (14 images + Boxcar-TomoSAR).
(g) Top layer (14 images + NLCS-TomoSAR). (h) Ground layer (14 images + NLCS-TomoSAR).

17 acquisitions are needed when the amplitude of reflec-
tivity of one scatterer is twice that of another scatterer.
In the real scenario, this is most often the case when
one scatterer sits on the facade or roof and another is on
the ground. Fig. 8 shows the elevation estimates of sepa-
rated double scatterers. Fig. 8(a), (c), (e), and (g) shows
the top layer of scatterers reconstructed by TomoSAR with
64 images, TomoSAR with 14 images, Boxcar-TomoSAR with

14 images, and NLCS-TomoSAR with 14 images, respectively.
Fig. 8(b), (d), (f), and (h) shows the ground layer of scatterers
for the four cases. It is clear that TomoSAR with 64 images
in Fig. 8(a) and (b) is proficient at reconstructing double
scatterers, i.e., a top layer mostly caused by reflections from
the facade of the building and a ground layer caused by
reflections from lower buildings and ground infrastructures.
As can be seen, keeping a similar SNR, TomoSAR with
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Fig. 9. Histogram of double scatterers’ elevation differences using TomoSAR
with 64 images (blue line), TomoSAR with 14 images (green line), and
NLCS-TomoSAR with 14 images (red line).

14 images produces a very low detection rate for double
scatterers in Fig. 8(c) and (d). After applying the boxcar
filter, the detection rate increases a little bit, but the resolution
decreases a lot. In contrast, the number of double scatterers
detected by the NLCS approach with small stacks is compa-
rable to TomoSAR with large stacks, and its resolution loss is
not obvious.

The histogram of the double scatterers’ elevation differ-
ences using TomoSAR with 64 images (blue line), TomoSAR
with 14 images (green line), and our NLCS-TomoSAR with
14 images (red line) is shown in Fig. 9. The normalized
distance is defined as

κ = s

ρs
. (25)

Note that the CS-based SL1MMER reconstruction with the
large stack has impressive SR capability, i.e., many of the
double scatterers with κ < 1 are detected. However, when
the number of interferograms decreases, the performance of
double-scatterer detection decreases accordingly. In contrast,
the proposed NLCS-TomoSAR method with only 14 images
obtains the same result as the large stack reconstruction,
at least in the non-SR regime (κ > 1). In the SR region,
it is still much better than the standard method but falls short
of the 64-stack reconstruction. We assume that this is caused
by the averaging effect of NL filtering. Since target responses
of different amplitudes and different sub-pixel positions are
averaged, the resulting amplitudes may be slightly compro-
mised. The baseline-dependence of amplitude, however, is an
important indicator of double scatterers.

VII. CONCLUSION

In this paper, we propose a novel framework for TomoSAR
with a minimum number of acquisitions in order to obtain a
fast and accurate estimation of elevation without any a priori
knowledge. We evaluated the performance of the proposed

NLCS algorithm with simulated and real data. Experiments
using the simulated data illustrate that the proposed method
can give excellent height estimation for different SNRs without
notable resolution distortion in comparison to the state-of-the-
art methods such as SL1MMER. Moreover, using only seven
SAR images over the test site Munich, it is practically demon-
strated that NLCS can achieve an accurate height estimation
while preserving detailed structures. Furthermore, due to the
increased SNR, a remarkable layover separation capability of
NLCS can be observed.
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