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Wind Speed Estimation Using Acoustic Underwater
Glider in a Near-Shore Marine Environment

Dorian Cazau , Julien Bonnel , Member, IEEE, and Mark Baumgartner

Abstract— This paper investigates the use of an acoustic glider
to perform acoustical meteorology. This discipline consists of
analyzing ocean ambient noise to infer above-surface meteoro-
logical conditions. The paper focuses on wind speed estimation,
in a near-shore marine environment. In such a shallow water
context, the ambient noise field is complex, with site-dependent
factors and a variety of nonweather concurrent acoustic sources.
A conversion relationship between sound pressure level and wind
speed is proposed, taking the form of an outlier-robust nonlinear
regression model learned with in situ data. This method is suc-
cessfully applied to experimental data collected in Massachusetts
Bay (MA, USA) during four glider surveys. An average error
in wind speed estimation of 1.3 m · s−1 (i.e., average relative
error of 14%) over wind speed values up to 17 m · s−1 is
reported with this method, which outperformed results obtained
with relationships from the literature. Quantitative results are
also detailed on the dependence of wind speed error estimation
on the environment characteristics, and on the classification
performance of observations contaminated by acoustic sources
other than wind. Passive acoustic-based weather systems are a
promising solution to provide long-term in situ weather data
with fine time and spatial resolutions. These data are crucial for
satellite calibration and assimilation in meteorological models.
From a broader perspective, this paper is the first step toward
an operationalization of acoustic weather systems and their on-
board embedding in underwater monitoring platforms such as
gliders.

Index Terms— Acoustical meteorology, coastal glider, outlier-
robust regression model.

I. INTRODUCTION

A. Context

ACOUSTICAL meteorology has been an active research
field since the pioneering work of Nystuen et al. [1].

This discipline consists of analyzing ocean ambient noise to
infer above-surface meteorological conditions such as wind
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speed and/or rainfall precipitation. It has been performed
both with fixed hydrophones [2]–[4], and more recently with
mobile acoustic platforms such as ARGO profilers [5]–[7] and
free-ranging biologged marine mammals [8]. Up until now,
acoustical meteorology has been mostly used in the open ocean
(deep water), where the soundscape is generally dominated by
weather-driven noise.

This paper is a proof of concept for measurements of
above-surface wind speed from underwater glider’s acoustic
data collected in a coastal environment (shallow water). One
major interest of gliders is to collect high-resolution profiles
of physical, chemical, and biooptical variables in near-shore
environments [9]. Our glider data are from the Woods Hole
Oceanographic Institution, recorded in Massachusetts Bay
(MS, USA) during four different campaigns between 2014
and 2016. The marine environment sampled by the glider
is characterized by shallow waters (maximum water depth
of 80 m) near the coast (distances from 1 to 30 km).

This near-shore environment introduces potential difficulties
in the task of acoustical meteorology. Among major results
of acoustical meteorology in shallow waters, Ma et al. [2]
reported an increase up to 10 dB in geophysical sound levels
between deep open-ocean and shallow freshwater locations, in
comparison with Nystuen et al. [10]. A similar ambient noise
level discrepancy of 10 dB has been measured for a given
wind speed [11]–[13]. This could be attributed to the fact that
the shallow water ambient noise is more affected by surface
winds [2], [14]. Indeed, acoustic waves from surface wind
speed propagate mostly vertically. Thus, shallow water tends
to amplify acoustic energy induced by wind speed because
of a stronger bottom reverberation, in comparison to open-
ocean locations. Furthermore, Mathias et al. [15] reported that
the frequency range of the wind dependence of ambient noise
level is 0.1–14 kHz, while Nystuen et al. [3] reported a wind
dependence up to 30 kHz. This difference can be attributed
to the very shallow depth of the Mathias et al.’s study site
(10 m at high tide). The large spread of wind-generated noise
levels measured for the same wind speed in different sites can
be attributed to the site dependence, which is a major chal-
lenge for acoustical meteorology. Acoustic propagation is the
primary site-dependent factor that influences the noise level,
which, in turn, is dependent on the season, water depth, sound
speed, bottom reverberation, distinct vertical directivity, and
wind fetch [11], [13], [16], [17]. For instance, Ramji et al. [13]
reported that the wind-generated noise level measured in the
Bay of Bengal during the summer was 8 dB smaller than
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during the winter and monsoon seasons. They attributed this
difference to the sound speed profile variation. It has also
been shown that the shallow water acoustic transmission is
influenced by the season, and the attenuation is proportional to
the frequency with a season-dependent coefficient [18]. Thus,
the study on wind dependence of shallow water ambient noise
necessitates the analysis of seasonal and site-specific parame-
ters. Anthropogenic noise sources and biological sounds also
have a greater influence on the soundscape than in deep waters,
being either more recurrently present in a given spatial area,
and/or closer to recorders.

To the best of authors’ knowledge, no peer-reviewed
publication exists that report results on using acoustic glider
technology for meteorological applications. Nonetheless,
Cauchy et al. [19] have validated the feasibility of estimating
wind speed from glider data with an average absolute error of
2 m · s−1, and observed that depth-related errors marginally
impacts this estimation. Furthermore, the study in [19] has
used a clean acoustic scene in deep water, far from the coasts,
and largely predominated by wind speed. The objectives of
our study are as follows.

1) Demonstrate the feasibility of wind speed estimation in
a noisy coastal environment using acoustic gliders.

2) Compare in situ learning of an empirical algorithm
for wind speed conversion with those provided by the
literature.

3) Evaluate the classification performance in identifying
wind-generated versus nonwind noise snapshots.

B. Methodology Overview

As done in most studies, we have first set the initial
hypothesis that our wind speed ground truth, i.e., Wgt , should
fit the closest weather buoy from the glider trajectories.
This hypothesis was later confirmed by basic correlation and
root-mean-square (rms) error analysis between the different
meteorological sources available. Please note that here, an
actual ground truth at the glider location (i.e., within 500 m)
is not available. Nonetheless, the closest in situ data available
will be called “ground truth.”

Our second step was to establish the empirical regression
model that will be used for wind speed estimation. This
wind speed will be called the acoustic wind speed Wac.
In the literature, various regression models have been used
to link Wgt and Wac, such as linear [19], logarithmic [2], [3],
quadratic [20], or third-order polynomial [4]. Following the
method proposed by Ma et al. [2, Appendix A], some papers
use feature normalization to make their conversion model
independent of recording sites and acquisition parameters.
In this paper, we test different absolute regression models from
the literature and compare them with a new one trained on our
own recording site. Recognizing the fact that outliers could
bias our model, we adopt a greedy optimization procedure. The
objective is to remove these outliers so that the estimated Wac

optimally fits the ground truth Wgt (i.e., the linear regression
equation Wac ∼ Wgt has a slope of 1).

Eventually, our third processing step is to perform automatic
identification of acoustic observations that do not fit the wind

Fig. 1. Geolocalization of all glider trajectories in Massachusetts Bay
(MS, USA). Glider trajectories are shown as colored trajectories. Green
circles: locations of three weather buoys. Green square: ECMWF pixel used
for the analysis. Local bathymetry in Massassuchetts Bay (from GEBCO-2-D,
2014) is also shown, with the color bar in meters.

speed regression model. Although this step is necessary for
an operational system of acoustical meteorology, it is usually
ignored in the literature. Only a few studies have adopted a
classification framework for this task. In particular, Ma et al.
[2, Appendix B] and Nystuen et al. [3] proposed source
identification algorithms of passing boats and rain events based
on thresholding absolute sound pressure levels (SPLs) and
their slopes in different frequency bands. In this paper, we
compare this classification framework to a more complex one
based on a larger set of audio descriptors and a support vector
machine (SVM) classifier.

II. MATERIAL AND METHODS

A. Measurement Sources

1) Weather Buoys: We selected three weather buoys closest
to our recording area from the National Data Buoy Center,1

namely, buoys 44005, 44013, and 44018 (see Fig. 1). These
buoys are moored and equipped with a surface-mounted buoy
anemometer at 10 m above the surface that provides hourly
reports on wind speed. The wind speed data are, respectively,
denoted as W44005, W44013, and W44018.

We define the variable DistX as the time-varying Euclidean
distance between the glider and the buoys X . Their
respective ranges of values are: Dist44013 ∈ [1–24] km,
Dist44018 ∈ [31–72] km, and Dist44005 ∈ [110–140] km.
Naturally, weather buoys are surface contact measurements
with a limited spatial monitoring area, so that distant buoys
should be less interesting for our study. We further note
Dist = Dist44013, which is the distance between the glider
and the buoy closest to the glider.

2) Model Reanalysis: The European Center for Medium-
Range Weather Forecasting (ECMWF) wind speed vector was
extracted from the ERA-Interim data set, based on the global
atmosphere model reanalysis developed at the ECMWF. All
these global reanalyses are obtained with the assimilation
of a large body of different contact and satellite data. The
atmospheric model is coupled to an ocean-wave model with a

1Website link: http://www.ndbc.noaa.gov/.
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TABLE I

VARIABLES USED IN OUR STUDY, CLASSIFIED INTO THREE
MEASUREMENT CATEGORIES, NAMELY, ACOUSTIC GLIDER,
WEATHER BUOY, AND MODEL REANALYSIS. ALL CENTER

FREQUENCIES fc IN THE SPL AND SS DESCRIPTORS ARE

ROUNDED TO A MULTIPLE OF 100 Hz FOR
CLARITY IN THE NOTATION

TABLE II

GLOBAL OVERVIEW OF THE PASSIVE ACOUSTIC RECORDING DATA SET,
WITH C BEING THE CUMULATIVE DURATION IN HOURS AND N BEING

THE NUMBER OF SNAPSHOTS, ALONG WITH THE PERCENTAGE OF

USEFUL SNAPSHOTS AFTER PROCESSING THE DATA

1.0◦ × 1.0◦ latitude/longitude grid. A detailed description of
the ERA-Interim product archive can be found in [21].

The ECMWF wind speed vector is computed as WECMWF =√
u102 + v102, where u10 and v10 are, respectively, the zonal

and meridional wind components. Basic cleaning of the data
sets is performed to remove the missing data or considered
as invalid (e.g., wind speeds greater than 60 m · s−1). From
u10 and v10, we compute the rms norm of the wind speed
vector WECMWF = √

u102 + v102. This variable has a spatial
resolution of 0.25◦ in longitude and latitude, corresponding
approximately to a 22.5 km2 area (see pixel in Fig. 1), and
a 3-h temporal resolution. Table I shows the list of these
environmental variables, as well as their ranges of values.

3) Acoustic Glider:
a) Glider: Slocum coastal gliders were used (Webb

Research Corporation [9]). The gliders profile in the water
column by adjusting their buoyancy to become alternately
heavier and lighter than the surrounding seawater. Short wings
provide lift during both descent and ascent, allowing the glider
to move laterally at relatively slow speeds (≈0.2 m·s−1). Each
glider is equipped with a global positioning system receiver to
provide the vehicle’s location when it is at the surface. Two-
way communication with the glider is accomplished with an
Iridium satellite modem. The gliders periodically surface to
telemeter position, sensor, and diagnostic information so that
the status of the vehicles can be monitored from land.

b) Data set: Four different campaigns conducted between
2014 and 2016 are considered in this paper. Fig. 1 provides
the geolocalization of the glider trajectories in Massachusetts
Bay (MS, USA). Table II provides full details of our passive
acoustic recording data set. All campaigns were recorded
in monophonic with a duty cycle of 1 min every 4 mins,
and a sample frequency of 60 kHz (16 bytes in pulse-code
modulation format). The total volume of the analyzed acoustic

data set is around 300 Gb. All of the acoustic data were
segmented into 10-s snapshots, and then gathered to form a
single data set of independent time observations. Note that
this data set is shorter than the complete original one, because
of two preprocessing operations. First, roughly 15% of the
data have been removed because they were near-surface obser-
vations and/or contaminated with self-generated sounds from
the glider [see details in Section II-A3c)]. Second, the total
number of acoustic snapshots was subset through the different
Beaufort classes (nine classes from 2 m · s−1 to 20 m · s−1),
and many observation snapshots occurring within the most
frequent wind speed classes were randomly removed so that
each of these observation subsets was balanced. Furthermore,
local bathymetry is also displayed in Fig. 1, and indicates a
water depth ranging from 20 to 80 m in the glider area.

c) Preprocessing: Based on the glider audio files, the
following self-generated noises are identified.

1) Water splashes and swirling, characterized by short
events with a broadband spectrum up to a few kilohertz.

2) Occasional activation of the rudder and buoyancy pump,
characterized by a broadband spectrum up to 10–15 kHz,
with higher energy in frequency bands around 1.5 and
7.5 kHz, that can last between 20 and 30 s and ending
with a click.

3) Flow noise, characterized by a low-frequency broadband
spectrum below 20 Hz.

These different self-generated noises are globally visible
as vertical bands in a long-term averaged spectrogram. Our
preprocessing simply consists of removing snapshots showing
an acoustic event from one of these types. Roughly 15% of
the data are removed; the exact numbers are given in Table II.

d) Acoustic features: Each 10-s snapshot is short-term
fast Fourier transformed [Hamming window, 512-point fast
Fourier transform (FFT), 50% overlap, yielding a 117-Hz fre-
quency resolution], providing multiple estimates of the power
spectrum levels that are subsequently averaged over 10-s
snapshots via the pwelch method. Each average spectrum is
then integrated on third octave frequency bands. SPL averaged
over the one-third octave subband centered around fc kHz, and
the Spectral Slope (SS) between the frequencies f1 and f2,
are extracted from the measured spectra. They are labeled
SPL( fc) and SS( f1 − f2), respectively. SPLs are computed as

SPL( fc) = 10log10

⎛
⎝ 1

p2
ref

f = fupper∑
f = flower

P( f )

B

⎞
⎠ (1)

with flower = fc10−(1/20) and fupper = fc10(1/20),
pref = 1 μPa, and B is the noise power bandwidth of
the window function (B = 1.36 for a Hamming window).
P( f ) stands for the power spectral density, defined as

P( f ) = 2

∣∣∣∣ X ( f )

N

∣∣∣∣
2

(2)

where X ( f ) is the FFT, given by

X ( f ) =
N−1∑
n=0

xwin[n]e −i2π f n
N (3)
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where xwin is a windowed segment of a time series. After
correlation analysis, it appears that strong correlations exist
between different pairs of SPLs close in frequency, implying
that knowledge of one necessarily implies knowledge of the
other. Then, to reduce the dimension of our SPL vector, we
only keep the SPL( fc) measures per octave that maximize
the Pearson correlation coefficient with the variable W44013.

The acoustic descriptors resulting from this process, also
listed in Table I, form a 10-D feature vector over all the
observations consisting of the following descriptors: SPL(0.1),
SPL(0.7), SPL(1.8), SPL(5), SPL(8), SPL(11), SPL(14),
SPL(19), SS(2-8), and SS(8-15). In the following, all fc values
are rounded to a multiple of 100 Hz for clarity in the notation,
and all SPLs are given in dB ref μPa2.

e) Listening area: The wind-generated acoustic energy
arriving at the glider originates within a cone above the glider,
with the location of the glider being the apex of the cone.
Based on field results from moorings, Ma et al. [2, eq. 6] and
Nystuen et al. [22] suggest that the acoustic energy arriving at
a subsurface, moored hydrophone at a depth H is generated in
an inverted cone with a base at the sea surface of radius nH ,
where n is a number between 3 and 5. We conclude that for
a glider at a depth of 50 m, when neglecting refraction and
absorption, 90% of the recorded acoustic signals associated
with wind are originated at the sea surface inside a circle with
a radius of about 500 m, centered on the position of the glider.
As a result, the listening area is in the order of magnitude of
a square kilometer. Wind-generated acoustic signals are, thus,
associated with local wind events.

B. Characteristic Variables

We define the following variables (also displayed in Table I).
1) GliDepth as the time-varying depth of the glider. It is

computed based on ambient pressure and is sampled
every 4 s. Gliders followed saw-toothedlike dive profiles,
with descents and ascents that last around 8 min, and
with depth ranging from 0 to 60 m on average, with
maximal dives up to 80 m.

2) BathyLocal as the local bathymetry matched with the
closest location of the glider.

3) DistToShore as the time-varying distance between the
glider and the closest land shore.

C. Statistical Processing

Prior to statistical analysis, all variables from Table I have
been standardized, i.e., zero mean and unitary variance.

1) Multiple Linear Regression: Multiple Linear Regres-
sion (MLR) is a common statistical tool that informs about
the linear relationship between dependent variables and inde-
pendent variables. In our study, it will be used to evaluate the
influence of independent variables characterizing the marine
environment and recording set up on the error of wind speed
estimation, i.e., the dependent variable.

To assess quantitatively the quality of our regression
analysis and estimation, we provided as evaluation metrics
the p-value and the multiple correlation coefficient squared
(ordinary R2, in %), also called the coefficient of
determination.

2) Outlier-Robust Regression Model: In this paper, an orig-
inal method based on an outlier-robust nonlinear regression
model (O-R regression model) is proposed for wind speed
estimation. This model is fully trained with an outlier removal
procedure using in situ data.

a) Regression optimization: The regression model has
the following second-order polynomial form that follows
Pensieri et al. [20, eq. 4]

Wac = a2 ∗ SPL( fc)
2 − a1 ∗ SPL( fc) + a0. (4)

As done classically in acoustical meteorology, we determine
the model parameters (i.e., a0, a1, a2) by least squares fitting
to the sound-wind observations at the frequency fc. Note that
these parameters are not independent of each other; therefore,
we iteratively search for the least squares fit by testing a range
of values for each parameter.

b) Outlier removal: In statistics, Cook’s distance is com-
monly used to estimate the influence of a data point when
performing a least-squares regression analysis. In a practical
ordinary least squares analysis, Cook’s distance indicates
influential data points that are particularly worth checking for
validity. Especially, the data points with large Cook’s distances
correspond to large residuals (outliers) and/or to high leverages
that may distort the outcome and accuracy of a regression.
In our study, Cook’s distance threshold is chosen through an
optimization process. This distance is optimized so that the
coefficient α in the regression equation Wac = α · Wgt tends
to 1 [23]. In other words, the distance is chosen such that
the estimated Wac optimally fit the observations Wgt in each
training fold.

c) Outlier classification: As explained below
(Section II-C4), a 10-fold cross-validation procedure is used
to assess the performance of the different models. In each
fold, our O-R method learns a regression model and identifies
a set of outlier observations to reject. From these 10 different
sets of outliers, we selected the 2000 observations that have
been the most recurrently identified as outliers. This set is
labeled OutObs. Another set of observations, called WindObs,
was formed by randomly selecting 2000 observations in the
10 sets of observations that fit the O-R regression model. It is
assumed that WindObs data contain wind noise only, while
OutObs data contain noise from other sound sources.

To identify the acoustic characteristics discriminating these
two observation sets, we compute for each observation the
following audio descriptors [24]:

1) Global: SPL(0.1), SPL(0.7), SPL(1.8), SPL(5), SPL(8),
SPL(11), SPL(14), SPL(19), SS(2-8), SS(8-15),
Amplitude of Energy Modulation (AmpMod);

2) Time-Varying: Noise Energy (NoiseErh), Spectral
Skewness (SpecSkew), Spectral Kurtosis (SpecKurt),
Spectro-Temporal Variation (SpecVar).

SPL and SS descriptors have been used in previous mete-
orological acoustic studies. In particular, SS was used to
discriminate between passing ships, rainfall, and wind speed
[3], [4]. The other descriptors are classical features that are
used in various audio classification tasks [24]. A principal
component analysis (PCA) is then applied to these multi-
variate observation vectors in each set, in order to reduce
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their dimensions by fusing together highly collinear audio
descriptors. Keeping only the first two PCA components, we
use an SVM to compute a standard two-class confusion matrix
within a standard cross-fold validation procedure to train/test
the classifier. The confusion matrix shows the ways in which
our classification model is confused when it makes predictions.

3) Other Regression Models on the Benchmark: To evaluate
the performance of the O-R regression method, it is compared
to two other models found in the literature.

a) Model: We used the logarithmic model from
Vagle et al. [25]

Wac = 10SPL(8)/20 + 104.3

53.91
(5)

and the third-order model from Nystuen et al. [4]

Wac = 0.0005 ∗ SPL(8)3 − 0.031 ∗ SPL(8)2

+ 0.4904 ∗ SPL(8) + 2.0871. (6)

b) Calibration: As these conversion relationships are
based on absolute sound levels, sensitivity bias, and instrument
noise corrections are applied to acoustic data to make these
models presumably “universal” (as stated by Ma et al. [2])
and insensitive to site-specific parameters. Such a correction
is described in Ma et al. [2, Appendix A], and has been used
in many subsequent studies [3], [4], [6], [7].

Generally, the Wgt data are used to identify periods of
uniform wind (several hours of constant wind speed). Spectral
data from each of these time periods are obtained, and the
sound level at 8 kHz is adjusted to minimize the difference
between Wgt and the acoustic wind speed Wac. This value is
the sensitivity offset for the particular passive acoustic sensor.
The frequency-dependent component of the offset is obtained
from the assumption that wind-generated spectra have known
uniform SSs for moderate wind speed conditions from roughly
1 to 40 kHz [2], [25]. Note that this correction is small (usually
less than 1 dB) with respect to the variability of the sound
levels (tens of decibels).

4) Regression Model Performance: The full set of obser-
vations contains 40 000 snapshots, each of duration 10 s,
after removal of contaminated (by acoustic sources other than
wind) and near-surface snapshots (see Section II-A3). This
data set was sorted into 10 stratified folds of 4000 observations
each, and all models were evaluated using 10-fold cross
validation. The stratified procedure applied to each data set
means that each fold contains roughly the same proportions of
observations from different wind speed classes that correspond
to the Beaufort scale, and from different spatial areas that
correspond to 10 space intervals along the complete glider
route. Such stratified data partitioning is classically used to
minimize risks of overfitting. Also, for training the proposed
O-R regression model, we use one of the nine training folds in
each split as a validation set for identifying the training epoch
that yields the best model parameters when training with the
remaining eight folds.

As an evaluation metric, we use the rms difference εws

between the ground truth and estimated wind speed. The
average error εW is then computed on the resulting errors in
each fold, along with the median absolute deviation on these

Fig. 2. Pearson correlation between the different wind speed measurements
and the SPLs with their different center frequencies fc.

TABLE III

PERFORMANCE OF DIFFERENT REGRESSION CLASSIFIERS TO
ESTIMATE WIND SPEED. STANDARD DEVIATION OF EACH

REGRESSION COEFFICIENT IS ALSO REPORTED

tests to assess the statistical significance of our experiments.
We also compute the average relative error ε̃W in each fold,
defined as the error percentage relative to the actual wind speed
value being estimated.

III. RESULTS

A. Regression Model Wac / Wgt ∼SPL ( fc)

We first performed basic correlation and rms error analysis
on two classical hypothesis found in the literature: 1) wind
speed ground truth Wgt is the closest weather buoy from
the glider trajectories and 2) the parameter fc is set to
8 kHz. We compared wind speed of the closest National
Oceanic and Atmospheric Administration (NOAA) buoy
44013 to other available wind speeds, and obtained rms errors
of 2.5 m · s−1, 3.2 m · s−1 and 5.1 m · s−1, respectively,
with ECMWF wind speed products, and the NOAA buoys
44018 and 44005. Also, Fig. 2 shows the Pearson correlation
between the different wind speed measurements and the SPLs
with their different center frequencies fc. We can see that
the highest correlation degree results from the linear equation
SPL(8) ∼ W44013, with a Pearson correlation of r = 0.79
(p-value < 0.001).

As listed in the first column of Table III, we tested four
different regression classifiers, using the S P L(8) as the sin-
gle predictor. The first two are from Vagle et al. [25] and
Nystuen et al. [4]. The last two correspond to our nonlinear
regression models trained with in situ data, using the training
data sets formed in each fold of the cross-validation procedure.
The O-R model follows the relationship Wac = 0.027418 ∗
SPL( fc)

2 − 1.8705 ∗ SPL( fc)+ 37.9. We can see that it is the
O-R classifier that provides the best estimation performance
of wind speed, with an average relative error ε̃W around 14%.

In Fig. 3, we superimposed the different regression models,
where the outliers of the O-R regression one have been
drawn in blue. We observe that outliers are mainly located
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Fig. 3. O-R nonlinear regression model SPL(8) ∼ W44013 obtained from the
training set of the second fold. Black circles: SPL(8) values of the acoustic
snapshot that fit the O-R nonlinear regression model during a training fold
of this model (i.e., from the WindObs observation class). Blue circles: outlier
observations of this model (i.e., from the OutObs observation class).

Fig. 4. ε̃W against different variables that could influence its distribution.
(a) W44013. (b) Dist. (c) GliDepth. (d) BathyLocal. (e) DistToShore.

on low values of wind speed, especially below 8 m · s−1.
The corresponding SPL(8) spans a large range of med to
high values, from 55 to 65 dB. Consequently, low-wind-speed
estimates exhibit a high rate of error estimation.

In Fig. 4, we represented the relative error of wind speed ε̃W

against different variables that could influence its distribu-
tion, from top left to bottom right: W44013, Dist, GliDepth,
BathyLocal, DistToShore. Most significant variations of ε̃W

are obtained for the variable W44013 (graph A).
To have the relative influence weight of each variable, we

also performed a multilinear regression analysis using the
regression equation ε̃W ∼ β0 + β1 ∗ W44013 + β2 ∗ Dist + β3 ∗
GliDepth + β4 ∗ BathyLocal + β5 ∗ DistToShore, with results

TABLE IV

RESULTS ON THE MLR MODEL OF THE UNIVARIATE ERROR RESPONSE

FOLLOWING THE MODEL ε̃W ∼ β0 + β1 ∗ W44013 + β2 ∗ DIST + β3 ∗
GLIDEPTH + β4 ∗ BATHYLOCAL + β5 ∗ DISTTOSHORE. RESULTS

ARE REPORTED IN TERMS OF REGRESSION COEFFICIENTS AND

ORDINARY R2 . ALL NUMERICAL VALUES HAVE BEEN
ROUNDED AT THE CLOSEST HUNDREDTH. MOST

IMPORTANT REGRESSION COEFFICIENTS

HAVE BEEN PUT IN BOLD

TABLE V

AVERAGE CONFUSION MATRIX FOR THE TWO CLASSES: WINDOBS AND
OUTOBS. 2000 SAMPLES ARE PRESENT IN EACH CLASS, AND A 10-FOLD

CROSS VALIDATION PROCEDURE IS APPLIED. THE RESULTS REPORTED

HERE ARE THE AVERAGES OF PERCENTAGES AND STANDARD DEVIATIONS
RESPECTIVE TO EACH FOLD. TO IMPROVE READABILITY OF THE

TABLE, HERE IS AN EXAMPLE: ON AVERAGE, 84% OF 2000 WIND

OBSERVATIONS (I.E., 1680 OUT OF 2000 OBSERVATIONS FROM THE

CLASS WINDOBS) ARE CORRECTLY RECOGNIZED AS WIND
OBSERVATIONS, I.E., TP. WHILE 31% OF 2000 OUTLIER

OBSERVATIONS (I.E., 620 OUT OF 2000 OBSERVATIONS

FROM THE CLASS OUTOBS) ARE MISCLASSIFIED AS
WIND OBSERVATIONS, I.E., ARE FALSE ALARMS

shown in Table IV. Taken altogether, we confirm that W44013
is the most important explanatory variable for ε̃W variations,
with the highest regression coefficient of 0.29. In other words,
wind speed itself is the biggest driver of error for wind speed
estimation.

B. Outlier Classification Performance

Table V shows the confusion matrix resulting from our
PCA + SVM (see details Section II-C2.c) classification
procedures, applied to the two sets Outliers and WindObs.
The results are also compared with the method from
Nystuen et al. [4, Appendix].

For the PCA + SVM algorithm, the first two principal
components explained approximately 80% (first component,
55%; second component, 25%) of the total variable variance.
This algorithm outperforms the Nystuen et al. [4, Appendix]’s
algorithm, with an average rate of correct classification
[i.e., True Positive (TP) in Receiver Operating Characteristic
framework] of WindObs observations of 84%. False alarms,
i.e., OutObs observations classified in the WindObs class, have
an average rate of 31%.

Eventually, we want to put into relation this classification
task of identifying OutObs with the one of wind speed
estimation. Varying the Cook’s distance modifies the absolute
regression model, and consequently, the regression error ε̃W .
To look at how this may impact the classification performance
metrics of TP and False Positives (FP), we plot in Fig. 5 the
covariations of TP and FP against relative error ε̃W . We can
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Fig. 5. Representation of covariations of TP and FP, both in%, against the
relative error ε̃W .

TABLE VI

TECHNICAL SPECIFICATIONS OF THE ACOUSTICAL

METEOROLOGY SYSTEM

observe that enhancing classification performance is obtained
by increasing the relative error ε̃W .

C. Synthesis

In definitive, we resume in Table VI the technical specifi-
cations of the proposed acoustic-based wind speed estimation
system, using the O-R regression model with in situ training.

IV. DISCUSSION

A. Wind Speed Ground Truth

For our experimental field of Massachusetts Bay, we have
used two types of meteorological sources, namely, reassim-
ilation models and weather buoys. It is known that for both
satellite and reanalysis data, the highest errors in wind velocity,
in comparison to contact measurements, are observed for
extreme values, i.e., with overestimation under weak winds
(W < 4 m · s−1) and underestimation under strong winds
(W > 12 m · s−1). The fact that errors increase for scatterom-
eter measurements under very weak winds is known [26], [27].
High errors in determining the direction and velocity of wind
under weak winds are associated with the insufficient strength
of signal received by satellite. Globally, Garmashov et al. [27]
reported that reanalysis data have an average rms deviation in
the velocity amplitude that varies from 1.9 to 2.2 m · s−1.

In our study, when comparing ECMWF wind speed products
to the NOAA buoy 44013, an rms deviation of 2.5 m · s−1

was observed. Consequently, reanalysis data and satellite
imagery might be an error-prone ground truth for wind speed,
especially when used in coastal environments where satellite-
based estimations seem to be less accurate [28]. This needs
to be carefully taken into account in acoustical meteorology,
where some studies exclusively rely on satellite imagery,
e.g., Tropical Rainfall Measuring Mission and QwikScat in
Riser et al. [5], for rainfall and winds, respectively.

Also, rms deviations of 3.2 m · s−1 and 5.1 m · s−1 were
observed between the NOAA buoy 44013 and the NOAA
buoys 44018 and 44005, respectively. These differences corre-
spond to local variations in wind speed, which are noticeable
even at a 40-km distance (distance between buoys 44013 and
44018). This highlights the importance of selecting a buoy
as close as possible to the acoustic recorder. In the literature,
average distances between recorders and buoys (or onshore
meteorological stations) vary from 40 km [19] to 80 km [20].
In our study, maximum time and space intervals between the
glider and buoy 44013 were 1 h and 24 km. These intervals are
sufficiently small so that one can expect that errors associated
with the spatiotemporal disagreement of data are relatively
small.

A multilinear regression model was used to see which
meteorological variables best explain the multivariate acoustic
response composed of eight SPLs in different frequency bands.
From this analysis, we showed that the highest correlation is
obtained with the buoy 44013, which is the closest to the
glider. Correlations with farther buoys and reanalysis data are
poorer. This highlights the importance of correctly choosing
the ground truth to calibrate the acoustical meteorology in a
coastal environment. Interestingly, the SPL with the highest
correlation is always SPL(8), whatever ground truth is consid-
ered. This corresponds to the very frequency adopted by past
research studies [25], [29], and validated for different marine
environments [2], [4], [6].

B. Empirical Conversion Relationships

Based on the wind speed ground truth Wgt , we have trained
a nonlinear regression model with SPL(8) as a single-feature
predictor. For low wind speed values, and in the absence
of concurrent acoustic sources, the ocean bottom noise floor
level should be measured. However, as observed in Fig. 3,
OutObs mostly overestimates wind speed, suggesting that
acoustic energy is produced by sources other than wind speed.
When wind speed increases, the decreasing amount of OutObs
suggests that these sources become less and less significant to
the overall sound budget.

It is interesting to compare our obtained regression model
to other ones published in the literature, which can vary
significantly, depending on the different experimental configu-
rations. These models can be linear [19], logarithmic [2], [3],
quadratic [20], or third-order polynomial [4]. However, note
that comparison of different wind speed estimation algorithms
are quite rare in the literature, excepting in Pensieri et al.
[30, Fig. 10] and Pensieri et al. [20, Fig. 14], where drastic
differences are observed in comparison to other models [25],
[31], [32]. The largest intermodel differences observed in our
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own study, between our O-R model, and Vagle et al. [25] and
Nystuen et al. [4] ones, were at extreme values, especially the
lowest ones under 6 m · s−1, which has been confirmed by
other studies (e.g., [4, Fig. 9]).

In definitive, as suggested by Yang et al. [6], in situ
calibration of passive acoustics sensors is the most promising
solution to reduce errors in wind speed estimation. In our
study, making our regression model robust to outliers reduced
significantly the average relative estimation error, from
2.3 m·s−1 to 1.3 m·s−1 (Table V). Unfortunately, the literature
in acoustical meteorology does not provide a clear baseline
reference for errors in wind speed estimation. We can mention
that Pensieri et al. [30] obtained their highest error for the
Beaufort class F1 (low wind speed), and an approximate error
of 1 m · s−1 for the higher class F7, which are both consistent
with our results.

Also, the potential effects of several environmental factors
on noise levels were examined to assess how they influence the
wind dependence of spectral levels. In particular, to develop
more efficient classification systems, it is also interesting to
investigate the physical origins of OutObs observations, i.e.,
corresponding to the outliers identified in our O-R regression
models. Different comments can be made based on the differ-
ent graphs shown in Fig. 4 and Table IV, that represent the
impacts of different variables on the distribution of ε̃W . As
already seen, wind speed Wgt is very influential (graph A),
exhibiting a decreasing exponential relation with the dispersion
and average values of ε̃W . Indeed, wind speed estimation with
passive acoustic monitoring is harder for low wind speed than
for higher wind speed for at least two reasons. First of all,
when the wind speed is less than 5 m/s, there is very little
wave breaking at the ocean surface, and thus, there is very little
for an acoustic wind speed measurement [3]. Also, the weak
acoustic signal created by low wind speed is easily masked
by other acoustic sources, leading to a signal-to-noise ratio
issue. As a result, a higher number of outliers is present for
low wind speed values (as can be seen in Fig. 3), which leads
to higher estimation errors (see graph A shown in Fig. 4).

For the influence variable Dist (graph B), the slight increase
of the relative error ε̃W with the distance Dist suggests that
this error may reflect a spatial change of wind condition, rather
than an estimation error. In other words, at the glider position,
the acoustical wind speed estimate may be more accurate
than the distant buoy measurement. Variations in GliDepth
(graph C) and BathyLocal (graph D) have more marginal
impacts on ε̃W , although large errors (more than 20%) occur
mostly when the glider is deeper than 40 m. Cauchy et al. [19]
reported depth-related errors less than 0.5 m · s−1 in deep
waters. Last but not least, ε̃W shows a stronger dependence
on DistToShore (graph E), that may be explained by a
reinforcement of concurrent nonmeteorological sources when
approaching the coast (e.g., crashing waves).

C. Outlier Classification Performance

Most acoustical meteorology studies take place in under-
water soundscapes with minimal polluting sources [33]. Some
researchers also manually preprocessed their recordings to

remove contaminated observations, as in Pensieri et al. [30],
where spectra related to rain events detected by a pluviometer
onboard a buoy were discarded as well as spectra correspond-
ing to ship passage within 15 min. Similarly, in most shallow
water studies, data contaminated by traffic noise and/or marine
mammal sounds are excluded from the analysis when studying
the wind dependence of ambient noise [3], [13], [34], [35].
In our study, the marine environment of Massachusetts Bay
during winters presents a complex soundscape with multiple
sources concurrent to the wind. In particular, rainfall has been
shown to highly complicate wind speed estimation [2]. Also,
the intermittent proximity of gliders to large vessels, crashing
waves, singing humpback whales could have contaminated
wind observations.

Ma et al. [2, Appendix B] described a classification frame-
work of underwater acoustic sources based on multivariate
classification tests with thresholded absolute levels, which has
been used in many subsequent studies [3], [4], and also imple-
mented on board ARGO profilers [5]–[7]. This framework is
based on the following steps and hypothesis [36].

1) Only a few spectral parameters are needed to identify
most sound sources.

2) Multivariate classification algorithms are applied on
board the float.

3) Once classified, wind speed and rainfall rate are quan-
tified. This includes highly site-specific heuristic rules
such as assuming that concurrent acoustic source is
bounded into specific frequency bands. This is unfor-
tunately hard to generalize for global scale acoustical
monitoring, which motivates the need for an automatic
classification of data containing wind noise only, versus
data contaminated by other sound sources.

In our study, a data-driven classification framework was
designed to address this issue. The O-R model provides a rich
training data set to first characterize acoustically these OutObs
and then evaluate classification performance in automatically
identifying them. In comparison to the classification algorithm
proposed in Ma et al. [2, Appendix B], our SVM + PCA
method provided the best results in recognizing both wind-
generated and nonwind noises (TP ≈ 84% and FP ≈ 31%, see
Table V). The performance gain can be explained by the in
situ training of more flexible audio features. Also, our longer
analysis time windows of 10 s, in comparison to the 10 ms
commonly found in the literature, probably captures more
efficiently the signatures of different acoustic events, thanks
to the use of the time-dependent features.

Fig. 5 reveals the tradeoff that exists in the global system
between efficient wind speed estimation (i.e., low values
of ε̃W ) and efficient outlier rejection (i.e., high values in
TP and low values in FP). To further enhance classification
performance, and eventually fully validate mobile acousti-
cal weather systems for operational use, more sophisticated
machine learning and source separation methods will need to
be explored. The calibration of the acoustic systems will likely
require a systematic recovering of raw acoustic data, which
is difficult to achieve in practice. Also, it will be important
to collect longer-term measurements on large areas and to
compare acoustic estimates with other meteorological sources.
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Complementary observations on the spatiotemporal distribu-
tion of nonmeteorological competitive acoustic sources (e.g.,
biological surveys from ships) specific to each deployment site
will also be necessary.

V. CONCLUSION

This paper reports results on the use of an underwater glider
to perform acoustical meteorology. It takes the form of a
methodological protocol to deploy an operational acoustic-
based in situ wind speed estimation system, especially by
providing technical specifications that inform us of its perfor-
mance. This protocol paves the way toward the development of
an operational glider-embedded wind speed estimation system.

The long-term goal of this paper is to use passive
acoustic remote sensing of the marine environment as a
standard measurement technique for observing air–sea inter-
action processes. Such sampling platforms could have a direct
application in marine meteorology as contact measurements
distributed at large scale to calibrate satellite products.
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