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Abstract— This paper addresses the highly challenging prob-
lem of automatically detecting man-made structures especially
buildings in very high-resolution (VHR) synthetic aperture
radar (SAR) images. In this context, this paper has two major
contributions. First, it presents a novel and generic work-
flow that initially classifies the spaceborne SAR tomography
(TomoSAR) point clouds—generated by processing VHR SAR
image stacks using advanced interferometric techniques known
as TomoSAR—into buildings and nonbuildings with the aid of
auxiliary information (i.e., either using openly available 2-D
building footprints or adopting an optical image classification
scheme) and later back project the extracted building points
onto the SAR imaging coordinates to produce automatic large-
scale benchmark labeled (buildings/nonbuildings) SAR data sets.
Second, these labeled data sets (i.e., building masks) have been
utilized to construct and train the state-of-the-art deep fully
convolution neural networks with an additional conditional
random field represented as a recurrent neural network to detect
building regions in a single VHR SAR image. Such a cascaded
formation has been successfully employed in computer vision and
remote sensing fields for optical image classification but, to our
knowledge, has not been applied to SAR images. The results
of the building detection are illustrated and validated over a
TerraSAR-X VHR spotlight SAR image covering approximately
39 km2—almost the whole city of Berlin— with the mean pixel
accuracies of around 93.84%.

Index Terms— Building detection, fully convolution neural net-
works (CNNs), OpenStreetMap (OSM), synthetic aperture radar
(SAR), SAR tomography (TomoSAR), TerraSAR-X/TanDEM-X.
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I. INTRODUCTION

AUTOMATIC detection of man-made objects, in particular
buildings from a single very high-resolution (VHR)

synthetic aperture radar (SAR) image, is of great practical
significance, particularly in applications having stringent tem-
poral restrictions, e.g., emergency responses. However, owing
to inherent complexity of SAR images caused by the so-called
speckle effect together with radiometric distortions mainly
originating due to side-looking geometry, scene interpreta-
tion using SAR images is highly challenging. Particularly in
urban areas, such distortions render the data to be mainly
characterized by multibounce, layover, and shadowing effects
consequently giving rise to the need of automatic and robust
algorithms for object detection from SAR images.

A variety of algorithms have been published in the literature
that aims at the detection and reconstruction of buildings from
SAR images. Typically, most of the developed approaches rely
on auxiliary information, e.g., the multisensor data provided by
the optical [1], [2] and light detection and ranging [3] sensors,
geographic information system (GIS) data, e.g., 2-D building
footprints [4], multidimensional data, e.g., polarimetric
SAR (PolSAR) [5], or multiview/multiaspect data such as
interferometric SAR (InSAR) [6]. These approaches have
improved the feature extraction process by providing the
complimentary information. To our knowledge, the literature
using only a single SAR image in the context of building
detection is rather sparse. Among few existing approaches,
Quartulli and Datcu [7] employed an automatic stochastic
algorithm to reconstruct buildings from a single SAR intensity
image by modeling strong signals originated via dihedral
scattering at the bottom and the layover at the roof edges of
the building. Zhao et al. [8] proposed a building detection
method based on a marker-controlled watershed algorithm.
A similar approach that exploited layover and double bounce
echoes to detect and determine the number of buildings
from a single high-resolution image was provided in [9].
Ferro et al. [10] also developed a method that was primarily
based on extracting a set of low-level bright (lines) and dark
(shadows) primitives. Chen et al. [11] introduced a more
recent 1-D range detector to determine the 2-D building
footprints. The method could potentially reconstruct simple
symmetrical building footprints but might fail for scenes
containing more complex nonsymmetrical building shapes.

All the aforementioned approaches aim to extract buildings
in an unsupervised (or data-driven) manner. Some researchers
have also formulated the detection problem in a classification
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framework to benefit from well-developed supervised learn-
ing methods typically used in computer vision [12], [13].
However, the effective utilization of such supervised learning
methods has two practical limitations.

1) Extraction of distinctive features is necessary for reliable
object detection.

2) A large annotated database is required, which is used
for training and validation.

To address the first point, i.e., distinctive feature extraction,
a number of approaches have been proposed. For example,
raw pixels of images [13], magnitudes of 2-D Fourier coef-
ficients [14], or discrete wavelet transform [15] have been
used as features. Typically, feature extraction methods rely
on heuristics in selecting appropriate features, and therefore,
to cope with unaccounted situations (e.g., tolerance to incom-
plete views/poses in training data or randomness in speckle
for different observations), expert knowledge is required to
translate such discrepancies in the model for feature represen-
tation [16].

Recently, convolution neural networks (CNNs), a type of
multilayered neural networks, have significantly outperformed
previous methods and became the state of the art in image
classification. Their power lies in the fact that they directly
extract high-level abstract image features that allow replac-
ing handcrafted features by the machine learning features
fitting to the task at hand. They have special characteristics
(i.e., shared weights architecture, local receptive fields,
pooling, and spatial subsampling) that make them tolerant to
high degree of image translations, skewing, scaling, rotation,
and other forms of geometric distortions.

A. Related Work

There exist abundant works that employ CNNs to perform
object detection in remote sensing images [17]–[19]. In this
context, we refer the interested reader to an excellent recently
published survey article containing a comprehensive review
of deep learning techniques applied to optical remote sensing
images [19]. In contrast, the use of CNNs over SAR images
is up to now limited but consistently increasing. For instance,
Profeta et al. [20] experimented with various CNN architec-
tures on the moving and stationary target (MSTAR) SAR data
set to achieve high classification accuracy. The MSTAR data
set has also been utilized to perform SAR image segmentation
in [21] and [22]. Ding et al. [16] investigated the capability of
deep CNNs to address the issues in SAR target recognition,
such as target translations, random speckle noise, and insuffi-
cient pose images in the training data. Utilization of CNNs in
the PolSAR image classification has been demonstrated in [5].
Some researchers also explored CNNs to solve the change
detection problem in SAR images [23]. Recently, the appli-
cation of CNNs over TerraSAR-X spoltlight data stacks to
classify built-up area has been demonstrated in [20]. The
problem is particularly challenging, as the SAR images suffer
from severe geometric distortions in urban areas, and therefore,
they developed a robust multiscale CNN architecture to extract
hierarchical features directly from SAR image patches. With
the aim to develop benchmark SAR data set, Zhao et al. [24]

also exploited CNNs over a TerraSAR-X spotlight data in
image classification context and prepared a relatively large
SAR image database containing five classes of object patches,
including buildings, roads, vegetation, alongside, and water
area. They demonstrated that the CNNs trained with fairly
large training samples significantly improve the classification
accuracy. Xu et al. [25] also demonstrated the use of CNNs
over SAR images to extract buildings by manually preparing
the training data set and later incorporating modern regular-
ization techniques (e.g., data augmentation, dropout, and early
stopping) to reduce testing errors.

As can be imagined, the precondition for the application
of CNNs or any other supervised learning frameworks is the
availability of annotated data sets. They are necessary not only
to analyze and validate the performance of classification algo-
rithms but are too required in the training phase where parts
of annotated data are utilized to optimize prediction models.
Lack of such annotated data sets is one of the major issues in
the application of CNNs over SAR images. Manual (or some-
what interactive) annotation, as is done in the aforementioned
approaches, is one potential solution. However, due to complex
multiple scattering and different microwave scattering proper-
ties of the objects appearing in the scene possessing different
geometrical and material features, the manual annotation often
requires expert’s knowledge (see Fig. 1) and easily becomes
impractical when large scenes need to be processed. Apart
from this, another possibility of generating such a reference
SAR data set is by exploiting simulation-based methods as
proposed, e.g., in [26]–[28]. However, such methods have their
own limitations in a sense that they are either only capable
of simulating simpler building shapes (see [28]) or typically
require accurate models (3-D building models and/or accurate
digital surface models) to precisely generate such ground-
truth (GT) data which, in most cases, is not available. Thus,
in view of the above, automatic annotation of SAR images,
if possible, is essential.

B. Significant Contributions

The objective of this paper is twofold: first is to demonstrate
the potential of automatic preparation of SAR training data
sets for larger regions, and second, using the automatically
prepared data set to train deep CNN architecture to detect
buildings in a single VHR SAR image. This paper extends the
initial idea [29] of automatic SAR annotation and performs
a thorough analysis of the obtained SAR annotation and
prediction results. The novel workflow presented in this paper
involves the following.

1) Automatic generation of annotated SAR images using
spaceborne SAR tomography (TomoSAR) point clouds
generated by processing SAR image stacks via advanced
interferometric technique known as TomoSAR [30], [31]
together with auxiliary information to obtain subimage
patches for training and validation.

2) Constructing a deep fully CNN with an additional con-
ditional random field (CRF) represented as a recurrent
neural network (RNN) to learn a classifier via transfer
learning. Such a cascaded formation has been success-
fully employed in computer vision and remote sensing
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Fig. 1. Depicting the challenges of SAR image interpretation together with demonstrating the limitations of directly using the 2-D GIS building footprints
onto the SAR image. (a) Optical image Google and (b) corresponding SAR image. rg and az refer to the range and azimuth coordinates, respectively. The
three green polygons in (b) are the projections of available 2-D OSM building footprints depicted from top view in (a) onto the SAR image. It can be seen
that when the illuminated scene contains elevated objects such as buildings, the so-called “layover” phenomenon (i.e., the superposition of multiple reflection
sources in one pixel) occurs as a result of strong reflection of the façade in the SAR image which not only limits the direct usage of 2-D footprint projections
for annotation/labeling but also makes the SAR image interpretation of urban areas highly challenging.

fields for optical image classification [32] but, to our
knowledge, has not been applied to SAR images.

3) Utilizing the trained CNNs for the classification of pixels
as belonging to building and nonbuilding for previously
unseen input data.

The proposed workflow leads to the following contributions
to the remote sensing community. We addressed the problem
of automatic generation of annotated (labeled) data, which
is always problematic to obtain in SAR images. In addition,
we also addressed the usage of CNNs in SAR image classifi-
cation, which is still a relatively new research area and has not
been explored much. Last but not least, since the data sets used
are widely available, the annotation approach is generic and
may actually lead to new perspectives in producing benchmark
data sets for SAR images.

II. GROUND-TRUTH GENERATION (ANNOTATION/
LABELING OF SAR IMAGES)

Annotating an image is fundamental for the applica-
tion of any supervised learning technique for segmentation/
classification purposes. For this reason, we propose a
novel workflow that utilizes the TomoSAR point clouds
together with auxiliary information to automatically annotate
(buildings/nonbuildings) SAR images of the area of interest.
Before proceeding further, we briefly introduce these point
clouds and later demonstrate their usage in such automatic
annotation.

A. TomoSAR Point Cloud

TomoSAR is an advanced interferometric technique that
actually aims at 3-D SAR imaging. It exploits the stacked
SAR images acquired from slightly varying positions to build
up a synthetic aperture in the third (i.e., elevation) axis, which
consequently enables retrieving the precise 3-D localization of
strong scatterers in a single azimuth–range SAR image pixel.

Fig. 2. Schematic of the TomoSAR imaging geometry. The elevation aperture
is built by exploiting multipass/multibaselines (six in the depicted case) from
slightly different viewing angles. It is shown that the backscattering contribu-
tion from the edge of two buildings and a small portion of ground is mapped
onto single range–azimuth SAR image pixel. TomoSAR aims to estimate
the depicted reflectivity profile γ̂ (s) for discretized (pink region) elevation
extent �s. Typically, the discretization factor is much higher, i.e., N � Q
which renders (3) to be underdetermined (i.e., infinite solutions). s denotes
the elevation axis, which is actually a curve but is usually approximated as a
straight line due to large range distances.

The imaging geometry of SAR is shown in Fig. 2. In the
following, the TomoSAR imaging model is briefly described.

Let N represent the number of observations, and the
complex-valued SAR azimuth–range pixel value gn of nth
(n = 1, . . . , N) acquisition with the corresponding perpen-
dicular baseline bn (see Fig. 2) can be approximated as an
integral of reflectivity function γ (s) [30], [33]

gn =
∫
�s
γ (s) exp(− j2πξns)ds
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Fig. 3. TomoSAR point clouds generated from TerraSAR-X data stacks of
ascending and descending orbits (Site: city of Berlin). The color represents
height. Black areas are temporally decorrelated objects, e.g., vegetation
or water.

with

ξn = −2bn/λr (1)

where �s denotes the span in elevation. Since it is well known
that the far-field diffraction acts like a Fourier transform,
the presented model is actually nothing, but Fourier transform
of γ (s) is sampled at discrete frequencies (in elevation) ξn .

The continuous model in (1) can be discretized along the
elevation dimension into Q positions (i.e., sq∀q = 1, . . . , Q)
by replacing the integral with the sum as follows:

gn =
Q∑

q=1

exp(− j2πξnsq )γ (sq)+ εn (2)

or alternatively in the matrix form as [30], [33]

g = Rγ + ε (3)

where g ∈ CN×1 is the measurement vector with gn∀n ∈
{1, . . . , N}, R ∈ CN×Q is an irregularly sampled Fourier
transform matrix with Rnq = exp(− j2πξnsq), γ ∈ CQ×1

is the unknown discretized reflectivity vector with γ (sq), and
ε ∈ CN×1 is additive noise usually modeled as i.i.d complex
circular Gaussian random variable.

TomoSAR aims to invert the imaging model presented in (3)
to retrieve the unknown discrete reflectivity vector γ . The
reconstructed reflectivity profile along the elevation axis, thus,
allows the separation of multiple layovered scatterers within
single pixel [30], [31]. The retrieved scatterer information
when geocoded into world coordinates generates TomoSAR
point clouds. Fig. 3 shows the generated TomoSAR point cloud
of the city of Berlin, Germany, using German Aerospace Cen-
ter (DLR)’s tomographic precessing system—Tomo-GENESIS
[34], [35].

In this paper, we utilized these TomoSAR point clouds in
generating labeled SAR images. The basic idea is to classify
each 3-D point as belonging to buildings and nonbuildings
and later geocode them back into their corresponding SAR
(i.e., in azimuth and range) coordinates. The classification of
each point is obtained in two ways.

1) By exploiting information pertaining to already available
2-D building footprints.

Fig. 4. GIS data of Berlin from OSM. (Left) 2-D building footprints. (Center)
Zoomed-in region. (Right) Corresponding optical image of the zoomed-in
region.

2) By classifying each TomoSAR point using an optical
image classification scheme as proposed in [36]. This
part is not the focus of this paper. Depending on the
application, a different classification technique may be
employed.

In the following, the two proposed methods to extract the
building points in TomoSAR point cloud are described in
detail.

B. Annotation Using TomoSAR Point Cloud and
Openly Available OSM Data

To classify these point clouds, the 2-D building footprints
from OpenStreetMap (OSM) are downloaded from Geofab-
rik’s website,1 which are subsequently utilized to automat-
ically annotate the SAR image. The OSM is based on the
crowdsourcing concept and has currently around 2 million
registered users2 [37]. It consists of a large number of available
building footprints with positioning accuracies varying on
the order of 4 m [37], [38]. The representation of building
footprints is in the form of 2-D polygons having ordered
list of vertices, i.e., pairs of latitude/longitude or Universal
Transverse Mercator (UTM) coordinates as per WGS 84 coor-
dinate system. The OSM data are openly available and have
very high completeness percentage in many developed cities
in Western Europe and USA. Fig. 4 shows an overview of
the available 2-D building footprints in the Berlin city. The
generated 3-D point cloud via TomoSAR inversion using SAR
image stacks is already geocoded into UTM coordinates. Now,
the idea is simple, and we extract all those TomoSAR points
that lie within the OSM building polygons. For this purpose,
we employed the classical ray casting algorithm [39], [40].
As a result, we are able to extract TomoSAR points that only
belong to buildings. These building points are then projected
back to SAR image coordinates (i.e., range and azimuth) to
yield the building mask.

Here, one may argue that if the auxiliary information,
e.g., 2-D building footprints, is being taken into account why
not directly use them instead of projecting the building points
in the TomoSAR point clouds back to the SAR coordinates.
The rationale against this is clearly shown in Fig. 1. The
fact is that the inevitable side-looking SAR imaging geometry

1GEOFABRIK downloads, http://download.geofabrik.de/europe/germany/
berlin.html.

2Stats—OSM Wiki, http://wiki.openstreetmap.org/wiki/Stats.
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results in undesired occlusion and geometric distortions (such
as layover and multibounce) that renders elevated objects
(e.g., buildings in urban areas) to appear bright and as being
projected toward the sensor consequently limiting the applica-
tion potential of directly projecting such auxiliary information.

C. Annotation Using TomoSAR Point Cloud and
Optical Image Classification

Since the OSM is a crowdsourcing project, the lack of
interest and unavailability of suitably qualified personnel,
especially in the underdeveloped countries, may give rise
to low completeness issues. Consequently, the use of OSM
data for generating such reference (labeled) building masks
may not be suitable. In such a case, an alternative way to
extract building points in TomoSAR point cloud might be to
perform the semantic classification of TomoSAR point clouds.
To this end, we adopt an approach [36] that performs optical
image classification, generates an optical 3-D point cloud,
and subsequently coregisters (fuses or matches) them with
TomoSAR point clouds to achieve such labeling. Since this
part is not the focus of this paper, therefore the readers are
kindly referred to the original literature [36] for more details.
In the following, we briefly describe the main working steps
of the algorithm.

1) Optical Image Classification: The optical images are
classified patchwisely using the bag of words (BoW)
method [41], which is a well-known technique in the computer
vision community. Training patches are manually selected in
the original image. The classification is done patchwisely in
the large aerial image. The local feature used in BoW is simply
the RGB value in a 3 × 3 sliding window in the patch. The
classifier is a linear support vector machine [42] implemented
in an open source library VLFeat [43].

2) Coregistration of Optical and TomoSAR Point Clouds:
An optical 3-D optical point cloud is generated from a set
of nine high-resolution aerial images using commercial Pix4D
software [44]. Because of the different imaging geometry of
SAR and optical images, TomoSAR and optical point clouds
are different in point density on façade and flat areas. This
drives the coregistration algorithm to be developed in the
following way.

1) Edge Extraction:
a) The optical point cloud is rasterized onto a

2-D height image by computing the mean heights
of points inside each 3 × 3 grid cell.

b) Similarly, the point density of TomoSAR point
cloud is estimated on the rasterized 2-D grid by
counting the number of points also inside each
3 × 3 grid cell.

c) The edges in the optical height image and in the
TomoSAR point density image are detected using
the Sobel filter [45]. These edges correspond to the
façade locations in the two point clouds.

2) Initial Alignment:
a) The coarse horizontal alignment is performed

by cross-correlating the two edge images, while
the coarse vertical alignment is achieved by

cross-correlating the height histogram of the two
point clouds.

b) These coarse alignments are fed as an initial
solution to a robust iterative closest point (ICP)
algorithm in the next step, which provides the
final coregistration solution.

3) Refined Solution:
a) The façade points in the TomoSAR point clouds

are then removed, because the optical point cloud
contains nearly no façade point.

b) To refine the coregistration of the two-point clouds,
an anisotropic ICP with robustly estimated covari-
ance matrices using an M-estimator is applied.
Considering the large quantity of points compared
with the few coregistration parameters to be esti-
mated, the resulting coregistration accuracy is quite
high [36].

3) Projection of Label From Optical Image to SAR Image:
Upon successful coregistration, the 2-D classification labels
from the optical images are projected to the 3-D TomoSAR
point cloud using the estimated camera parameters. Each
TomoSAR point classified as belonging to building is then
projected to SAR coordinates. After some image morphology,
a binary mask of the buildings is generated.

III. ARCHITECTURE FOR SAR BUILDING

DETECTION NETWORK

A. Brief Introduction to CNNs

Extracting buildings in an SAR image represents a pixelwise
classification task. In computer vision, this has been done
using texton boost [46], texton forests [47], or general random
forests [48]. All these methods rely on features that are
handcrafted and thus prone to not always fit to the problem
to classify or at least takes a lot of manual interaction to
select suitable features for the specific task. Nowadays, these
classification problems are tackled using CNNs. One benefit
of CNNs is the fact that just the structure of the network
is manually designed and all the parameters, which describe
how the features are calculated, are automatically learned
using training data. Furthermore, it is well known that CNNs
are suitable for transfer learning. This means that a network
trained for a specific task can be reused for another task.
Therefore, parts of the network can be redesigned and the
unchanged part of the new network can be initialized using
the parameters of the original network and fine-tuned using
task-specific training data. This ability of neural networks
motivated us to use a semantic segmentation network from
computer vision as a base for our SAR image classification
network. Another not negligible feature is that neural networks
are highly parallelizable and thus suited for efficient processing
using GPUs. The well-known frameworks for CNNs are
Caffe or Theano. In our experiments, the Caffe framework
has been employed.

B. Proposed Architecture

The network architecture of the fully convolutional network
(FCN) is based on the FCN structure of Long et al. [49].
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Fig. 5. Overview of the semantic segmentation network. The first part of our network calculates a feature for each input pixel by exploiting an FCN with
in-network upsampling and skip-and-fuse architecture to fuse coarse, semantic, and local, appearance information. The second part of the network adds binary
potentials (i.e., adding constraints to give neighboring pixels with a similar intensity the same label) by using the dense CRF-RNN as proposed in [32].

To additionally integrate binary potentials, we add a CRF
represented as RNN [32]. This gives us an end-to-end trainable
network, as shown in Fig. 5.

In detail, the first part of our network calculates a feature
for each input pixel. Therefore, we exploit an FCN with
in-network upsampling and skip-and-fuse architecture to fuse
coarse, semantic and local, and appearance information [50].
As we are using an FCN, we exploit the ability to not only
classify a single pixel as proposed in [5], [21], and [24] but
also perform image segmentation for input images of arbi-
trary size at once. Thus, we eliminate overhead calculations
resulting from the sliding window approach.

The second part of the network adds binary potentials.
This means that it adds constraints to give neighboring pixels
with a similar intensity the same label. This is typically
done using a Markov random field or to be more precise
the special case of a fully connected CRF as presented by
Krähenbühl and Koltun [51] whose overall energy function
can be characterized as follows [32], [51]:

E(x) =
∑

i

ψu(xi )+
∑
i< j

ψp(xi , x j ). (4)

Inference of the CRF involves finding a configuration
(or labeling) x, such that the total unary ψu(xi ) and pair-
wise ψp(xi , x j ) energy components (or potentials/costs) are
together minimized. Unary potentials measure the inverse
likelihood (and thus, the cost) of the pixel i being assigned
a label xi , while the pairwise energy components mea-
sure the simultaneous cost of assigning labels xi , x j to
pixels i, j . It typically provides an image-dependent smoothing
term that favors assigning similar labels to neighboring pixels
having similar properties. Specifically, in our model, the unary
energies are obtained from a CNN (FCN-8s architecture
of [49] as mentioned earlier). This network is primarily based
on the VGG-16 network but has been modified to perform
semantic segmentation instead of image classification. The
pairwise energies, on the other hand, have been modeled as
weighted Gaussians as follows [32], [51]:

ψp(xi , x j ) = μ(xi , x j )

M∑
m=1

wm Gm(fi , f j ) (5)

where each Gm for m = 1, 2, . . . ,M is Gaussian kernel
applied on feature vectors. The feature vector fi of pixel i
is derived from image features, such as RGB values and
2-D spatial location. wm are linear combination weights,

while μ is the label compatibility function that is a simple
Potts model μ(xi , x j ) = [xi �= x j ] in our case.

As an end-to-end trainable network is preferable, we added
the dense CRF represented as a RNN further called CRF-RNN
as proposed in [32].

This network was then modified to get a pixelwise two-class
classification representing building and nonbuilding.

IV. IMPLEMENTATION OF TRAINING ALGORITHM

We performed staged training as mentioned in [50],
because it is less prone to divergence. First, the single-stream
FCN-32s is trained, and then, the training is continued with the
two-stream FCN-16s and the three-stream FCN-8s. Next, the
CRF-RNN is added and trained by keeping the FCN-8s part
constant. Finally, a fine-tuning of the complete network has
been performed. Each stage was trained for 400 000 iterations
with constant learning rate (1e−10, 1e−12, 1e−14, 1e−12, and
1e−12 for each stage, respectively) a momentum of 0.99,
a weight decay of 0.0005, and a pixelwise softmax loss (that
has been averaged over 100 images each epoch).

As the network contains convolutional layers as well as
pooling layers, the resulting segmented image is reduced in
dimension. This is compensated by in-network upsampling
layers whose parameters are initialized as bilinear filtering
and further refined while training. Moreover, as suggested
in [32], in all our experiments, during training, we fixed the
number of mean-field iterations in the CRF-RNN to 5 to
avoid vanishing/exploding gradient problems and to reduce the
training time. However, the number of iterations was raised to
10 for deploying/inference (when evaluating the test images).
Moreover, the compatibility transform parameters of the
CRF-RNN were initialized using the Potts model.

V. EXPERIMENTAL RESULTS AND VALIDATION

A. Data Set Description

To validate our approach, we employed SAR data sets
consisting of a TerraSAR-X high-resolution spotlight image
and a 3-D TomoSAR point cloud of Berlin. The SAR image
has a spatial resolution of about 0.588 and 1.1 m in range
and azimuth directions, respectively. The image was acquired
from ascending orbit with an incidence angle of 36◦, which
almost provides a full coverage of the whole city. The
3-D TomoSAR point clouds have been generated from stacks
of 102 TerraSAR-X high spotlight images from ascending
and descending orbits covering almost the whole city of
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Fig. 6. SAR intensity image covering almost the whole city of Berlin.

Fig. 7. Automatically generated mask of building regions using
OSM + TomoSAR point clouds for the SAR intensity image shown in Fig. 6.

Berlin using the Tomo-GENESIS software developed at the
DLR [34], [35]. The number of points in the Berlin data set
is approximately 30 million.

The optical images used for annotation were attained in
March 2014 and include nine UltraCam aerial images of Berlin
having an altitude of around 4000 m. The ground spacing is
roughly 20 cm/pixel. The camera positions and orientations
were measured by an onboard GPS and inertial measurement
unit with the standard deviations of about 5 cm and 5 × 10−4◦

,
respectively.

B. Results of Automatic Annotation

Fig. 6 shows the SAR intensity image covering almost the
whole city of Berlin (around 39 km2), while Fig. 7 shows
the resulting mask of building regions obtained automatically
using the OSM building footprints. Similarly, Figure 8 presents
the SAR intensity image together with resulting building
masks obtained using the optical image classification scheme.
Since the completeness percentage of OSM data is quite high
for many cities in Europe and USA, it can be seen that
automatic annotation/labeling using this data is quite generic
and has the potential of producing benchmark SAR data sets,
which is still missing within the relevant community. However,
although quite a lot of buildings are present, it is also worth
to mention that since it is a crowdsourcing project, there
are still a few missing buildings and inner yards. Fig. 9
shows a couple of such examples. In addition to this, there

Fig. 8. (Left) SAR intensity image partly covering the city of Berlin—
highlighted region and (Right) corresponding generated mask of the high-
lighted region using optical image classification + TomoSAR point clouds.

are also false annotations such as some parts of the railway
tracks originating from the Berlin central station which have
also been labeled as building structure in the OSM data (see
Fig. 10). As a consequent, when OSM data are utilized to
extract building points in the TomoSAR point cloud, points
belonging to such railway tracks are misclassified as buildings
and when projected back to SAR image coordinates yields
false annotation/labeling. Although limited but on the other
hand, the use of optical image classification and TomoSAR
point cloud avoids this false labeling as depicted in Fig. 10(d)
and produces better annotation results but may be restrictive
in a sense to generate large-scale data sets.

C. Accuracy Analysis of Automatic SAR Annotation

To perform the precise accuracy analysis of the produced
annotations, we have manually labeled the building pixels in
the SAR image covering an area of around 3.3 km2 in the
Berlin city. Fig. 11 shows the selected SAR image, while
Fig. 12 shows its corresponding GT annotation obtained by
manual labeling of building pixels/regions in the selected
SAR region. For qualitative evaluation, Figs. 13 and 14 show
the common and difference maps for visual comparison. The
difference maps are obtained by subtracting the produced
annotation masks OSM-Ref and Opt-Ref from the GT anno-
tated mask, respectively. The green pixels in Fig. 14 indicate
no change, while the red pixels denote the missing buildings
and the blue pixels show the regions labeled as buildings in the
generated building masks using the two proposed annotation
schemes but not present in the GT reference mask. For quan-
titative evaluation, Table I shows the performance of the pro-
posed annotation schemes using the common and difference
maps by employing the standard precision/recall evaluation
metrics computed as Precision (%) = 100×(tp/(tp + f p)) and
Recall (%) = 100 × (tp/(tp + fn)), where tp are the number
of white pixels (true positives) in the common image, while
fn and f p are the number of red (false negatives) and blue
pixels (false positives) in the difference image, respectively.

The evaluation statistics in Table I depicts that both the pro-
posed annotation methods correctly label building pixels with
good accuracy. However, in terms of completeness, OSM-Ref
shows less relative accuracy owing to the already mentioned
fact that a few buildings are missing in the crowdsourced
OSM building footprint data. In this context, the use of
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Fig. 9. Missing buildings in the 2-D OSM GIS data. The first column shows the optical images of the buildings which are missing in the OSM polygonal
data as shown in UTM coordinates in the second column. The third column presents the corresponding SAR images, while the fourth column shows the GT
generated by projecting the building points—extracted using auxiliary OSM GIS data—in the TomoSAR point clouds to the SAR image coordinates

Fig. 10. Close-up views of Berlin central station to show the false labeling in the GT generated using TomoSAR point cloud and the auxiliary OSM data.
(a) SAR image of the area of interest (Berlin central station). (b) 2-D OSM building polygons. It can be seen that the railway track originating from the Berlin
central station is falsely characterized as building structure in the OSM data. (c) TomoSAR points belonging to this track is misclassified as building points
and when projected back to SAR image coordinates yields false labeling. (d) Close-up view of the GT (labeled SAR image) of the same area generated by
projecting the building points—extracted using the optical image classification scheme [36]—in the TomoSAR point clouds to the SAR image coordinates.
In contrast, the railway track is now correctly labeled as nonbuilding in the generated GT.

TABLE I

QUANTITATIVE EVALUATION STATISTICS OF AUTOMATICALLY

PRODUCED SAR ANNOTATED MASKS

accurate cadastral maps may help in achieving a high degree
of recall/completeness.

In the following, we present the experimental results and
its analysis obtained by employing the deep learning-based
staged network architecture exploiting both these automatic
annotations.

D. Preparation of Training Data

We prepared the data set for training by taking 11 out
of 16 of the labeled input images covering almost the whole
city of Berlin (using OSM + TomoSAR point cloud) and cre-

Fig. 11. SAR image of the selected 3.3-km2 area with the following
UTM coordinates. 33U (Top left) (389072 E, 5822399 N), (Bottom left)
(388741 E, 5820939 N), (Top right) (391201 E, 5821922 N), and (Bottom
right) (390900 E, 5820460 N).

ated patches of 256 ×256 pixels with an overlap of 32 pixels.
Furthermore, these patches are augmented by flipping and
rotation. Finally, we got 26 312 image patches for training
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Fig. 12. GT mask obtained after manual labeling of building pixels/regions
of the SAR image depicted in Fig. 11. The mask is used for accuracy analysis
of the generated SAR annotations using the two proposed schemes.

Fig. 13. Common map of the produced building masks using the proposed
annotation schemes and the reference GT map. (a) OSM-Ref ∩ GT.
(b) Opt-Ref ∩ GT.

and used the remaining 5 out of 16 of the labeled input
images for testing. In case of Optical + TomoSAR point
cloud, we vertically sliced the highlighted SAR image region
shown in Fig. 8 in four equal parts and took the first and last
for testing/validation and the two in the center for training.
It is also important to mention that to reduce speckle effect,
we first performed nonlocal filtering of the SAR images prior
to training using the algorithm as proposed in [52].

Fig. 14. Difference map generated by subtracting the results of generated
SAR annotations or training samples from the manually annotated GT mask.
(a) OSM-Ref–GT. (b) Opt-Ref–GT. Note that the green pixels indicate no
difference between the generated and GT masks and the red pixels indicate
missing buildings, while the blue indicates the pixels labeled as belonging
to buildings using the proposed annotated schemes but not present in the
reference GT mask.

Fig. 15. Learning curves across different stages of the network. The loss is
normalized by dividing with the number of pixels of the training image. One
epoch represents all training images being passed through the network once.

E. Performance Evaluation of the Trained Network

1) Evaluation Metrics: To evaluate the performance of
different networks, we use the metrics that are variations on
pixel accuracy (PA) and region intersection over union (IU)
and are commonly used for evaluating semantic segmentation
and scene parsing algorithms [49], [50]. For each class,
the IU score is computed as (tp/(tp + f p + fn)), where tp

(true positives) are the number of correctly classified pixels,
f p (false positives) are the number of wrongly classified
pixels, and fn (false negatives) are the number of pixels
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TABLE II

ACCURACY ANALYSIS OF OBTAINED RESULTS USING DIFFERENT STAGES
OF THE TRAINED NETWORK WITH THE FOLLOWING DETAILS:

TRAINING AND TESTING/VALIDATION

USING OSM-REF DATA

TABLE III

ACCURACY ANALYSIS OF OBTAINED RESULTS USING DIFFERENT STAGES

OF THE TRAINED NETWORK WITH THE FOLLOWING DETAILS:
TRAINING USING OSM-REF DATA SET AND

TESTING/VALIDATION USING OSM-GT

wrongly not classified as belonging to a particular class. If we
denote ni j as the number of pixels of class i predicted to
belong to class j , nN as the number of classes, and ti as the
total number of pixels belonging to class i , then the following
evaluation metrics have been computed [49], [50].

1) PA: ∑
i nii∑
i ti

.

2) Mean Accuracy (MA):(
1

nN

)∑
i

nii

ti
.

3) Mean IU: (
1

nN

)∑
i

nii

ti +∑ j n j i − nii
.

4) Frequency-Weighted IU:(∑
k

tk

)−1∑
i

ti nii

ti +∑ j n j i − nii
.

In addition to the above-mentioned four metrics, the follow-
ing two metrics have also been computed.

1) False Alarm Rate:

f p

tp
≡
∑

i
∑

j ni j∑
i nii

.

2) Quality Rate:

tp

tp + f p + fn
≡

∑
i nii∑

i

(
ti +∑ j n j i − nii

) .

Fig. 16. Input SAR image of Berlin city as depicted in Fig. 6 with an
overlay of the semantic segmentation. Results computed using the OSM-Ref
annotated data set with FCN-8s with CRF-RNN network.

Fig. 17. Input SAR image of Berlin city as depicted in Fig. 6 with an overlay
of the semantic segmentation. Results computed using the Opt-Ref annotated
data set with FCN-8s with CRF-RNN network.

2) Results Analysis: The experimental results have been
obtained after applying staged training where the results
obtained after single-stream and then upgraded to two-stream
and three-stream are depicted as FCN-32s (32× upsampled
prediction), FCN-16s (16× upsampled prediction), and
FCN-8s (8× upsampled prediction), respectively. In each
respective stage, the network is learned from end-to-end in
a cascaded manner, i.e., all initialization parameters of the
previous stage are fed as an input to the subsequent one.
Let us denote the automatically generated annotated data set
using OSM + TomoSAR point cloud as OSM-Ref and using
Optical classification + TomoSAR point cloud as Opt-Ref.
Tables II and III depict the results acquired over the whole
area of Berlin in different stages of the network architecture.
In Table II, for testing/validation, we analyzed the network
performance by computing evaluation metrics over (untrained)
5/16 subimage patches annotated using OSM + TomoSAR
point cloud (i.e., OSM-Ref). As mentioned earlier, the OSM
data set is prone to errors introduced as a consequent of
crowdsourcing, and therefore, for a fair evaluation of network
architecture, we needed to prepare a more accurate annotated
data set (denoted as OSM-GT) for test subimages.

To prepare such a reference annotated data set, we manually
inserted missing buildings and removed parts of other
structures, e.g., railway tracks misclassified as buildings



1110 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 2, FEBRUARY 2019

Fig. 18. Close-up views of Figs. 16 (first column) and 17 (second column). The first column depicts the input image with an overlay of the semantic
segmentation result. The results have been computed using the OSM-Ref annotated data set with FCN-8s with CRF-RNN network over different test subimage
patches. The second column depicts the input image with an overlay of the semantic segmentation results. The results have been computed using the Opt-Ref
annotated data set with FCN-8s with CRF-RNN network over different test subimage patches.

(see Figs. 6 and 7). Table III depicts the evaluation results
over untrained subimage patches using OSM-GT for testing/
validation. For Tables II and III, we see the improvement in
network performance in each subsequent stage. In general,

the upgraded three-stream FCN-8s with CRF-RNN tends
to show a superior performance in distinguishing buildings
from nonbuildings. It is important to mention that one may
argue here that since the OSM-Ref is used for training,
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Fig. 19. Results of semantic segmentation computed using the OSM-Ref annotated data set with FCN-8s with CRF-RNN network over different test subimage
patches. The first column shows the different SAR test subimage patches, while the second column depicts the difference image of the semantic segmentation
result and the manually corrected GT (Training: OSM-Ref; Testing: OSM-GT; Network FCN-8s with CRF-RNN). The light green region in the difference map
corresponds to true positives, while the dark green regions are false negatives (negligible here). Light red regions, on the other hand, are the true negatives,
while dark red regions correspond to false positives.

the prediction should be more close to the OSM-Ref instead
to OSM-GT. The other way around reason is merely due
to the fact that the trained CNN architecture correctly
recognizes the missing buildings and was able to differentiate

the railway tracks from buildings mainly because the
training samples contain fewer portions of the railway
tracks which were wrongly classified as buildings in the
OSM data.
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Fig. 20. Results of semantic segmentation computed using the Opt-Ref annotated data set with FCN-8s with CRF-RNN network over different test subimage
patches. The first column shows the different SAR test subimage patches, while the second column depicts the difference image of the semantic segmentation
result and the manually corrected GT (Training: Opt-Ref; Testing: OSM-GT; Network FCN-8s with CRF-RNN). The light green region in the difference map
corresponds to true positives, while the dark green regions are false negatives. Light red, on the other hand, are the true negatives, while dark red regions
correspond to false positives.

Similarly, Table IV shows the evaluation results with
the FCN-8s with CRF-RNN network architecture with
two annotated test images OSM-GT and Opt-Ref where
the latter is the result of automatically annotated test

subimages generated using Optical classification +
TomoSAR point cloud. These quantitative results are
obtained using the training sample division, as reported in
Section V-D.
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TABLE IV

ACCURACY ANALYSIS OF OBTAINED RESULTS USING FCN-8S WITH
CRF-RNN NETWORK ARCHITECTURE UTILIZING AUTOMATICALLY

GENERATED ANNOTATED DATA USING OPTICAL CLASSIFICATION

AND TOMOSAR POINT CLOUD, DENOTED AS OPT-REF,
AS TRAINING DATA AND OSM-GT AND OPT-REF AS

TESTING/VALIDATION DATA

TABLE V

ACCURACY ANALYSIS OF OBTAINED RESULTS USING FCN-8S WITH

CRF-RNN NETWORK ARCHITECTURE UTILIZING OSM-REF AND

OPT-REF ANNOTATED MASKS. THE NETWORK PARAMETERS, SUCH
AS LEARNING RATE, MOMENTUM, AND WEIGHT DECAY, ARE THE

SAME AND PROVIDED IN THE BEGINNING OF SECTION IV.
GT CORRESPONDS TO THE MANUALLY PREPARED

TESTING GT MASK DEPICTED IN FIG. 12

Figs. 16 and 17 show the result of FCN-8s with CRF-RNN
trained using OSM-Ref and Opt-Ref, respectively, overlaid
onto the SAR image of Fig. 6 covering almost the whole
region of Berlin. Again, these qualitative results are obtained
using the training sample division, as reported in Section V-D.
Fig. 18 shows the close-up results over different test subimage
patches, while Figs. 19 and 20 show the corresponding differ-
ence maps. The light green region in the difference map corre-
sponds to common regions, i.e., true positives, while the dark
green regions are buildings that have not been detected by the
network, i.e., false negatives. light blue regions, on the other
hand, are the true negatives, while dark blue regions corre-
spond to wrongly classified buildings, i.e., false positives. With
the OSM-Ref trained network, we hardly see any dark green
regions implicitly implying a high degree of completeness
(see Fig. 19). In contrast, for Opt-Ref trained network, we have
a fair amount of dark green regions depicting miss detections
(see Fig. 20). The main reason for this is that the network has
been trained with a less number of training samples in case
of Opt-Ref compared with OSM-Ref (see Section V-D).

Nevertheless, for comparison and to provide accurate and
fair accuracy analysis, we also trained the network separately
using both OSM-Ref and Opt-Ref annotated SAR building
masks in a controlled manner. We carefully designed the
experiment by using the same (geographic) region, network
parameters, and the size of the training patches. For evaluation,
we used the manually prepared GT testing mask GT depicted
in Fig. 12. Table V shows the evaluation results obtained by
training the FCN-8s with CRF-RNN network architecture with
both OSM-Ref and Opt-Ref annotated masks and tested using
GT. The quantitative analysis of this experiment demonstrates
that the network trained using both the annotation masks
reveals a similar performance. However, since there are com-
pleteness issues with OSM data, the Opt-Ref annotation is

slightly better. In spite of this, in comparison with Opt-Ref,
the generation of OSM-Ref annotation mask is much easier to
obtain and has the potential to produce the large-scale SAR
annotation masks. The accuracy of such kind of masks can,
however, be improved by replacing the OSM data with more
accurate cadastral data (2-D footprints), if available from other
sources, e.g., city administration and so on.

3) Analysis of the Network: Fig. 15 shows the learning
curves across different stages of the network using the ReLU
activation function. As shown in Fig. 15, we can make use
of a fairly high learning rate to train the staged network for
detecting building regions without the risk of divergence. The
jumps between different stages of the network architecture
originate by the fact of having a new part at the end of the
network that is just initialized but not trained at all (due to
staged training).

4) Hardware and Processing Time: All the experiments
have been conducted on a GPU equipped personal computer
with the following details: Intel Core i7 @ 3.7-GHz and 32-GB
RAM. For one test image of the dimension 20 626 × 11 472
covering almost the whole area of Berlin, it took in average
around 259 s. Such an evident fast speed of deep learning
architectures is very important in practical scenarios. In addi-
tion, the downside of deep learning architectures (i.e., long
training times) is becoming increasingly ignorable with rapid
development in the hardware technology particularly in GPUs.

VI. DISCUSSION

The experiments presented in this paper show a variety of
things.

1) It demonstrated that it is possible to automatically gen-
erate reference data sets with the potential to be pro-
duced globally opening new perspectives of producing
benchmark SAR reference data sets. Another method
of choice to generate such a reference data set may
be obtained by exploiting simulation-based methods as
proposed, e.g., in [26] and [27]. However, such methods
have their own limitations in a sense, and they typically
require the accurate models (3-D building models and/or
accurate digital surface models) to precisely generate
such GT data which, in most cases, is not available.

2) Deep learning architectures are greedy in terms of train-
ing data limiting their potential application. However,
with the possibility of producing large-scale annotated
data sets, the application of different deep learning
network architectures is possible for the classification
of built-up areas in SAR images.

3) In the case of OSM data, although the completeness and
correctness of the OSM data are fairly good but have
not yet reached to a level where it covers the whole
globe. Nevertheless, at least in the developed countries,
such data have the potential to be used either directly
as the reference/GT data set or to generate training data
(i.e., the labeled buildings masks as demonstrated in our
case) where it is difficult to obtain such information with
other interactive/expert methods.

4) It is also worth to mention that both the automatic
annotation results are produced using TomoSAR
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point clouds. Due to complex multiple scattering and
different microwave scattering properties of the objects
in the scene which possess different geometrical and
material features, TomoSAR point clouds exhibit some
special characteristics, such as low positioning accuracy,
a high number of outliers, gaps in the data, and rich
façade information due to the side-looking geometry.
These properties make classification of TomoSAR point
clouds a challenging task. With the aid of additional
auxiliary information, the problem is rectified.

5) Hypothetically, the automatic annotation results could
be improved with higher density of TomoSAR points
because when projected to SAR coordinates (azimuth
and range), a denser map of the reference would be
generated. TomoSAR point density is, however, depen-
dent on several factors, e.g., the geometrical properties
of objects appearing in the scene, the number of SAR
images used for tomographic reconstruction, and so on.
In the current scenario, the effect of low point density is
reduced by densifying the resulting building mask using
the mathematical image dilation operation.

6) Last, the capability to produce automatic large
area annotations together with their exploitation to
detect buildings in SAR imagery may benefit the
field of SAR-based (e.g., D-InSAR or TomoSAR)
risk management against potential threats (including
subsidence, landslides, and so on) by performing
building damage/vulnerability analysis, e.g., as depicted
in [53] and [54].

VII. CONCLUSION

In this paper, we have presented a deep learning-based
network architecture that is able to classify buildings from
nonbuildings in SAR images. Two automated annotation meth-
ods able to generate reference building masks for training
and testing the classifier have been presented. The methods
of automated annotation are generic and have the potential
toward generation of large-scale SAR reference data sets. The
annotated building masks have been utilized to construct and
train the deep fully CNNs with an additional CRF represented
as an RNN to detect building regions in a single (nonlocally
filtered) SAR image with an MA of around 93.84%. The
presented results are expected to further stimulate the research
interest in exploiting SAR imagery using deep learning net-
work architectures.

The results of this paper are promising, but still there are
things that could be addressed in the future. For instance,
the heights of individual buildings could be retrieved/estimated
by identifying layover regions in the obtained CNN-based
detection results. One application of such estimation is in
reducing the number of images required for accurate tomo-
graphic reconstruction as demonstrated in [4]. In addition,
in this paper, we aimed at detecting buildings for which we
utilized/generated OSM-based annotated building masks for
training and testing/validation. In the future, such annotated
masks could also be produced using other objects in the
OSM data set, e.g., roads, coastlines, and so on.

ACKNOWLEDGMENT

The authors would like to thank G. Baier from the German
Aerospace Center, Germany, to perform nonlocal filtering of
the synthetic aperture radar image of Berlin used in this
paper. They would also like to thank the Gauss Centre for
Supercomputing e.V for providing computing time at the GCS
Supercomputer SuperMUC, Leibniz Supercomputing Centre
(Project ID: pr53ya) [25], [28].

REFERENCES

[1] J. D. Wegner, R. Hänsch, A. Thiele, and U. Soergel, “Building detection
from one orthophoto and high-resolution InSAR data using conditional
random fields,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 4, no. 1, pp. 83–91, Mar. 2011.

[2] H. Sportouche, F. Tupin, and L. Denise, “Extraction and three-
dimensional reconstruction of isolated buildings in urban scenes from
high-resolution optical and SAR spaceborne images,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 10, pp. 3932–3946, Oct. 2011.

[3] J. Tao, G. Palubinskas, and P. Reinartz, “Automatic interpretation of high
resolution SAR images: First results of SAR image simulation for single
buildings,” in Proc. ISPRS Hannover Workshop, 2011, pp. 313–317.

[4] X. X. Zhu, N. Ge, and M. Shahzad, “Joint sparsity in SAR tomography
for urban mapping,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 8,
pp. 1498–1509, Dec. 2015.

[5] Y. Zhou, H. Wang, F. Xu, and Y.-Q. Jin, “Polarimetric SAR image
classification using deep convolutional neural networks,” IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 12, pp. 1935–1939, Dec. 2016.

[6] J. D. Wegner, J. R. Ziehn, and U. Soergel, “Combining high-resolution
optical and InSAR features for height estimation of buildings with flat
roofs,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5840–5854,
Sep. 2014.

[7] M. Quartulli and M. Datcu, “Stochastic geometrical modeling for
built-up area understanding from a single SAR intensity image with
meter resolution,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 9,
pp. 1996–2003, Sep. 2004.

[8] L. Zhao, X. Zhou, and G. Kuang, “Building detection from urban
SAR image using building characteristics and contextual information,”
EURASIP J. Adv. Signal Process., vol. 2013, p. 56, Dec. 2013.

[9] Y. Cao, C. Su, and G. Yang, “Detecting the number of buildings in a
single high-resolution SAR image,” Eur. J. Remote Sens., vol. 47, no. 1,
pp. 513–535, 2014.

[10] A. Ferro, D. Brunner, and L. Bruzzone, “Automatic detection and
reconstruction of building radar footprints from single VHR SAR
images,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 935–952,
Feb. 2013.

[11] S. Chen, H. Wang, F. Xu, and Y.-Q. Jin, “Automatic recognition of
isolated buildings on single-aspect SAR image using range detector,”
IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 219–223, Feb. 2015.

[12] L. Deng and C. Wang, “Improved building extraction with integrated
decomposition of time-frequency and entropy-alpha using polarimetric
SAR data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7,
no. 10, pp. 4058–4068, Oct. 2014.

[13] Q. Zhao and J. C. Principe, “Support vector machines for SAR automatic
target recognition,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2,
pp. 643–654, Apr. 2001.

[14] Y. Sun, Z. Liu, S. Todorovic, and J. Li, “Adaptive boosting for SAR
automatic target recognition,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 43, no. 1, pp. 112–125, Jan. 2007.

[15] M. Li, Y. Wu, and Q. Zhang, “SAR image segmentation based on
mixture context and wavelet hidden-class-label Markov random field,”
Comput. Math. Appl., vol. 57, no. 6, pp. 961–969, 2009.

[16] J. Ding, B. Chen, H. Liu, and M. Huang, “Convolutional neural network
with data augmentation for SAR target recognition,” IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 3, pp. 364–368, Mar. 2016.

[17] L. Mou and X. X. Zhu, “Vehicle instance segmentation from aerial
image and video using a multitask learning residual fully convolutional
network,” IEEE Trans. Geosci. Remote Sens., pp. 1–13, 2018.

[18] L. H. Hughes, M. Schmitt, L. Mou, Y. Wang, and X. X. Zhu, “Identifying
corresponding patches in SAR and optical images with a pseudo-siamese
CNN,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 784–788,
May 2018.



SHAHZAD et al.: BUILDINGS DETECTION IN VHR SAR IMAGES USING FULLY CNNs 1115

[19] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5,
no. 4, pp. 8–36, Dec. 2017.

[20] A. Profeta, A. Rodriguez, and H. S. Clouse, “Convolutional neural
networks for synthetic aperture radar classification,” in Proc. SPIE,
Algorithms Synth. Aperture Radar Imag. XXIII, vol. 9843, p. 98430M,
May 2016.

[21] J. Li, R. Zhang, and Y. Li, “Multiscale convolutional neural network
for the detection of built-up areas in high-resolution SAR images,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2016,
pp. 910–913.

[22] D. Malmgren-Hansen and M. Nobel-Jørgensen, “Convolutional neural
networks for SAR image segmentation,” in Proc. IEEE Int. Symp. Signal
Process. Inf. Technol. (ISSPIT), Dec. 2015, pp. 231–236.

[23] M. Gong, J. Zhao, J. Liu, Q. Miao, and L. Jiao, “Change detection
in synthetic aperture radar images based on deep neural networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 125–138,
Jan. 2016.

[24] J. Zhao, W. Guo, S. Cui, Z. Zhang, and W. Yu, “Convolutional neural
network for SAR image classification at patch level,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Jul. 2016, pp. 945–948.

[25] Z. Xu, R. Wang, H. Zhang, N. Li, and L. Zhang, “Building extraction
from high-resolution SAR imagery based on deep neural networks,”
Remote Sens. Lett., vol. 8, no. 9, pp. 888–896, 2017.

[26] S. Auer, S. Hinz, and R. Bamler, “Ray-tracing simulation techniques
for understanding high-resolution SAR images,” IEEE Trans. Geosci.
Remote Sens., vol. 48, no. 3, pp. 1445–1456, Mar. 2010.

[27] J. Tao, S. Auer, G. Palubinskas, P. Reinartz, and R. Bamler, “Automatic
SAR simulation technique for object identification in complex urban
scenarios,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7,
no. 3, pp. 994–1003, Mar. 2014.

[28] D. Brunner, G. Lemoine, L. Bruzzone, and H. Greidanus, “Building
height retrieval from VHR SAR imagery based on an iterative simulation
and matching technique,” IEEE Trans. Geosci. Remote Sens., vol. 48,
no. 3, pp. 1487–1504, Mar. 2010.

[29] M. Shahzad, M. Maurer, F. Fraundorfer, Y. Wang, and X. Zhu, “Extrac-
tion of buildings in vhr SAR images using fully convolution neural
networks,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
2018.

[30] X. X. Zhu and R. Bamler, “Very high resolution spaceborne SAR
tomography in urban environment,” IEEE Trans. Geosci. Remote Sens.,
vol. 48, no. 12, pp. 4296–4308, Dec. 2010.

[31] G. Fornaro, F. Lombardini, and F. Serafino, “Three-dimensional mul-
tipass SAR focusing: Experiments with long-term spaceborne data,”
IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 702–714,
Apr. 2005.

[32] S. Zheng et al., “Conditional random fields as recurrent neural
networks,” in Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 1529–1537. [Online]. Available: https://arxiv.org/abs/
1502.03240

[33] G. Fornaro, F. Serafino, and F. Soldovieri, “Three-dimensional focusing
with multipass SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 41,
no. 3, pp. 507–517, Mar. 2003.

[34] X. Zhu, Very High Resolution Tomographic SAR Inversion for Urban
Infrastructure Monitoring: A Sparse and Nonlinear Tour (Deutsche
Geodätische Kommission bei der Bayerischen Akademie der Wis-
senschaften: Dissertationen: Reihe C), vol. 666. Berlin, Germany: Verlag
der Bayerischen Akademie der Wissenschaften, 2011, p. 160.

[35] X. X. Zhu, Y. Wang, S. Gernhardt, and R. Bamler, “Tomo-GENESIS:
DLR’s tomographic SAR processing system,” in Proc. Joint Urban
Remote Sens. Event (JURSE), Apr. 2013, pp. 159–162.

[36] Y. Wang, X. X. Zhu, B. Zeisl, and M. Pollefeys, “Fusing meter-
resolution 4-D InSAR point clouds and optical images for semantic
urban infrastructure monitoring,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 1, pp. 14–26, Jan. 2017.

[37] H. Fan, A. Zipf, Q. Fu, and P. Neis, “Quality assessment for building
footprints data on OpenStreetMap,” Int. J. Geographical Inf. Sci., vol. 28,
no. 4, pp. 700–719, Apr. 2014.

[38] M. Haklay, “How good is volunteered geographical information? A com-
parative study of OpenStreetMap and ordnance survey datasets,” Env-
iron. Planning B, Planning Design, vol. 37, no. 4, pp. 682–703,
Aug. 2010.

[39] M. Shimrat, “Algorithm 112: Position of point relative to polygon,”
Commun. ACM, vol. 5, no. 8, p. 434, Aug. 1962, doi: 10.1145/368637.
368653.

[40] F. P. Preparata and M. I. Shamos, Computational Geometry: An Intro-
duction. New York, NY, USA: Springer-Verlag, 1985.

[41] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray,
“Visual categorization with bags of keypoints,” in Proc. Workshop Stat.
Learn. Comput. Vis. (ECCV), Prague, Czech Republic, vol. 1, 2004,
pp. 1–16.

[42] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[43] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and portable library of
computer vision algorithms,” in Proc. 18th ACM Int. Conf. Multimedia,
New York, NY, USA, 2010, pp. 1469–1472, doi: 10.1145/1873951.
1874249.

[44] Generate 2D and 3D Information, Purely From Images With Pix4d.
Accessed: Jan. 17, 2018. [Online]. Available: https://pix4d.com/

[45] I. Sobel and G. Feldman, “A 3×3 isotropic gradient operator for image
processing, presented at a talk at the stanford artificial project,” in Pattern
Classification and Scene Analysis, R. Duda and P. Hart, Eds. Hoboken,
NJ, USA: Wiley, 1968, pp. 271–272.

[46] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost for
image understanding: Multi-class object recognition and segmentation
by jointly modeling texture, layout, and context,” Int. J. Comput. Vis.,
vol. 81, no. 1, pp. 2–23, Dec. 2007.

[47] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for
image categorization and segmentation,” in Proc. CVPR, Jun. 2008,
pp. 1–8.

[48] S. Schulter, P. Wohlhart, C. Leistner, A. Saffari, P. M. Roth, and
H. Bischof, “Alternating decision forests,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2013, pp. 508–515.

[49] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431–3440.

[50] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 4, pp. 640–651, Apr. 2017.

[51] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected
CRFs with Gaussian edge potentials,” in Proc. Adv. Neural Inf. Process.
Syst., 2011, pp. 109–117.

[52] G. Baier, X. X. Zhu, M. Lachaise, H. Breit, and R. Bamler, “Nonlocal
InSAR filtering for DEM generation and addressing the staircasing
effect,” in Proc. 11th Eur. Conf. Synth. Aperture Radar (EUSAR),
Jun. 2016, pp. 1–4.

[53] L. Cascini et al., “Detection and monitoring of facilities exposed to
subsidence phenomena via past and current generation SAR sensors,”
J. Geophys. Eng., vol. 10, no. 6, p. 064001, 2013.

[54] D. Peduto, S. Ferlisi, G. Nicodemo, D. Reale, G. Pisciotta, and G. Gullà,
“Empirical fragility and vulnerability curves for buildings exposed to
slow-moving landslides at medium and large scales,” Landslides, vol. 14,
no. 6, pp. 1993–2007, Dec. 2017.

Muhammad Shahzad (S’12–M’16) received the
B.E. degree in electrical engineering from the
National University of Sciences and Technol-
ogy (NUST), Islamabad, Pakistan, the M.Sc.
degree in autonomous systems (robotics) from the
Bonn Rhein Sieg University of Applied Sciences,
Sankt Augustin, Germany, and the Ph.D. degree in
radar remote sensing and image anaylsis from the
Department of Signal Processing in Earth Obser-
vation, Technische Universität München, Munich,
Germany, in 2004, 2011, and 2016, respectively.

His Ph.D. dissertation was on automatic 3-D reconstruction of objects from
point clouds retrieved from spaceborne synthetic aperture radar image stacks.
He has attended twice two weeks professional thermography training course at
the Infrared Training Center, North Billerica, MA, USA, in 2005 and 2007.

He was a Guest Scientist with the Institute for Computer Graphics and
Vision, Technical University of Graz, Graz, Austria, from 2015 to 2016.
Since 2016, he has been an Assistant Professor with the School of Electrical
Engineering and Computer Science, National University of Sciences and Tech-
nology. His research interests include processing both unstructured/structured
3-D point clouds, optical RGBD data, and very high-resolution radar
images.

http://dx.doi.org/10.1145/368637.368653
http://dx.doi.org/10.1145/368637.368653
http://dx.doi.org/10.1145/1873951.1874249
http://dx.doi.org/10.1145/1873951.1874249


1116 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 2, FEBRUARY 2019

Michael Maurer received the B.S. and M.S. degrees
(Hons.) in telematics (computer science and elec-
tronics) from the Graz University of Technology,
Graz, Austria, in 2008 and 2010, respectively, with a
focus on computer vision and mobile robots, where
he is currently pursuing the Ph.D. degree with the
Institute of Computer Graphics and Vision.

Next to his Ph.D. studies, he is managing and
leading industrial research projects and is the repre-
sentative of the institute at the Disaster Competence
Network Austria. He has authored (co-authored)

about 20 scientific publications, including journal papers and peer-reviewed
conference papers. His research interests include 3-D semantics, deep learning,
3-D reconstruction, visual navigation, image-based localization and mapping,
and image acquisition systems and camera drones.

Mr. Maurer is an active member of the Computer Vision Community which
led to being an Invited Speaker at the 169. DVW-Seminar, Germany, in 2018.
He was nominated for the Best Video Award at the International Conference
on Robotics and Automation 2012 and a finalist at the DJI Challenge (Search
and Rescue using a Camera Drone) in 2016.

Friedrich Fraundorfer received the Ph.D. degree
in computer science from the Institute of Computer
Graphics and Vision, Graz University of Technology
(TU Graz), Graz, Austria, in 2006.

He is currently an Assistant Professor with TU
Graz. His research interests include 3-D computer
vision, robot vision, multiview geometry, visual-
inertial fusion, microaerial vehicle, autonomous
systems, and aerial imaging.

Yuanyuan Wang (S’10–M’14) received the B.Eng.
degree (Hons.) in electrical engineering from The
Hong Kong Polytechnic University, Hong Kong,
in 2008, and the M.Sc. and Dr. Ing. degrees from
the Technical University of Munich (TUM), Munich,
Germany, in 2010 and 2015, respectively.

In 2014, he was a Guest Scientist with the Institute
of Visual Computing, ETH Zurich, Zürich, Switzer-
land. He is currently with the Signal Processing in
Earth Observation, TUM. He is devoting himself
in coordinating and developing key algorithms in

the European project So2Sat: Big Data for 4D Global Urban Mapping—
1016 Bytes from Social Media to Earth Observation Satellites. His research
interests include optimal and robust parameters estimation in multibaseline
interferometric synthetic aperture radar (InSAR) techniques, multisensor
fusion algorithms of InSAR and optical data, nonlinear optimization for
complex numbers, and the applications of these techniques in urban and
volcanic areas.

Dr. Wang serves the community as a reviewer for several remote sensing
journals and a Reviewer for the European Research Council and the French
National Research Agency. He is one of the best reviewers of the IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING in 2016.

Xiao Xiang Zhu (S’10–M’12–SM’14) received the
M.Sc., Dr. Ing., and Habilitation degrees in signal
processing from the Technical University of
Munich (TUM), Munich, Germany, in 2008, 2011,
and 2013, respectively.

She was a Guest Scientist or a Visiting Profes-
sor with the Institute for Electromagnetic Sensing
of Environment, Italian National Research Council,
Naples, Italy, Fudan University, Shanghai, China,
The University of Tokyo, Tokyo, Japan, and the Uni-
versity of California at Los Angeles, Los Angeles,

CA, USA, in 2009, 2014, 2015, and 2016, respectively. She is currently the
Professor for Signal Processing in Earth Observation, TUM, and the Head
of the Department of EO Data Science, Earth Observation Center of the
German Aerospace Center (DLR), and the Helmholtz Young Investigator
Group SiPEO, DLR, and TUM, Germany. Her research interests include
remote sensing and earth observation, signal processing, machine learning,
and data science, with a special application focus on global urban mapping.

Dr. Zhu is a member of young academy (Junge Akademie/Junges Kolleg) at
the Berlin-Brandenburg Academy of Sciences and Humanities and the German
National Academy of Sciences Leopoldina and the Bavarian Academy of
Sciences and Humanities. She is an Associate Editor of the IEEE TRANSAC-
TIONS ON GEOSCIENCE AND REMOTE SENSING.


