
924 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 2, FEBRUARY 2019

Learning Spectral-Spatial-Temporal Features via
a Recurrent Convolutional Neural Network for

Change Detection in Multispectral Imagery
Lichao Mou, Student Member, IEEE, Lorenzo Bruzzone , Fellow, IEEE,

and Xiao Xiang Zhu , Senior Member, IEEE

Abstract— Change detection is one of the central problems
in earth observation and was extensively investigated over recent
decades. In this paper, we propose a novel recurrent convolutional
neural network (ReCNN) architecture, which is trained to learn
a joint spectral–spatial–temporal feature representation in a
unified framework for change detection in multispectral images.
To this end, we bring together a convolutional neural network
and a recurrent neural network into one end-to-end network.
The former is able to generate rich spectral-spatial feature
representations, while the latter effectively analyzes temporal
dependence in bitemporal images. In comparison with previous
approaches to change detection, the proposed network archi-
tecture possesses three distinctive properties: 1) it is end-to-end
trainable, in contrast to most existing methods whose components
are separately trained or computed; 2) it naturally harnesses
spatial information that has been proven to be beneficial to
change detection task; and 3) it is capable of adaptively learning
the temporal dependence between multitemporal images, unlike
most of the algorithms that use fairly simple operation like image
differencing or stacking. As far as we know, this is the first time
that a recurrent convolutional network architecture has been
proposed for multitemporal remote sensing image analysis. The
proposed network is validated on real multispectral data sets.
Both visual and quantitative analyses of the experimental results
demonstrate competitive performance in the proposed mode.

Index Terms— Change detection, long short-term memory
(LSTM), multitemporal image analysis, recurrent convolutional
neural network (ReCNN).

I. INTRODUCTION

W ITH the development of remote sensing technology,
every day, massive amounts of remotely sensed data

are produced from a rich number of spaceborne and airborne
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sensors; e.g., the Landsat 8 satellite is capable of imaging the
entire Earth every 16 days in an 8-day offset from Landsat 7,
and every 10 days, the Sentinel-2 mission can provide a global
coverage of Earth’s land surface. For the Sentinel-2 mission
alone, to date about 3.4 PB of data have been acquired.
Triggered by these exciting existing and future observation
capabilities, methodological research on the multitemporal
data analysis is of great importance [1], [2]. Change detection
is very crucial in the field of multitemporal image analysis,
as it is able to identify land use or land cover differences in
the same geographical area across a period of time and can
be used in a large number of applications, to name a few,
urban expansion, disaster assessment, resource management,
and monitoring dynamics of land use [3]–[5].

In the literature, many methods have been proposed to
better identify land cover changes [1]. Among them, a widely
used model is based on image algebra approaches. A classic
one is change vector analysis (CVA) proposed by Malila [6].
CVA is designed to analyze possible multiple changes in
pairs of multispectral pixels of bitemporal images. Bovolo and
Bruzzone [7] propose a formal definition and a theoretical
study of CVA in the polar domain. Later some extensions of
the CVA model have been proposed, e.g., compressed CVA
(C2VA) [8]. CVA is used together with unsupervised threshold
selection techniques based on different possible models of
the data distribution. For example, the Rayleigh-Rice mixture
density model [9] has been recently used in the framework of
the expectation–maximization algorithm.

In addition, some image transformation-based models have
been proposed in change detection to improve detection
performance. These approaches mainly aim at learning a
new, transformed feature representation from the original
spectral domain, in order to suppress unchanged regions
and highlight the presence of changes in the new feature
space. For example, principal component analysis (PCA),
Gram–Schmidt transformation, multivariate alteration detec-
tion (MAD), slow feature analysis (SFA), sparse learning,
and deep belief network (DBN) use transformation algorithms
in change detection methods [10]–[15]. PCA is one of the
best-known subspace learning algorithms and can be used on
both difference images and stacked images [10], [16]. The
goal of Gram–Schmidt transformation is to reduce data cor-
relation. MAD makes an attempt at maximizing the variance
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of independently transformed variables [12] and is invariant
to linear scaling of the input data. SFA [13] is able to extract
the most temporally invariant component from multitemporal
images to transform data into a new feature space and, in this
space, differences in unchanged pixels are suppressed so that
changed regions can be better separated. Erturk et al. [14]
apply sparse learning on stacked multitemporal images and
expect that resulting sparse solutions do not vary greatly
between the multitemporal data. Gong et al. [15] learn feature
representations of two images with DBNs. Feature vectors
issued from the two image acquisitions are stacked and used to
learn a representation, where changes stand out more clearly.
Using such feature representation, changes are more easily
detected by image differencing.

Another important branch of change detection methods is
based on classification approaches. For example, Bruzzone
and Serpico [17] propose a supervised nonparametric model,
based on the compound classification rule for minimum error,
to detect land cover transitions between two remote sensing
images acquired at different times. The main idea of this
approach is to consider the temporal correlation between
images in the classification without requiring complex training
data. Bruzzone et al. [18] use the Bayes rule for minimum
error in the compound classification framework for detect-
ing land cover transitions between pairs multisource images
gathered at two different dates. Bruzzone and Cossu [19]
propose a multiclassifier architecture, which is composed of
an ensemble of partially unsupervised classifiers, to detect
changes or update land cover maps. Later, Bruzzone et al. [20]
develop an effective system that employs an ensemble of non-
parametric multitemporal classifiers to address the problem of
detecting land cover transitions in multitemporal images. All
these techniques consider different tradeoffs between modeling
the temporal correlation in the training of the system and
requiring complex training data.

One crucial issue in change detection is modeling the
temporal correlation between bitemporal images. Various
atmospheric scattering conditions, complicated light scattering
mechanisms, and intraclass variability lead to change detec-
tion is inherently nonlinear. Thus sophisticated, task-driven,
learning-based methods are desirable.

Deep neural networks have recently been shown to be
very successful in a variety of computer vision and remote
sensing tasks [21]. They can also provide the opportunity
for change detection, where one would like to extract joint
spectral-temporal features from a bitemporal image sequence
in an end-to-end manner. In this respect, as an important
branch of deep learning family, a recurrent neural net-
work (RNN) is a natural candidate to tackle the temporal
connection between multitemporal sequence data in change
detection tasks. Recently, Lyu et al. [22] make use of an
end-to-end RNN to solve the multispectral /hyperspectral
image change detection task, since RNN is well known to
be good at processing sequential data. In their framework,
a long short-term memory (LSTM)-based RNN is employed
to learn a joint spectral-temporal feature representation from
a bitemporal image sequence. In addition, we also show the
versatility of their network by applying it to detect multiclass

changes and pointing out a good transferability for change
detection in an “unseen” scene without fine-tuning. Russwurm
and Körner [23] follow a similar idea, where an RNN based
on LSTM units is used to extract dynamic spectral–temporal
features but, in contrast to the change detection scenario,
their goal is to address the land cover classification of the
multitemporal image sequence.

In this paper, we would like to learn joint spectral–spatial–
temporal features using an end-to-end network for change
detection, which is named as a recurrent convolutional neural
network (ReCNN), since it combines convolutional neural
network (CNN) and RNN. Although both CNN [24]–[36]
and RNN [22], [23], [37]–[39] are well-established tech-
niques for remote sensing applications, to the best of our
knowledge, we are the first to combine them for multitem-
poral data analysis in the remote sensing community. Note
that integrating CNN and RNN in an end-to-end manner
has also been explored in hyperspectral image classifica-
tion [40], where the network is only used for extracting
spectral information to build a spectral classifier for the
classification purpose. In our work, the CNN part transforms
the input, a pair of 3-D multispectral patches, to an abstract
spectral-spatial feature representation, whereas the RNN part
is not only employed for modeling temporal dependence,
but is also used for predicting the final label (i.e., changed,
unchanged, or change type). In other words, the features
from the proposed ReCNN encapsulate information related
to spectral, spatial, and temporal components in bitemporal
images, making them useful for a holistic change detection
task. For multitemporal image analysis, the proposed ReCNN
contributes to the literature in three major aspects.

1) It is able to extract a spectral-spatial-temporal feature
representation of multitemporal data through learning
with a structured deep architecture.

2) It has the same property of 2-D CNN used for multispec-
tral /hyperspectral data classification on learning infor-
mative spectral–spatial feature representations directly
from multispectral data, requiring neither hand-crafted
visual features nor preprocessing steps.

3) It has the same characteristic of RNN, being capable of
modeling the temporal correlation between bitemporal
images using a sophisticated and task-driven approach
to the extraction of temporal features in an end-to-end
architecture, and finally producing labels for the image
sequence.

The remainder of this paper is organized as follows.
After the introductory Section I detailing change detection,
Section II is dedicated to the details of the proposed recurrent
convolutional network. Section III then provides data set infor-
mation, network setup, experimental results, and discussion.
Finally, Section IV concludes this paper.

II. METHODOLOGY

A. Network Architecture

The architecture of the proposed ReCNN, as shown
in Fig. 1, is made up of three components, including a
convolutional subnetwork, a recurrent subnetwork, and fully
connected layers, from bottom to top.



926 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 2, FEBRUARY 2019

Fig. 1. Overview of the proposed ReCNN. At the bottom of our network, convolutional layers automatically extract feature maps from each input. On top
of the convolutional subnetwork, a recurrent subnetwork takes the feature representations produced by convolutional layers as inputs to exploit the temporal
dependence in the bitemporal images. To show how the single recurrent layer deals with bitemporal inputs, we show the unrolled form of the recurrent
subnetwork. The third part is two fully connected layers widely used in classification problems. Although ReCNN is composed of different kinds of network
architectures, i.e., CNN, RNN, and fully connected network, it can be trained end to end by backpropagation with one loss function, due to the differential
property of all these components.

To acquire a joint spectral–spatial–temporal feature repre-
sentation for change detection, at the bottom of our network,
convolutional layers automatically extract feature maps from
each input. On top of the convolutional subnetwork, a recur-
rent subnetwork takes the feature representations produced
by convolutional layers as inputs to exploit the temporal
dependence in the bitemporal images. The third part is two
fully connected layers widely used in classification problems.
Although ReCNN is composed of different kinds of network
architectures (i.e., CNN, RNN, and fully connected network),
it can be trained end to end by backpropagation with one
loss function, due to the differential properties of all these
components.

Let XT1 and XT2 represent a pair of multispectral images
acquired over the same geographical area at two different times
T1 and T2, respectively. Let xT1 and xT2 be two patches taken
from the exact same location in two images. y is a label that
indicates the category (i.e., changed, unchanged, or change
type) that the pair of patches belongs to. The flowchart of the
proposed ReCNN can be summarized as follows.

1) First, the 3-D multispectral patch xT1 is fed into T1
branch of the convolutional subnetwork, which trans-
forms it to an abstract feature vector f T1 .

2) Then, the recurrent subnetwork receives f T1 and calcu-
lates the hidden state information for the current input;
it also restores that information in the meantime.

3) Subsequently, xT2 is input to T2 branch for extracting
spectral–spatial feature f T2 , it is fed into the recurrent
layer simultaneously with the state information of f T1 ,
and the activation at time T2 is computed by a linear
interpolation between existing value and the activation
of the previous time T1.

4) Finally, fully connected layers of the ReCNN predict
the label of the input bitemporal multispectral patches
by looping through the entire sequence.

The entire change detection map can be obtained by apply-
ing the network to all pixels in the image.

B. Spectral–Spatial Feature Extraction via
the Convolutional Subnetwork

As we have mentioned, the spectral–spatial information
is of great importance for change detection. Some of the
previous widely used unsupervised image algebra-based and
image transformation-based methods cannot totally capture
task specialized features which may be discriminative for a
specific change detection task. Features directly learned from
data and driven by tasks are supposed to be better [21]. This
advantage leads to our usage of a trainable feature generator.

Though trainable, early and fairly simple 1-D neural net-
work models, such as DBN [15] and multilayer percep-
tron (MLP), suffer from huge amount of learnable parameters,
since those architectures are totally equipped with fully con-
nected layers, which is an undesirable case given that available
annotated training samples for change detection are often very
limited. Moreover, another disadvantage of such networks is
that they treat the multispectral data as vectors, ignoring the
2-D property of imagery in the spatial domain.

CNNs, which are a significant branch of deep learning,
have been attracting attention, due to the fact that they
are capable of automatically discovering relevant contextual
2-D spatial features as well as spectral features for multi-
spectral/hyperspectral data. In addition, a CNN makes use
of local connections to deal with spatial dependencies via
sharing weights, and thus can significantly reduce the number
of parameters of the network in comparison with the conven-
tional 1-D fully connected neural networks, e.g., DBN and
MLP. Recently, CNNs used for hyperspectral image classi-
fication have proven their effectiveness in extracting useful
spectral–spatial features [28], [41]. Triggered by this, adopting
a CNN in our architecture is natural.

However, a direct use of CNNs commonly used in typical
recognition tasks, e.g., AlexNet [42], VGG Nets [43], and
GoogLeNet [44], is not possible in our task, as we believe
that a simpler network architecture is more appropriate for our
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Fig. 2. Illustration of (Left) traditional convolution operation and (Right) two-dilated convolution. Traditional convolution corresponds to dilated convolution
with dilation rate 1. Employing dilated convolution operation enlarges the network’s field of view.

problem due to the following reasons. First, change detection
aims to distinguish only several classes (two for binary change
detection), which requires much less model complexity than
general visual recognition problems in computer vision, such
as ImageNet classification with 1000 categories. Second, since
the spatial resolution of multispectral imagery is limited, it is
desirable to make input size small, which reduces the depth of
the network naturally. Third, a smaller network is obviously
more efficient in change detection problems, where testing
may be performed in a large-scale area. Finally, the above-
mentioned networks are not suitable to be used on multispec-
tral images with a large number of spectral channels.

The convolutional subnetwork receives a sequence of 5 × 5
multispectral patches as the input and has two separate, yet
identical convolutional branches (i.e., T1 branch and T2 branch
(cf. Fig. 1) which process xT1 and xT2 in parallel, respectively.
The learned features are fed into the following recurrent sub-
network. Using this two-branch architecture, the convolutional
RNN is constrained to first learn meaningful spectral–spatial
representations of input patches, and to combine them on a
higher level for modeling temporal dependence. More specif-
ically, we make use of convolutional filters with a very small
receptive field of 3 × 3, rather than using larger ones such
as 5 × 5. Moreover, we do not adopt max-pooling after
convolution or spatial padding for convolutional layers. The
depth of the convolutional subnetwork is such that the output
size of the last layer is 1 × 1.

Regarding convolution, we make use of dilated convolution
to construct convolutional layers in the network because, for
our task, it is able to offer a slightly better performance than a
traditional convolution operation. The dilated convolution [45]
was originally designed for the efficient computation of the
undecimated wavelet transform in the “algorithme à trous”
scheme [46]. This algorithm makes it possible to calculate
responses of any layer at any desirable resolution and can
be applied post hoc, once a network has been trained. Let
F : Z

2 → R be a discrete function. Let �r = [−r, r ]2 ∩ Z
2

and let k : �r → R be a discrete filter of size (2r + 1)2. The
traditional discrete convolution operation ∗ can be defined as
follows:

(F ∗ k)(p) =
∑

s+t=p

F(s)k(t). (1)

This operation can be generalized. Let l be a dilation rate
and let ∗l be defined as

(F ∗l k)(p) =
∑

s+lt=p

F(s)k(t). (2)

We will refer to ∗l as a dilated convolution or an
l-dilated convolution. Fig. 2 shows differences between the
conventional convolution and the dilated convolution.

The usage of dilated convolution in our network allows us to
exponentially enlarge the field of view with a linearly increas-
ing number of parameters, providing a significant parameter
reduction while increasing effective field of view. Note that a
very recent study [47] found that large field of view actually
plays an important role. This can be easily understood by
an analogy that states the fact that humans usually confirm
the category of a pixel by referring to its surrounding context
region.

C. Modeling Temporal Dependence by the
Recurrent Subnetwork

The impressive success of recent deep learning systems has
been predominantly achieved by feedforward neural network
architectures such as CNN. In such networks, we implicitly
assume that all inputs are independent of each other. However,
for tasks that involve processing time sequence (e.g., change
detection), that is not a good assumption. RNNs are a kind
of neural networks that extend the conventional feedforward
neural networks with loops in connections. Unlike a feedfor-
ward network, an RNN is capable of dealing with dependent,
sequential inputs by having a recurrent hidden state whose
activation at each time step depends on that of the previous
time. By doing so, the network can exhibit dynamic temporal
behavior, which is in line with our purpose, i.e., modeling
temporal dependence between the T1 and T2 data. To this
end, three types of RNN architectures, namely, fully connected
RNN, LSTM, and gated recurrent unit (GRU), are used to
construct the recurrent subnetwork in our ReCNN.

1) Fully Connected RNN: Given feature vectors
f T1 and f T2 learned from the convolutional subnetwork,
a fully connected RNN updates its recurrent hidden state ht by

ht =
{

0 if t = 0

ϕ(ht−1, f Tt ) otherwise
(3)

where ϕ is a nonlinear activation function, such as a hyperbolic
tangent function or logistic sigmoid function. The recurrent
layer will output a sequence h = (h1, h2). For our task,
we only need the last one as input to the fully connected
layers for predicting label.

In the fully connected RNN model, the update of the
recurrent hidden state in (3) is implemented as

ht = ϕ(Uht−1 + W f Tt ) (4)



928 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 2, FEBRUARY 2019

where U and W are the coefficient matrices for the activation
of recurrent hidden units at the previous time step and for the
input at the present time, respectively.

Fully connected RNN is the concisest RNN model, and it
can reflect the essence of RNNs, i.e., an RNN is capable of
modeling a probability distribution over the next element of
the sequence data, given its present state ht , by capturing
a distribution over sequence data. Let p( f T1 , f T2) be the
sequence probability, which can be decomposed into

p( f T1, f T2) = p( f T1)p( f T2 | f T1). (5)

Then, the conditional probability distribution can be mod-
eled with an RNN

p( f T2 | f T1) = ϕ(h2) (6)

where h2 is obtained from (3). More specifically, the RNN
tries to model the conditional dependence between a patch at
T1 and its corresponding one at T2 in the following manner:

p( f T2 | f T1) = ϕ(Uh1 + W f T2)

= ϕ(Uϕ(W f T1) + W f T2). (7)

In this way, a conditional probability distribution p, which
is beneficial to our change detection tasks, can be modeled by
optimizing W and U during task-guided network training. Our
motivation in this paper is apparent here: bitemporal images
act as true sequential data instead of a simple difference
image or stacked image and, therefore, an RNN can be used
to model the temporal dependence.

2) LSTM: LSTM is a special type of recurrent hidden
unit and was initially proposed by Hochreiter and Schmid-
huber [48]. Since then, a couple of minor modifications to
the original version have been made. In this paper, we follow
the implementation of LSTM as used in [49]. As shown
in (3), recurrent hidden units in a fully connected RNN simply
compute a weight sum of inputs and then apply a nonlinear
function. In contrast, an LSTM-based recurrent layer maintains
a series of memory cells ct at time step t . The activation of
LSTM units can be calculated by

ht = ot tanh(ct ) (8)

where tanh(·) is the hyperbolic tangent function and ot is
the output gates that control the amount of memory content
exposure. The output gates are updated by

ot = σ(Woi f Tt + Woh ht−1 + Wocct ) (9)

where the W terms represent coefficient matrices; for exam-
ple, Woi and Woc are the input–output weight matrix and
memory-output weight matrix, respectively.

The memory cells ct are updated by partially discarding
the present memory contents and adding new contents of the
memory cells c̃t

ct = it � c̃t + ft � ct−1 (10)

where � is an elementwise multiplication. The new memory
contents are

c̃t = tanh(Wci f Tt + Wch ht−1) (11)

where Wci is input-memory weight matrix and Wch represents
hidden-memory coefficient matrix.

The it and ft are the input gates and forget gates, respec-
tively. The former modulates the extent to which the new
memory information is added to the memory cell, whereas
the latter controls the degree to which contents of the existing
memory cells are forgotten. Specifically, gates are computed
as follows:

it = σ(Wii f Tt + Wih ht−1 + Wicct−1) (12)

ft = σ(W f i f Tt + W f h ht−1 + W f cct−1). (13)

3) GRU: Similar to LSTM, a GRU makes use of a linear
sum between the existing state and the newly computed state.
It, however, directly exposes whole state values at each time
step, instead of controlling what part of the state information
will be exposed.

The activation ht of GRUs at time step t is a linear
interpolation between the previous activation ht−1 and the
candidate activation h̃t

ht = (1 − ut )ht−1 + ut h̃t (14)

where the update gates ut determine how much GRUs update
their activations or contents. Update gates can be computed by

ut = σ(Wui f Tt + Wuh ht−1) (15)

where Wui and Wuh are the input-update coefficient matrix
and hidden-update weight matrix, respectively.

The candidate activation h̃t is computed similar to that of
the fully connected RNN [cf. (3)] and as follows:

h̃t = tanh(U(rt � ht−1) + W f Tt ) (16)

where rt is the set of reset gates. When reset gates are
totally OFF (i.e., rt is 0), GRUs will completely forget the
activation of the recurrent layer at previous time and only
receive existing input. When open, reset gates will partially
keep the information of the previously computed state. Reset
gates are calculated similar to update gates

rt = σ(Wri f Tt + Wrh ht−1) (17)

where Wri is the input-reset weight matrix and Wrh represents
the hidden-reset coefficient matrix.

Fig. 3 shows graphic models of fully connected RNN,
LSTM, and GRU through time.

D. Network Training

The network training is based on the TensorFlow frame-
work. We chose Nesterov Adam [50], [51] as the optimizer
to train the network since, for this task, it shows much
faster convergence than standard stochastic gradient descent
with momentum [52] or Adam [53]. We fixed almost all
of parameters of Nesterov Adam as recommended in [50]:
β1 = 0.9, β2 = 0.999, � = 1e−08, and a schedule decay
of 0.004, making use of a fairly small learning rate of 2e−04.
All network weights are initialized with a Glorot uniform
initializer [54] that draws samples from a uniform distribution.
We utilize sigmoid and softmax as activation functions of the
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Fig. 3. Graphic models of fully connected RNN, LSTM, and GRU. In LSTM, o, f , i , c̃, and c are output gates, forget gates, input gates, new memory cell
contents, and memory cells, respectively. In GRU, the reset and update gates are denoted by r and u, respectively, and h̃ and h are the candidate activation
and final activation, respectively.

Fig. 4. Loss curves of ReCNN on the Taizhou data set for (a) binary change detection and (b) multiclass change detection tasks.

last fully connected layer for the binary and multiclass change
detections, respectively. For the final loss, cross-entropy is
chosen, which can be described as follows:

E = −
∑

i

yi log ŷi (18)

where ŷi is the predicted probability value for class i . We use
fairly small minibatches of 64 patch pairs. Moreover, we train
the network for 800 epochs. There are no regularization
techniques used in network training. We do not perform data
augmentation before training the network. Finally, we train
our network on a single NVIDIA GeForce GTX TITAN with
12 GB of GPU memory.

Fig. 4 shows loss curves of the proposed network during
the training phase.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Description

The performance of the proposed network is evaluated on
two data sets, which were acquired by the Landsat Enhanced
Thematic Mapper Plus (ETM+) sensor with six bands and a
spatial resolution of 30 m. Before feeding data into models,
digital numbers of the original data were converted into
absolute radiance (i.e., all of the data sets used in the experi-
ments were normalized into a range of [0, 1]).

1) Taizhou Data: This data set consists of two images
covering the city of Taizhou, China, in March 2000 and
February 2003, with a WGS-84 projection and a coordinate
range of 31◦14�56N–31◦27�39N, 120◦02�24E–121◦07�45E.
These two images both consist of 400 × 400 pixels, and
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Fig. 5. True-color composites of the T1 and T2 images in the Taizhou data set as well as GTs.

Fig. 6. Eppalock lake data set.

TABLE I

NUMBER OF TRAINING AND TEST SAMPLES IN THE TAIZHOU DATA SET

the changes between them mainly involve city expansion.
The available manually annotated samples of this data set
for multiclass change detection cover four classes of interest
(cf. Fig. 5), i.e., unchanged area, city change/expansion (bare
soils, grasslands, or cultivated fields to buildings, or roads),
soil change (cultivated field to bare soil), and water change
(nonwater regions to water regions). Table I provides infor-
mation about different classes and their corresponding training
and test samples.

2) Eppalock Lake: The second data set was acquired over
the Eppalock lake, Victoria, Australia, in February 1991 and
March 2009, with a WGS-84 projection and a coordinate
range of 36◦49�10S–37◦00�52S, 144◦27�52E–144◦37�35E.
Both images in this data set are 602×631 pixels. Similar to the

TABLE II

NUMBER OF TRAINING AND TEST SAMPLES IN

THE EPPALOCK LAKE DATA SET

Taizhou data, four multiclass change types are considered in
the Eppalock lake scene, and they are unchanged region, city
change (buildings or roads to bare soils, grasslands, or cul-
tivated fields), water loss (water regions to bare soils), and
soil change (vegetative covers or artificial buildings to bare
soils). Fig. 6 shows tow true-color composite images and their
corresponding reference samples. The number of training and
test samples is displayed in Table II.

B. General Information

To evaluate the performance of different change detection
algorithms, we utilize the following evaluation criteria.
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TABLE III

ACCURACY COMPARISON OF BINARY CHANGE DETECTION ON THE TWO EXPERIMENTAL DATA SETS

1) Overall accuracy (OA): This index shows the number of
bitemporal pixels that are classified correctly, divided by
the number of test samples.

2) Kappa coefficient: This metric is a statistical measure-
ment of agreement between the final change detection
map and the ground-truth (GT) map. It is the percentage
agreement corrected by the level of agreement that could
be expected due to change alone. In general, it is thought
to be a more robust measure than a simple percent
agreement computation, as k takes into account the
agreement occurring by chance.

To validate the effectiveness of the proposed ReCNN model,
it is compared with the most widely used change detection
methods. These methods are summarized as follows.

1) CVA [7], which is an effective unsupervised approach
for multispectral image change detection tasks.

2) PCA [10], which is simple in computation and can be
applied to real-time applications.

3) MAD [12], which is a classical image transformation-
based unsupervised algorithm for bitemporal multispec-
tral image change detection.

4) Iteratively reweighted MAD (IRMAD) [55], which
is an extension to MAD by introducing an iterative
scheme.

5) Decision tree (DT), which is a nonparametric supervised
learning method used for classification and regression.
Its goal is to create a model that predicts the value of a
target variable by learning simple decision rules inferred
from data features.

6) Support vector machine (SVM), which works by map-
ping data to a kernel-included high-dimensional feature
space seeking an optimal decision hyperplane that can
best separate data samples, when data points are not
linearly separable. Here, we use an SVM with radial
basis function (RBF) kernel. The optimal hyperplane
parameters C (parameter that controls the amount of
penalty during the SVM optimization) and γ (spread
of the RBF kernel) have been traced in the range of
C = 10−2, 10−1, . . . , 104 and γ = 2−3, 2−2, . . . , 24

using fivefold cross validation.
7) CNN [56], a deep learning-based method, has proven

successful in pattern recognition problems of hyperspec-
tral imagery.

Fig. 7. Comparisons of different RNN architectures in terms of model size.
Here, 128 recurrent units are used in each architecture.

8) RNN [22], a deep learning-based method, has recently
shown promising performance in classification and
change detection.

9) ReCNN-FC, which uses fully connected RNN as recur-
rent subnetwork in ReCNN model.

10) ReCNN-GRU, which uses GRU architecture in the
recurrent subnetwork.

11) ReCNN-LSTM, which is the ReCNN model with LSTM
as recurrent component.

Among these methods, CVA, PCA, MAD, IRMAD, and
RNN are used in binary change detection experiments, and
DT, SVM, and RNN are compared to the proposed net-
work in multiclass change detection experiments. Moreover,
k-means algorithm is used to automatically select threshold
for unsupervised methods in the binary change detection task.

C. Analysis of Recurrent Subnetwork: Comparisons
Between Fully Connected RNN, LSTM, and GRU

The most prominent trait shared between fully connected
RNN, LSTM, and GRU is that there exists an additive loop
of their update from T1 to T2, which is lacking in the conven-
tional feedforward neural networks such as CNNs. In contrast,
compared to the fully connected RNN like (4), both LSTM
and GRU keep the current content and add the new content
on top of it [cf. (10) and (14)]. These two RNN architectures,
however, have a number of differences as well. LSTM makes
use of three gates and a cell, namely, an input gate, forget
gate, output gate, and memory cell, to control the exposure
of memory content; whereas GRU only utilizes two gates to
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TABLE IV

ACCURACY COMPARISON OF MULTICLASS CHANGE DETECTION ON THE TWO EXPERIMENTAL DATA SETS

Fig. 8. Change-detection maps generated by the proposed ReCNN-LSTM model.

control the information flow. Therefore, the total number of
parameters in GRU is reduced by about 25% compared to
that in LSTM. Fig. 7 shows the number of total trainable
parameters in different RNN architectures.

Tables III and IV list binary and multiclass change detec-
tion results obtained in our experiments, respectively. For
both data sets, ReCNN-LSTM outperforms ReCNN-FC and
ReCNN-GRU on all indexes (i.e., OA and Kappa coefficient).
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For example, in the binary change detection, ReCNN-LSTM
increases the accuracy by 0.38% of OA and 0.0122 of Kappa
on the Taizhou data set, in comparison with ReCNN-FC; by
0.06% of OA and 0.0021 of Kappa on the same data set,
compared to ReCNN-GRU. However, we can see that on
these data sets, all three variations of the proposed ReCNN
perform closely to each other. On the other hand, the proposed
networks with gating RNN architectures as the recurrent
subnetwork (ReCNN-LSTM and ReCNN-GRU) slightly out-
performs the more traditional ReCNN-FC on both of data sets
and change detection tasks.

D. Analysis of Spatial Component: RNN versus
ReCNN-LSTM

In the case of spectral-spatial-temporal change detection,
the proposed recurrent convolutional network is able to sig-
nificantly improve the spectral-temporal-based RNN model.
As shown in Table III, compared to RNN, ReCNN-LSTM
increases the accuracy of binary change detection considerably
by 2.23% of OA and 0.0708 of Kappa coefficient, respectively,
on the Taizhou data set. For the Eppalock lake scene, the accu-
racy increments on OA and Kappa coefficient are 3.46% and
0.071, respectively. Table IV compares the performance of
RNN and ReCNN-LSTM in terms of multiclass change detec-
tion task. The latter can improve the former by 2.56% of OA
and 0.0905 of Kappa coefficient, respectively, on the Taizhou
scene; by 2.36% of OA and 0.036 of Kappa, respectively,
on the Eppalock lake data. These results reveal the fact that
the usage of the spatial cue in our model can construct a more
powerful spectral-spatial-temporal change detector.

Furthermore, as shown in Fig. 9, it is obvious that the
spectral-temporal change detection method (RNN) always
results in noisy scatter points in the change detection map.
However, our spectral-spatial-temporal model ReCNN-LSTM
addresses this problem by eliminating noisy scattered points
of wrong detection.

E. Comparison With Other Approaches

The OAs and Kappa coefficients of all competitors and the
proposed networks on binary change detection task can be
found in Table III. The classical change detection algorithms,
CVA, PCA, MAD, and IRMAD, all achieve a good perfor-
mance, especially IRMAD, which has the best performance
among them. Compared to IRMAD, improvements in OA
and Kappa coefficient achieved by ReCNN-LSTM are 3.59%
and 0.1279, respectively, on the Taizhou data set, and incre-
ments of OA and Kappa obtained by ReCNN-LSTM on the
Eppalock lake scene are 7.4% and 0.1554, respectively. How-
ever, the cost of such accuracy improvements is that we have
to manually label some training data for supervised learning.

Table IV presents accuracy indexes on multiclass change
detection task. Analysis of the detection accuracies indicates
that SVM with RBF kernel outperforms DT, mainly because
the kernel SVM generally handles nonlinear inputs more
efficiently than DT. It can be seen that the proposed recurrent
convolutional network ReCNN-LSTM outperforms SVM and
RNN in terms of OA and Kappa coefficient on both the

Fig. 9. Comparison between spectral–temporal model (RNN) and spectral–
spatial–temporal method (ReCNN-LSTM) on a region of the Taizhou city.
(Left to Right and Top to Bottom): T1 image, T2 image, GT, change
detection map obtained from RNN, and change detection map produced by
ReCNN-LSTM. It can be clearly seen that there are a number of noisy scatter
points of wrong detection (see ellipses in the bottom left image) in the
change detection map of RNN. While our spectral–spatial–temporal model
ReCNN-LSTM addresses this problem by eliminating those points.

Taizhou and Eppalock lake data. Compared to SVM and
RNN, ReCNN-LSTM increases OA by 4.14% and 2.56%,
respectively, on the Taizhou data set; by 2.84% and 2.36%,
respectively, on the Eppalock lake data.

Fig. 8 shows change detection results of the Taizhou city
and Eppalock lake obtained by our model.

IV. CONCLUSION

In this paper, we have proposed a novel neural network
architecture, called ReCNN, which integrates the merits of
both CNN and RNN. ReCNN is capable of extracting joint
spectral–spatial–temporal features from bitemporal multispec-
tral images and predicts change types. Moreover, it is end-to-
end trainable. All these properties make ReCNN an excellent
approach for multitemporal remote sensing data analysis.

The experiments on real multispectral images demonstrate
that ReCNN achieves competitive performance, compared
with conventional change detection models as well as spectral–
temporal-based RNN algorithm. This confirms the advantages
of the proposed recurrent convolutional network. In addition,
ReCNN is a general framework; therefore, it can be applied
to other domains and problems (such as multitemporal hyper
spectral/multispectral data classification) that involve sequence
prediction in remote sensing sequence data. Moreover, it is
worth noting that the proposed network architecture has the
potential to be extended and used to multisource change detec-
tion tasks. Because compared to CNN, Siamese convolutional
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network, and RNN, the separate yet identical convolutional
branches of our network allow the network to learn different
data-driven feature representations from different types of data
which are usually considered to lie on various data manifolds.

Future works will focus on new architectures based on
ReCNN, for example, a semisupervised ReCNN that can
also use arbitrary amounts of unlabeled data for training—
typically a small amount of labeled data with a large amount
of unlabeled data.
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