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Adaptive Model-Based Classification
of PolSAR Data

Dong Li , Member, IEEE, and Yunhua Zhang , Member, IEEE

Abstract— An adaptive classification is developed as a hybrid of
the eigenvector-based and the model-based target decompositions
for polarimetric synthetic aperture radar (PolSAR) data. The
classification adopts the canonical scattering models that widely
used in model-based decompositions to provide an improvement
for the well-known H/α classification. First, a correspondence
principle is adopted to adaptively identify the matched canonical
models. The selected models are parallelly combined based on
the scattering similarity for a fine depiction of the scattering
mechanism then. Twelve classes are finally obtained, and each
one carries a unique symbol to show a specific scattering. The
classification does not depend on a particular data set, avoids the
hard partitioning, and solves the obscures in H/α. Comparison
on the real PolSAR data sets with H/α and the existing scattering
similarity-based classification validates the better discrimination.

Index Terms— Radar polarimetry, scattering model, scattering
similarity, target decomposition, unsupervised classification.

I. INTRODUCTION

POLARIZATION is an essential property of electromag-
netic wave [1]–[4]. The polarization state of the wave

will change when interacting with a target. By analyzing
the polarization of the scattering wave, we can obtain the
physical and geometrical information regarding the target, and
this is the main task of the polarimetric synthetic aperture
radar (PolSAR) [2]–[4].

Different from monopolarization radar data, each data cell in
PolSAR is not a complex number but a matrix. PolSAR image
processing is just dedicated to identify useful information
from the matrix for target recognition and discrimination.
There are many approaches to achieve this, among which the
polarimetric target decomposition should be the most popular
one. This idea was proposed by Huynen [5] in 1970. Since
then a great deal of decompositions have been developed, such
as the Huynen-type phenomenological dichotomies [5]–[8],
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the eigenvector-based decompositions [9]–[11], the model-
based decompositions [12]–[20], and the coherent decompo-
sitions [21]–[23], just to name a few. The comprehensive
review on the existing decomposition techniques can be found
in [24]. Target decomposition provides a “quick look” of
the components of the complex scattering by identifying
the dominant/average scattering, or expanding the scattering
on some canonical scattering models. By statistically incor-
porating the decompositions into some advanced schemes,
the unsupervised scattering classifications can also be
achieved [8], [9], [25]. The well-known entropy/alpha (H/α)
is just such a classification based on eigenvector-based decom-
position [10]. It can enable a classification independent of a
particular data set [9], and has been widely used in the PolSAR
field [26]–[31].

Another approach to extract information from the matrix
is in terms of the scattering similarity. Unlike target decom-
positions, this approach characterizes the unknown complex
scattering by parallelly checking the similarity between the
scattering and the canonical scatterings. Yang et al. [32] first
devised such a parameter to measure the similarity between
two single scatterers. It was extended by Chen et al. [33] to
evaluate the similarity between a mixed scatterer and a single
scatterer. A random similarity was devised recently to further
measure the similarity between two mixed scatterers [34].
The parameter not only covers Yang and Chen similarities
by enabling a general scattering similarity measurement, but
also provides a fast alternative to the entropy parameter in
depiction of the scattering randomness. Based on the Chen
similarity, Chen et al. [35] proposed an unsupervised PolSAR
classification by characterizing complex scattering based on
the combination of canonical scattering models so as to tackle
with the assumption in H/α that there is always a dominant
average in each cell.

Although it can avoid some semantic obscures in H/α,
the Chen classification cannot enable the equivalent target
discrimination as H/α and four classes of it will be disenabled
forever if target deorientation is conducted beforehand. This
paper is originally dedicated to enable an improvement to the
Chen classification. It is interesting that the devised adaptive
classification also provides an improvement for H/α as a
hybrid of the eigenvector-based and model-based decompo-
sitions. The classification is founded on the nine widely used
canonical scattering models. It adopts a correspondence princi-
ple to select the matched models and uses the random similar-
ity to parallelly combine the selected models to achieve a fine
depiction of the scattering mechanisms. A total of 12 classes
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Fig. 1. Classification schemes of (a) H/α classification, (b) adaptive model-based classification, and (c) Chen classification.

are finally obtained with each class carrying a unique symbol
to signify a specific scattering. Comparison with H/α and
Chen classification validates the better discrimination.

The rest of this paper is arranged as follows. H/α is
depicted in Section II. Section III presents the random simi-
larity and the Chen classification. The adaptive classification
is developed in Section IV and compared with H/α and Chen
classification in Section V on real radar data set. Section VI
further discusses the consistency and difference between the
proposed classification and the model-based decomposition.
This paper is concluded in Section VII with the formulation
of the susceptibleness of Chen classification to deorientation
being modeled in the Appendix.

II. ENTROPY/ALPHA CLASSIFICATION

The Hermitian coherency matrix T of a polarimetric scat-
terer in monostatic backscattering is expressed as

T =
⎡
⎣ T11 T12 T13

T21 T22 T23
T31 T32 T33

⎤
⎦. (1)

Following the eigenvalue-based Cloude decomposition, we can
model a full-rank mixed scatterer T into the sum of three
rank-1 single scatterers T Si (i = 1, 2, 3) [10]⎧⎪⎪⎨

⎪⎪⎩
T =

3

i=1

T Si =
3


i=1

�
kSi · kH

Si

�
with kSi = √

λi ui , λ1 ≥ λ2 ≥ λ3

(2)

where superscript H denotes the conjugate transpose opera-
tion, and kSi is the Pauli vector of T Si which relates to the
eigenvalues λi and eigenvectors ui of T . Decomposition (2)
makes Cloude and Pottier [9] to propose a Bernoulli scattering
model by treating T as single scattering T Si occurring with
probability proportional to λi . An entropy parameter H was
then proposed to depict the scattering randomness by dividing
scattering T into three states, the low entropy, medium entropy,
and high entropy in terms of the boundaries H = 0.5 and
H = 0.9. An angle α was raised to further characterize the

scattering mechanism by classifying the three states into eight
zones Zi (i = 1, 2, . . . , 8) with boundaries α = 55° for
Z1 and Z2, α = 50° for Z3 and Z4, α = 40° for Z4 and Z5,
α = 47.5° for Z6 and Z7, and α = 42.5° for Z7 and Z8,
as shown in Fig. 1(a). H/α has been widely used and
it is one of the most successful methods to PolSAR data
classification [2].

III. RANDOM SIMILARITY AND CHEN CLASSIFICATION

A. Random Similarity

The random similarity r between two mixed scatterers
T and T c is defined as [34]

r(T , T c) = Tr
�
T T H

c
�

Tr(T)Tr(T c)
(3)

where Tr denotes the matrix trace. r possesses the properties of
commutativity, traceless additivity, size and unitary invariance,
and finite range [34]. It provides us a general similarity
measure of any two scatterers. If T c is a single scatterer with
T c = kckH

c , then (3) can be arranged as

r(T , T c) = Tr
�
T kckH

c
�

Tr(T)Tr
�
kckH

c
� = kH

c T kc

Tr(T)�kc�2
2

(4)

where || · ||2 is the 2-norm, and r changes to Chen’s parameter
which measures the similarity between a mixed scatterer and
a single scatterer [33]. Furthermore, if scatterer T is also a
single scatterer and T = kkH , then (4) can be written as

r(T , T c) = kH
c kkH kc

Tr(kkH )�kc�2
2

= |kH kc|2
�k�2

2�kc�2
2

. (5)

This is just Yang’s parameter which measures the similarity
of two single scatterers [32]. When T and T c in (3) cor-
respond to the same scatterer, we obtain the self-similarity
parameter rss ⎧⎪⎪⎨

⎪⎪⎩
rss(T) = Tr

�
T T H

�
(Tr(T))2

with rss ∈
�

1

3
1

�
.

(6)
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TABLE I

INVOLVED CANONICAL SCATTERING MODELS AND THEIR CORRESPONDING SCATTERING MECHANISMS, SCATTERING SIMILARITIES,
AND SCATTERING ENTROPIES IN THE ADAPTIVE MODEL-BASED CLASSIFICATION AND THE CHEN CLASSIFICATION

A scattering-similarity entropy Hs is then defined [36]�
Hs = − log3 rss

with Hs ∈ [0 1]. (7)

Hs is 0 for a single scatterer, is 1 for a depolarized scat-
terer, and is within 0–1 for a partially polarized scatterer.
An analytical comparison of Hs and H is presented in [36]
by formulating the rigorous Hs − H relationship, and it is
shown that Hs is a competent alternative to H in description
of the scattering randomness. Moreover, unlike the calculation
of H which needs to conduct eigendecomposition pixelwisely
on the whole PolSAR imagery, the calculation of Hs simply
relates to the trace and the squared Frobenius norm Tr(T T H )
of T , and it is thus very efficient [36].

B. Chen Classification

Different from Cloude–Pottier statistical interpretation,
Chen et al. [35] gave another interpretation to (2). They
also ascribed the mixed scattering T to three states but with
the boundaries H = 0.36 and H = 0.855, and ranked the
single scatterings ui as the major scattering u1, the minor
scattering u2, and the least scattering u3 based on λi . Then,
they described the low-entropy state only with u1, represented
the medium-entropy state with both u1 and u2, and depicted
the high-entropy state with all u1, u2, and u3. Since eigenvec-
tors ui cannot provide a description of scattering mechanism
independent of T , Chen et al. [35] further used the canonical
scattering models instead. As shown in Table I, the involved

models are the surface scattering T S, the dihedral scattering
T D, and the 45° rotated dihedral scattering T R. T R is used
to model the volume scattering and accounts for the cross-
polarized HV scattering. Chen et al. [35] ranked them with
the similarity parameters rS , rD , and rR , which denote the
similarities r(T , T S), r(T , T D), and r(T , T R), respectively,
as listed in Table I. Among T S, T D , and T R, the one which
produces the maximum similarity is treated as the major
scattering, the minor similarity as the minor scattering, and
the minimum similarity as the least scattering. In the state
of low entropy, only the major scattering is considered and
we obtain three classes, i.e., LS, LD, and LV. LD means low-
entropy dihedral scattering and is identified when rD > rS , rR .
LS and LV can be analogously defined. Both major and minor
scatterings are involved in the medium entropy, and six classes
are then obtained which are MSD, MSV, MDS, MDV, MVS,
and MVD. MSV denotes the medium-entropy surface–volume
scattering which is attained when rS > rR > rD . The other
five classes can be likewise inferred. As for the high entropy,
Chen et al. [35] wholly deemed it as one intact class R with the
assumption that the contributions of all scattering mechanisms
are nearly close here. Hence, scattering T is classified into a
total of ten different classes.

C. Sufficiency and Deficiency of Chen Classification

The sufficiency of Chen classification rests in its disposal
of the state of medium entropy. Angle α in H/α is extracted
from the scattering u0 which is the statistical mean of scatter-
ings ui [9]. This indicates that α may only enable an average
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Fig. 2. Illustrating the deficiency of Chen classification in the disposal of
high-entropy state on the AIRSAR San Francisco scene. (a) RGB image of
the high-entropy state. The image should present like the (b) gray image with
low hue and saturation if follow Chen’s assumption. However, the colors in (a)
clearly reveal a different truth. Since we focus only on the high-entropy state
here, the pixels attributed to low- and medium-entropy states are rendered as
pure black.

depiction of the scattering mechanism. Take Z4 for exam-
ple, it represents medium-entropy vegetation scattering with
α ≈ 45°. However, Chen et al. [35] observed that the majority
of Z4 appears in MSD and MDS that denote dominant surface
and dihedral scatterings instead. It is known that α > 45°
for dihedral scattering and α < 45° for surface scattering,
the weighted average α in MSD and MDS then approaches
to 45° because the weights rS and rD are comparable [35].
This misleads H/α to identify MSD and MDS as Z4. The
combination of major scattering and minor scattering can thus
avoid the obscure of mean scattering u0 in description of the
scattering mechanism.

Chen et al. [35] modeled the volume scattering as a
simple rotated dihedral scattering. However, volume scatter-
ing usually arises from the depolarization of odd- or even-
bounce scatterings and is often modeled as a mixed scattering
instead [12]–[20]. Chen et al. [35] have not evaluated the
impact of target orientation on their classification. The same
scatterer can be presented differently by a simple rotation
about the line of sight (LOS) [37], [38]. As the result,
a building may be identified as forest because orientation
increases the cross-polarized scattering [39]–[41]. To avoid the
influences, deorientation operator should be conducted first.
As deducing in the Appendix, the T33 entry of T will be
no larger than T22 after doing deorientation to minimize the
cross-polarization. As a result, rR will also be no larger than
rD and the four classes LV, MSV, MVS, and MVD will be
disabled forever. This greatly influences the performance of
the classification in medium- and low-entropy states.

In H/α, Cloude and Pottier [9] gave a dichotomy to high-
entropy state based on the scattering mechanism. In the Chen
classification, however, the high entropy is intactly kept as
one class because all the scattering mechanisms are assumed
to contribute equally here [35]. As for the involved canonical
models T S, T D , and T R, this may signify that the similarity
parameters rS , rD , and rR are comparable when H of scatter-
ing T is high. To validate this, we construct an RGB image of
the high entropy by assigning rD , rR , and rS to the red, green,
and blue, respectively. Fig. 2(a) shows the obtained image on
NASA/JPL L-band AIRSAR data of San Francisco. The image

Fig. 3. Determination of the three random scattering states in the model-
based classification by adaptively selecting the matched canonical scattering
models in terms of a correspondence principle.

should present like the gray image in Fig. 2(b) with very low
hue if following Chen’s assumption, because the three color
components are comparable. However, the wide distributions
of red, blue, and even green in Fig. 2(a) reveal a different
truth: one can still tell different scattering mechanisms in high
entropy. The disposal of high-entropy state in H/α is thus
preferable.

IV. ADAPTIVE MODEL-BASED CLASSIFICATION

The adaptive mode-based classification is devised to remedy
the aforementioned deficiencies to improve the performance
of Chen classification and to enable a novel understanding
of H/α from the model-based point of view.

Like the classifications of H/α and Chen, in the first step,
we also divide scattering T into three states. As for their
boundary, Cloude and Pottier [9] used H = 0.5 and H = 0.9,
but Chen et al. [35] used H = 0.36 and H = 0.855.
The former is set based on the general properties of the
typical scatterings and has been validated on plenty of data
sets [2], and the latter is obtained by statistically analyzing
the scattering feature of AIRSAR data of San Francisco and
should be adjusted according to application demand [35].
Instead of entropy H , we determine the states with entropy
Hs since it is a fast and competent alternative to H [36].

Here, we adopt Chen’s proposition to use canonical models
in PolSAR classification. Nevertheless, unlike the Chen clas-
sification in which only the three canonical scattering models
T S, T D , and T R are considered and they are used to determine
the scattering mechanism only, the proposed classification tries
to use a total of nine canonical scattering models for a joint
characterization of both the scattering mechanism and random-
ness. Table I lists the involved models, among which T S and
T D are reserved, but T R is removed due to its susceptibleness
to orientation. Seven other models are added which are widely
adopted in the model-based decompositions [12]–[20]. Table I
also lists entropy Hs of each model, based on which we
coarsely attribute these models into three categories, as dis-
played in Fig. 3. T S, T D , T H , and T V belong to the first cat-
egory with the low entropy Hs = 0. Here, T H and T V denote
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the horizontal and vertical dipole scatterings, respectively, and
they often serve as the origin of some volume scattering
models such as T R H and T RV . T R H and T RV represent a
random version of T H or T V scatterers with nonuniform sine
distribution for the orientation. They are dedicated to model
the dominantly horizontal or vertical structures and consti-
tute one of the important characters of the four-component
model-based decompositions [13]–[15]. The second category
is comprised of T R H , T RV , and a third model T R D with
the medium entropies Hs = 0.7659 and Hs = 0.6269.
T R D is a deoriented version of the Sato et al.’s [14] extended
volume scattering to model a cloud of scatterer T D with
orientation also subjected to sine distribution. As an extension
of T D , T R D is competent to characterize the random vol-
ume scattering created by even-bounce structures. The third
category contains the high-entropy canonical models T R I S
and T R AS with entropies Hs = 1 and Hs = 0.8928.
T R I S shows the random isotropic scattering with the
highest Hs . It has been adopted by An et al. [16] as an empiri-
cal model in their model-based decomposition. Like T R H and
T RV , T R AS is also a random version of T H or T V but with
uniform distribution for the dipole cloud orientation. It denotes
the random anisotropic scattering. This model was employed
by Cloude and Pottier [9] to characterize mixed scattering from
highly anisotropic particles. Freeman and Durden [12] further
used it in the three-component model-based decomposition for
volume scattering from a forest canopy.

Based on these canonical scattering models, we then adopt a
correspondence principle by describing scattering T only with
models of the same state, and miscorrespondence is prohibited.
As for scattering T with entropy Hs , this principle enables us
an adaptive selection of the canonical models⎧⎪⎨
⎪⎩

|Hs − 0| ≤ |Hs − 0.6269| → T S, T D, T H , T V

|Hs − 0.8928| < |Hs − 0.7659| → T R AS, T R I S

else → T R H, T RV , T R D.

(8)

Equation (8) can be easily solved⎧⎪⎪⎨
⎪⎪⎩

0 ≤ Hs ≤ 0.31345 → T S, T D, T H , T V

0.31345 < Hs ≤ 0.82935 → T R H , T RV , T R D

0.82935 < Hs ≤ 1 → T R AS, T R I S.

(9)

This indicates that we adopt Hs = 0.31345 and Hs = 0.82935
as the boundaries of the three states of randomness, as shown
in Fig. 3. The boundaries are determined by the canonical
models, thus do not depend on a particular data set.

The second step is dedicated to give a deep discrimination of
the scattering mechanism based on random similarity. As for T
in low-entropy state, canonical models T S, T D, T H , and T V
are matched to calculate the similarity parameters rS , rD , rH ,
and rV , respectively, as shown in Table I. Only the dominant
similarity is revered in this state and four classes are obtained
in terms of the combination and permutation (C1

4 ) of rS , rD ,
rH , and rV . For convenient understanding, we denote each
class with a symbol. As given in Fig. 1(b), ∫ signifies the
dominant surface scattering which is achieved when rS > rD ,
rH , rV . denotes the dominant dihedral scattering which is

ruled by rD > rS , rH , rV . — or represents the dominant
horizontal or vertical scattering which is determined when
rH or rV is the maximum. Models T R H , T RV , and T R D
are matched to T of medium entropy, and similarities rR H ,
rRV , and rRD are obtained accordingly, as shown in Table I.
The minor similarity is also revered in this state, and six
classes are then achieved in terms of the combination and
permutation (C2

3 ) of rR H , rRV , and rRD . We also assign a
symbol to each class but based on the pairwise combination

of —, , and . As given in Fig. 1(b), symbolizes — above
which represents rR H > rRV > rRD , i.e., the major horizontal
scattering and minor vertical scattering, and its rotation
signifies rRV > rR H > rRD . denotes — above which
indicates rR H > rRD > rRV , and its rotation denotes rRD >

rR H > rRV . implies before which signifies rRV > rRD >
rR H , and its rotation reflects rRD > rRV > rR H . T R I S and
T R AS are identified for T of high entropy to compute the
similarity parameters rRI S and rR AS listed in Table I. Only
the dominant scattering is revered in this state and two classes
(C1

2 ) are attained, as shown in Fig. 1(b). As for rR AS > rRI S ,

the random anisotropic scattering is preferable and symbol
is used. T approaches to a pure depolarizer when rRI S > rR AS ,
and the random isotropic scattering is obtained. We symbolize
this class as (the sun) since sunlight is often fully depolar-
ized [42]. A total of 12 classes are thus obtained.

For illustrating conveniently, we devise the circle
in Fig. 1(b). The circle is comprised of three shells and
12 sectors. Each shell indicates a state of randomness with
the depth depending on the state boundary, and transition
among the shells signifies the increase (outward) or decrease
(inward) of entropy Hs . Each sector locates in a specific
state with a unique symbol denoting a particular scattering
mechanism. Such circle can also be used to illustrate the
scheme of Chen classification, as shown in Fig. 1(c). The
developed classification is validated in the following.

V. EXPERIMENTS AND ANALYSIS

Fig. 4(b) shows the classification of the widely used
AIRSAR San Francisco data. Before classification, the refined
Lee filter with 7 × 7 aligned window (denoted by RLF7,
and the meaning of RLFn can be likewise inferred) is first
used to suppress the speckle, and the deorientation operator is
then performed. The typical scatterers such as ocean, building,
bridge, forest, avenue, park, polo field, golf course, beach,
island, and mountains are all well identified by the developed
approach. The comparisons with H/α and Chen classification
are conducted as follows.

A. Comparison With Entropy/Alpha

The H/α classification of San Francisco data is shown
in Fig. 4(a). By rendering each pixel also with its allotted
class color in Fig. 4(a), Fig. 5(a) displays the mapping of
the classification in the H/α space. Our intuitive impression
of Fig. 4(a) and (b) is their nice consistency but distinct
difference. To illustrate these qualitatively and quantitatively,
the classification in Fig. 4(b) is also mapped to the H/α space
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Fig. 4. Classification results of (a) H/α classification, (b) adaptive model-based classification (with deorientation), and (c) Chen classification (without
deorientation) on the AIRSAR San Francisco data set. Each class in the three classifications is coded with the color assigned in Fig. 1.

Fig. 5. Illustrating (a) H/α classification, (b) adaptive model-based classification (with deorientation), and (c) Chen classification (without deorientation) by
mapping the classification results in Fig. 4 to the 2-D H/α space and coding each class also with the color assigned in Fig. 1. The abbreviations LES, MES,
and HES denote the low-entropy state, the medium-entropy state, and the high-entropy state, respectively.

in Fig. 5(b). A confusion matrix is further produced in Table II
with each row listing how many pixels of each class of
the proposed approach being classified to the different zones
of H/α. Two interesting results are obtained.

First, the two vertical borders among the three states are
clear and straight in Fig. 5(b), and are just close to the Cloude–
Pottier borders H = 0.5 and H = 0.9. From Table II, we
also obtain the confusion matrix among the states of the two
classifications

C =
⎡
⎣ 97.0603% 2.9397% 0

1.4835% 97.6444% 0.8721%
0 0.1835% 99.8165%

⎤
⎦ (10)

where the three rows of C denote how many pixels of the
high-, medium-, and low-entropy states of the developed
approach are registered to different states of H/α, respec-
tively. As shown, the diagonal elements 97.06%, 97.64%,
and 99.82% indicate the perfect consistency of the two
classifications on three states. Thus, entropy Hs and the
related boundaries are nice alternative to entropy H and the
Cloude–Pottier boundaries in depiction of the randomness and
in determination of the states, respectively.

In [36], a similarity-based Hs/αs classification is pro-
posed in terms of two parameters, i.e., the similarity-based

angle αs and entropy Hs by referring to the H/α classification.
Hs = 0.3092 and Hs = 0.8203 are identified as the optimal
approximation to the boundaries H = 0.5 and H = 0.9, which
are determined by iteratively minimizing the misclassification
between Hs/αs and H/α on some typical PolSAR data sets.
It is interesting that the boundaries (9) are pretty close to these
optimal boundaries, and this is the underlying mechanism that
supports the consistency between the proposed classification
and H/α on the three states. Cloude and Pottier [9] indicated
that the boundaries in H/α are not dependent on a particular
data set although there is some degree of arbitrariness on
setting them. The above consistency also validates such inde-
pendent character of H boundaries because their alternative
boundaries (9) are determined by the canonical models instead
of by a particular data set.

Second, the 12 classes of the developed approach present
the consistent pattern as the nine zones of H/α, as shown
in Fig. 5(a) and (b). Take the medium-entropy state
as an example, such as Z3, Z4, and Z5, the six classes , ,
, , , and also geometrically partition this state into

three zones with clear borders, i.e., the upper zone and ,
the middle zone and , and the lower zone and .
H/α accomplishes Z3, Z4, and Z5 using the hard thresholds
α = 40° and α = 50°. But the six classes in the proposed
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Fig. 6. Alpha angle histograms of (First row) H/α classification, (Second row) adaptive model-based classification (with deorientation), and (Third row)
Chen classification (without deorientation) in (First column) low-entropy state, (Second column) medium-entropy state, and (Third column) high-entropy state
on the AIRSAR San Francisco scene. The percentage in the bracket lists how many pixels of the scene are classified into a certain class.

approach are determined by the adaptive combination and
permutation of canonical scattering models. It is interesting
that such adaptive ruling can also enable a kind of threshold-
ing. Nonetheless, the thresholding here is not hard but soft,
as illustrated in Fig. 6 in terms of the angle α histogram of
each class of the two classifications on San Francisco data.
Park and Moon [30] showed that the arbitrarily fixed zone
boundaries in H/α could result in noisy classification, and
they used fuzzy logic to soften the boundaries to improve the
classification. The proposed approach naturally enables such
thresholding; thus, good results can be expected.

Although bearing the same number of zones, the cover-
age of the three medium-entropy zones in Fig. 6(b) differs
from that in Fig. 6(e). As shown, the majority of the upper
zone and and the middle zone and are covered
by Z3. As also reflected in Table II, 98.08%, 98.08%, 93.10%,
and 93.24% of the pixels that classified to the classes , , ,

and are registered to Z3. Dihedral scattering or is
contained in all the four classes , , , and , and the parallel

addition of a second scattering — or boosts the entropy
of scattering process. This is consistent with the character
of Z3 in H/α, i.e., to account for the dihedral scattering
with moderate entropy scattered from urban areas [9]. Thus,
Z3 is classified into four classes in the proposed approach,
and better urban classification is shown in Fig. 4(b)
than in Fig. 4(a). Moreover, we can also observe from
Fig. 6(b) and (e) that the majority of Z4 and Z5 are covered in
the lower zone and . It is recorded in Table II that 59.51%
of and 47.14% of are registered to Z4, and there are
also 33.96% of and 15.89% of classified to Z5. Hence,
classes and enable an alternative to Z4 and Z5. The
white rectangle in Fig. 4(a) frames a beach area, the majority
of which are classified into Z4, the medium-entropy vegetation
scattering. However, Chen et al. [35] indicated that beach
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TABLE II

CONFUSION MATRIX BETWEEN THE ADAPTIVE MODEL-BASED CLASSIFICATION AND THE
ENTROPY/ALPHA CLASSIFICATION ON THE AIRSAR SAN FRANCISCO DATA

Fig. 7. Classification results of (a) H/α classification, proposed adaptive model-based classifications (b) with and (d) without deorientation, and
(c) Chen classification (without deorientation, because four of the ten classes in Chen classification will disappear after deorientation) on the ESAR
Oberpfaffenhofen data. The coded color of each class in the three classifications is displayed in Fig. 1. Since Chen’s statistical method cannot appropriately
delimit the state borders on this data set, the H/α borders H = 0.5 and H = 0.9 are adopted in the Chen classification.

generally comprises of sand not vegetation, and they classified
this area as MSD which denotes the major surface and minor
dihedral scatterings, as exhibited in Fig. 4(c). In the proposed
classification displayed in Fig. 4(b), the area is further classi-
fied into two parts and . Such result is consistent with
the Wishart SPAN/H/A/α classification proposed in [31].
The combination of and , thus, behaves better than Z4.
Furthermore, Fig. 7 displays the classifications on DLR L-band
ESAR data of Special Airport Oberpfaffenhofen. As given
in Fig. 7(b), the data contain the typical scatterers such as
the parking apron, runway, lawns, and facilities. Fig. 7(b)
illustrates the developed classification, where the runway and
parking apron are clearly discriminated from the in-between
lawn (lawn1). These targets, however, are indiscriminately
classified as Z5 in Fig. 7(a). Then, we cannot tell their
difference in H/α. Thus, the combination of and also
behaves better than Z5. All these reflect the better partition
performance of the approach in medium-entropy state.

As for the low-entropy state, we have three zones Z6, Z7,

and Z8 in H/α but four classes , —, , and ∫ in the proposed
approach. As displayed in Fig. 5(b), the four classes geomet-
rically partition the state into four zones with clear borders in
terms of the C1

4 permutation of rS , rD , rH , and rV . Z7 in H/α
signifies the low-entropy dipole scattering [9], and it is divided

into — and in the proposed approach to indicate the low-
entropy horizontal and vertical dipole scatterings, respectively.
Despite the theoretical significance, Z7 is generally rare in the
real PolSAR data because Cloude and Pottier [9] assigned it a
very narrow area in the H/α space using the hard thresholds
α = 42.5° and α = 47.5°, as illustrated in Figs. 1(a) and 5(a).
Fig. 6(a) reflects that only 0.15% of San Francisco data are
classified to Z7. The proposed approach improves this by using

the adaptive ruling to enable a soft thresholding; — and then
occupy a much wider zone that spans from about α = 25° to
about α = 65°, as exhibited in Fig. 5(b). From Fig. 6(d),
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we observe that the majority of Z7 is just situated in the area

where — and overlap with each other. The widening of —

and , on the other hand, implies the narrowing down of
and ∫ relative to Z6 and Z8, as shown in Fig. 5(a) and (b).
Like , Z6 also denotes the low-entropy dihedral scattering [9];
as listed in Table II, Z6 comprises not only 99.09% of , but
also 80.67% of —, while — reflects the dominant horizontal
scattering instead of dihedral scattering. We can discriminate
— from Z6 by adding a boundary α = 65° to H/α. Likewise,
both Z8 and ∫ signify the low-entropy surface scattering, and
almost all of ∫ (99.86%) are correctly mapped to Z8, but

Z8 also covers 96.29% of , as shown in Table II. Thus,
Z8 is divided into two parts in the proposed approach, as
shown in Figs. 5(b) and 6(d). The black rectangle in Fig. 4(b)
is a specific oceanic area of San Francisco. The angle α of this
area (30.49°) is averagely much larger than the other oceanic
area (5.50°) probably owing to the variation of the radar
LOS [31]. (Based on the extended Bragg model, the influence
of angle of incidence, roughness disturbance, and dielectric
constant on the classification will be evaluated latter.) This
difference in scattering is identified by the proposed approach
and Wishart SPAN/H/A/α [31], but it is lost in H/α unless
we add a new boundary α = 25°. The adaptive approach thus
performs better in the partitioning of the low-entropy state.

Cloude and Pottier [9] gave some qualitative elucidations
on the physical scattering characteristics of Zi in H/α,
which have been investigated on many polarimetric radar data
sets [26]–[31], but potential misleading is also inevitable.
For example, both Z2 and Z4 are elucidated as vegetation
scattering but with different scattering randomness [9]. This
may mislead the inexperienced readers or users to identify
scatterers that ascribed to Z2 or Z4 as vegetation, oppugn the
results when Z2 or Z4 appears in the nonvegetation area [such
as the beach area and SoMa1 in Fig. 4(a)], and ignore the
fact that scatterers that give vegetation scattering are not all
vegetation scatterers. This obscurity is avoided in the proposed
approach by relating Zi to the canonical models, and a model-
based understanding of H/α is thus enabled. Moreover, it is
often difficult to demonstrate the physical characteristics of
Z1 and Z2 on the real polarimetric radar data set because
speckle and noise will result in biased parameter estimation,
particular in the high-entropy environments [44]. As illustrated

1SoMa denotes the South of Market. It is a dense urban area in San
Francisco. Different from other region of San Francisco, streets here are
neither horizontal nor vertical but are about 40° tilted [43]. Such planning
leads to a misalignment (azimuth tilting) between the vertical wall of building
and the azimuth direction of radar in view of the fact that building is generally
constructed along the street. Then, the normal of wall will be no longer within
the radar incidence plane, and target orientation is created. Moreover, azimuth
tilting aggravates the scattering complexity and randomness, and leads H/α
and the developed classification to attribute the majority of SoMa to the high-

entropy classes Z1 and Z2 or and . This cannot be compensated by any
unitary deorientation method for entropies H and Hs that are roll-invariant,
which will be presented in Section V-C. SoMa becomes a challenge for polari-
metric processing procedures for its predominant volume/vegetation scattering
comparable to that of vegetation. We can resort to mixed scattering models
T R I S and T R AS to avoid the misinterpretation of SoMa as vegetation, but
it is really difficult for us to further tell the difference between the high-
entropy vegetation and azimuth-tilted buildings using the polarimetric data
alone unless radar interferometry is incorporated for “entropy control” [3].

in Fig. 4(a) and (b), classes and in the proposed approach
can achieve very consistent results as zones Z1 and Z2 in
H/α. As also listed in Table II, 97.48% of and 89.18% of

are registered into Z1 and Z2. Such consistency enables us
to relate Z2 to T R AS and Z1 to T R I S, which provides a novel
understanding of Z1 and Z2. Cloude and Pottier [9] interpreted
Z2 as the scattering from a cloud of anisotropic needle-like
particles. This elucidation just depicts how T R AS is modeled
by Freeman and Durden [12], and we can hence use T R AS
to characterize Z2. Z1 is identified as the multiple scattering
of high entropy, and Cloude and Pottier [9] pointed out that
it is still possible to distinguish double bounce mechanisms
in Z1. The consistency of 97.48% between and Z1 suggests
that T R I S can model Z1 perfectly. T R I S signifies the random
isotropic scattering, which, however, indicates that it is difficult
to further distinguish scattering mechanisms in Z1.

B. Comparison With the Chen Classification

The H/α classification begins with the assumption that
there is always a dominant mean scattering u0 in each cell [9].
This is avoided in both Chen and the developed classifications
in terms of the combination of major scattering and minor scat-
tering. It should be noted that the major and minor scatterings
are not the major and minor components of scattering T but
the dominant and subdominant scattering mechanisms of T .
They provide an accurate description of scattering T from two
different points of view and enable the proposed approach’s
nice discrimination, as demonstrated in Section V-A.

The Chen classification only uses the canonical single
scatterings T S, T D , and T R because Chen similarity measures
the similarity between a mixed scattering and a canonical
scattering [33]. T S, T D , and T R are used to depict all the
three states, and the states are delimited by the state boundaries
H = 0.36 and H = 0.855. By analyzing the scatterings of
San Francisco data, Chen et al. [35] developed a statistical
method to determine the boundaries: the histogram of H is
first achieved and filtered for a smoothed curve, and the
inflection points of the curve are then located and identi-
fied as the boundaries on the H -axis. Nevertheless, potential
nonrobustness arises when we use the method to the ESAR
data of Oberpfaffenhofen. First, the result of the method is
sensitive to the number of histogram bins and size of smooth-
ing filtering used in the construction of the curve. Second,
it is impossible to ensure that just two prominent inflection
points (corresponding to the two H boundaries) are always
located. Far more than two inflection points are identified
although the curve is sufficiently smoothed, and we have no
idea to make a selection among them. Hence, the statistical
method fails on this data set. To make the Chen classification
still available, we tried to adopt borders H = 0.36 and
H = 0.855 obtained on San Francisco to Oberpfaffenhofen,
but unacceptable classification is achieved. The blue triangle
in Fig. 7(b) is a lawn (lawn2) that is relatively smoother
(0.36 < H < 0.5) than lawn1 (H > 0.5). It is discriminable
from lawn1 in Fig. 7(a) and (b) for H = 0.5 or its alternative
Hs = 0.31345 is used as the state border of low entropy and
medium entropy in H/α and the developed approach, but is
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indiscriminable if H = 0.36 is used. The changing entropy
statistics from data to data shows the data-dependent property
of the Chen classification. The random similarity generalizes
the Chen similarity to measure the similarity between two
mixed scatterings, and nine models are used in the developed
approach including five mixed canonical scatterings. Instead
of describing scattering T with all the models, we adopt a
correspondence principle by depicting T only with models
of the same state. This enables us an adaptive determination
of the state of T independent of a particular data, and a nice
alternative to the state delimitation of H/α is obtained. Hence,
we suggest using (9) or their H/α alternatives H = 0.5 and
H = 0.9 as the state borders in the Chen classification. And
the Chen classification of Oberpfaffenhofen in the following
just uses this delimitation.

Figs. 4(c) and 7(c) illustrate the Chen classifications of San
Francisco and Oberpfaffenhofen. These results are obtained
on the original data set without deorientation as the Chen
classification is susceptible to deorientation. Fig. 5(c) and the
third row of Fig. 6 further display the H/α mapping and
the α histogram of Fig. 4(c). Compared with that in H/α
and in the proposed approach, the high-entropy state in the
Chen classification is extended on the H -axis, as shown in
Fig. 5(c). Nevertheless, it is intactly identified as class R
in Fig. 6(i). Thus, the Chen classification cannot provide the
equivalent performance as H/α and the proposed approach in
discrimination of random anisotropic scattering and random
isotropic scattering.

The state of medium entropy in Fig. 5(c) is also prolonged
on the H -axis and is attributed into six classes, MSD, MSV,
MDS, MDV, MVS, and MVD in terms of C2

3 of T S, T D,
and T R . However, the classes cannot geometrically align this
state into three clear-cut zones such as Z3, Z4, and Z5 in H/α
and , , , , , and in the developed approach. We can
roughly find only two zones in Fig. 5(c), the upper zone MDS,
MDV, MVS, and MVD, and the lower zone MSD and MSV.
The upper zone corresponds to Z3, and this indicates that Z3
is classified into MDS, MDV, MVS, and MVD in the Chen
classification, while Z3 is attributed into , , , and in the
proposed approach. The percentage in Fig. 6 lists how many
pixels of the scene of San Francisco are classified into a certain
class. As listed in Fig. 6(h), MDS accounts for 22.72% but
MVS, MDV, and MVD only take up 2.1%, while the percents
for , , , and are more harmonious, they are 5.18%, 7.54%,
3.53%, and 6.65%, respectively, as illustrated in Fig. 6(e).
Thus, better urban discrimination is shown in Fig. 4(b) than
in Fig. 4(c). The lower zone corresponds to Z4 and Z5 while
Z4 and Z5 correspond to and in the proposed approach.
As listed in Fig. 6, Z4 and Z5 account for 14.78% and 6.76%
of the scene, while MSD and MSV take up 17.68% and 1.70%.
The majority of Z4 and Z5 are classified as MSD, and MSV is
only responsible for the minority. MSD and MSV thus cannot
enable the equivalent discrimination as Z4 and Z5, although
they can avoid the semantic obscure of Z4 and Z5. For
instance, we can still identify airport facilities in Fig. 7(a), but
such information is almost entirely lost in Fig. 7(c), let alone
further identify runway and parking apron from lawn like
and of the developed classification [Fig. 7(b)] do. All these

show the better performance of T R H , T RV , and T R D than
T S, T D, and T R in discrimination of scatterings of medium
randomness.

The extension of the high- and medium-entropy states
means the reduction of the low-entropy state on the H -axis
compared with that in H/α and the proposed approach.
LD, LV, and LS of the Chen classification divide the state of
low entropy into two zones, as given in Fig. 5(c). LD and LV
show the deoriented and oriented dihedral scatterings, and they
are correctly aligned to Z6 which reflects the low-entropy
dihedral scattering. Nonetheless, as indicated in Fig. 6(g),
LV accounts only 0.02% of San Francisco scene and is
disabled after deorientation. Thus, the partition of Z6 into
LD and LV is somewhat insignificant. LS corresponds to
Z7 and Z8, which signifies that we cannot extract dipole
scattering from surface scattering in the Chen classification,
let alone further divide it into the horizontal scattering — and

vertical scattering just as the proposed approach does. Thus,
the Chen classification cannot provide nice discrimination of
scatterings in low-entropy state.

C. Influence of Orientation

The influence of scattering orientation and the importance of
deorientation operation have been presented in Section III-C.
However, deorientation is unnecessary for H/α because H and
α are invariant to the unitary roll transform Uϕ [2], [9].

The entropy Hs in (7) can be further formulated as [36]

Hs = − log3



Tr(T T H )

(Tr(T))2

�
= − log3


 �3
i=1 λ2

i� �3
i=1 λi

�2

�
. (11)

Then, Hs relates only to the eigenvalues λi of T , thus is
also roll-invariant, and so is the partition of three states
in the developed approach. The first row of Fig. 8 dis-
plays the angle α histogram of each class of the developed
approach on the San Francisco scene with no deorientation,
and the deoriented counterparts are given in the second row of
Fig. 6. As expected, the three states take up 38.9%, 49.57%,
and 11.53% of the scene whether we perform deorientation
or not.

From the definition of random similarity in (3), one can
easily obtain

r
�
Uϕ TU H

ϕ , T c
� = r

�
T , Uϕ T cU H

ϕ

� 
= r(T , T c) (12)

which indicates that the random similarity r is not roll-
invariant, but we can obtain the deoriented r by just rotating
the canonical model T c. Hence, the r -based determination of
the 10 or 12 classes in the Chen classification or the developed
approach is roll-dependent. Deorientation has to be conducted
beforehand for the two classifications. The second row of
Fig. 8 also shows the α histograms of the Chen classification
on deoriented data with the oriented ones being given in the
third row of Fig. 6. Despite the importance, deorientation
will disenable classes LV, MSV, MVS, and MVD of the
Chen classification, as shown in Fig. 8, because rR will never
exceed rD after deorientation, as shown in the Appendix.
Rather than improving the performance, deorientation
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Fig. 8. Alpha angle histograms of (First row) adaptive classification (without deorientation) and (Second row) Chen classification (with deorientation) in
(First column) low-entropy state, (Second column) medium-entropy state, and (Third column) high-entropy state on the AIRSAR San Francisco data to evaluate
the influence of deorientation on the classifications. The percentage in the bracket summarizes how many pixels of the scene are attributed to a certain class.

degrades the Chen classification. Since model T R is incompe-
tent to describe the volume scattering and is also susceptible
to deorientation, it is eliminated from the list of nine canonical
models involved in the proposed classification. As formulated
in the Appendix, T11 term and SPAN of T are roll-invariant;
similarities rS , rR AS , and rRI S are thus also independent of

rotation, so are the high-entropy classes and , as shown
in Figs. 6(f) and 8(c). Similarity rD becomes large after
deorientation, as shown in (A6). As a result, increases
from 1.8% to 1.93%, as displayed in Figs. 6(d) and 8(a).
Then, the conservation of the state occurrence indicates the
decrease of other classes. As shown, ∫ decreases from 30.62%

to 30.53%, and the dipole scatterings and — are reduced
from 6.48% to 6.44%. The similar changes can also be
found in Figs. 6(e) and 8(b). After deorientation, the dihedral
scattering-related classes , , , and increase from 21.6%
to 22.9%, and the dipole scattering-related classes and
change from 27.97% to 26.67%. Hence, deorientation does
not disenable any class in the proposed approach, and the
resulted changes are gentle. Fig. 7(d) shows the classification
of Oberpfaffenhofen data with no deorientation. Comparing
with its deoriented counterpart in Fig. 7(b), one can find tiny
changes. A slightly clear change appears in the black rectangle
of Fig. 7(b) which reflects some buildings. They are attributed
as and and are indiscriminable from the surroundings
in Fig. 7(d), but as in Fig. 7(b) which identifies not only the
potential minor ground-wall dihedral scattering but also the

major vertical wall scattering .

D. Influence of Speckle Filtering

Like H/α, the developed classification also needs incoher-
ent averaging of a number of neighboring pixels to avoid the
biased classification. As for H/α, Lopez-Martinez et al. [44]
and Lee et al. [45] have investigated the effects of speckle
filtering on it and suggested using 7 × 7 (5 × 5) or larger aver-
aging window for the estimation of H (α). Lee and Pottier [2]
further indicated that the H estimation from RLF7 performs
even better than that from boxcar filter although RLF7 cannot
offer enough averages for reliable estimate. An evaluation of
the effect of RLFn on the proposed approach is simply given
here. The first row of Fig. 9 shows the classifications of San
Francisco when RLF1 (with no filtering), RLF3, RLF5, and
RLF9 are used as filter, respectively (and deorientation should
also be carried out after the filtering). The corresponding H/α
classifications are also displayed in the second row of Fig. 9 for
comparison, while the performance of the two classifications
under RLF7 has been displayed in Fig. 4. Although the data
set has been averaged with 4 × 4 window in the estimation
of coherency matrix, such filtering is insufficient for target
classification, because classifications in Fig. 9(a) and (e) are
still heavily speckled. This prevents us from bridging the
classification to the ground truth. The classifications are greatly
improved by simply averaging the data with RLF3, RLF5,
RLF7, or RLF9. Such improvement is mainly attributed to
the increase of scattering randomness. The green-coded Z1

and as well as the dark green-coded Z2 and become
much clearer from RLF3 to RLF5, and further to RLF7. This
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Fig. 9. Influence of refined Lee speckle filtering with (First column) 1× 1 (i.e., without filtering), (Second column) 3 × 3, (Third column) 5× 5, and (Fourth
column) 9 × 9 large aligned windows on (First row) adaptive classification and on (Second row) H/α classification. It is shown that the influences of speckle
filtering on the two classifications are comparable and consistent. The existing knowledge on the influence of filtering on H/α can be extended to the adaptive
classification.

just indicates the increase of entropy, i.e., Hs increases with
the increasing size of averaging. However, besides introducing
the square imprint, the effects of filtering on the scattering
similarity parameters listed in Table I are relatively lim-
ited. The similar finding on H and α has been presented
in [44] and [45]. Therefore, the influences of speckle filter-
ing on the proposed approach and on H/α are comparable
and consistent. The existing knowledge on the influences of
filtering on H/α can be extended to the proposed classifi-
cation naturally. Larger window, of course, provides better
estimation (although the changes from RLF7 to RLF9 are
relatively small), but at the risk of degrading spatial resolution.
RLF7 is sufficient for the developed approach if we take the
compromise between resolution and parameter estimation into
consideration.

E. Influence of Incidence Angle

The polarimetric backscattering of a radar target with actual
geometric and material parameters is sensitive to the inci-
dence angle. As a result, the coherency matrix T is strongly
dependent on the variation of incidence angle, so are the
random similarity r and entropy Hs as well as the results of
adaptive classification, although the involved canonical models
in Table I are constant. Here, we simply adopt the randomly
rough surface to exemplify the influence of incidence angle
on the proposed approach. The small perturbation model
(or Bragg model) fails to describe the cross-polarization
and depolarization effects of random surface scattering [3].
To introduce roughness disturbance, the extended Bragg
(X-Bragg) model is developed by randomly orienting the
Bragg surface around LOS [29]. Then, the coherency

matrix T X of X-Bragg surface is of the following reflection
symmetry [29]:

T X =
⎡
⎣ a bsinc(2�) 0

b∗sinc(2�) c(1 + sinc(4�)) 0
0 0 c(1 − sinc(4�))

⎤
⎦

(13)

where sinc (·) is the Sinc function; � ∈ [0, 90°] shows the
width of the random distribution of local orientation which
models the amount of roughness disturbance [29]. Coefficients
a, b, and c are given by the Bragg scattering matrix elements
RHH and RVV⎧⎪⎪⎨

⎪⎪⎩
a = |RHH + RVV|2
b = (RHH + RVV)(RHH − RVV)∗

c = 1

2
|RHH − RVV|2

(14)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RHH = cos θ −



ε − sin2 θ

cos θ +



ε − sin2 θ

RVV = (ε − 1)(sin2 θ − ε(1 + sin2 θ))

(ε cos θ +



ε − sin2 θ)2

(15)

where θ is the angle of incidence and ε is the dielectric con-
stant which is closely related to the volumetric soil moisture
content [46]. Combine (6), (7), and (13), the entropy Hs of
T X (i.e., Hs X) is then formulated as

Hs X = − log3

�
a2+2c2(1 + sinc2(4�))+2|b|2sinc2(2�)

(a + 2c)2

�
.

(16)
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Fig. 10. Influence of the angle of incidence θ , width of distribution �, and dielectric constant ε of X-Bragg surface on (First row) entropy Hs and
on (Second row) adaptive classification. As shown, Hs and the classification result are influenced by θ , �, and ε. For convenience, we denote them as
HsX (θ,�, ε) and C(θ,�, ε), respectively. The output of C is an RGB color displayed in Fig. 1(b) which corresponds to one of the 12 classes. (a)–(c) Images
of HsX (θ,�, 30), HsX (θ, 30°, ε), and HsX (50°,�, ε), respectively. (d)–(f) Results of C(θ,�, 30), C(θ, 30°, ε), and C(50°,�, ε), respectively.

Hs X depends on the three factors θ , �, and ε, and is denoted
as a function Hs X(θ,�, ε). To qualitatively investigate the
influence, Fig. 10(a)–(c) shows the images of Hs X(θ,�, 30),
Hs X(θ, 30°, ε), and Hs X(50°,�, ε), respectively. It is shown
that Hs X increases with the increase of θ , �, and ε. When
incidence angle θ is low, Hs X almost has no change with the
increase of � and ε but stays in a very low state, and so is
the case of low roughness surface (i.e., � is small). However,
this does not hold for the case of low dielectric constant ε.
Compared with θ and �, ε imposes gentle influence on Hs X .
Hs X bears much more sensitive to the change of θ and/or �,
particularly when θ or � is high. It oversteps the border Hs =
0.31345 in Fig. 10(a) and (c), and shows the state transition
from low entropy to medium entropy. Such transition does not
arise in Fig. 10(b) because the surface here is relatively smooth
with � = 30°. But Hs in any case does not overstep the border
Hs = 0.82935 between the states of medium and high entropy,
i.e., high-entropy surface scattering does not exist. This finding
is consistent with H/α and the proposed classification.

The impacts of θ , �, and ε on the similarity parameters
listed in Table I are complex: the constant rRI S is independent
of θ , �, and ε; rS and rR AS are only independent of �2;
while the rest are dependent on all. Instead of evaluating

2Therefore, rS and rR AS enable a separation of roughness and moisture
effect. Nonetheless, only rS may be useful for soil moisture estimation [29],
in view of the fact that high-entropy surface does not exist.

the influence on each r , here, we directly investigate the
influences of θ , �, and ε on the final classification. We also
denote this as a function C(θ,�, ε), where the output of C is
an RGB color defined in Fig. 1(b) which corresponds to
one of the 12 classes. Fig. 10(d)–(f) displays C(θ,�, 30),
C(θ, 30°, ε), and C(50°,�, ε), respectively. Three surface-

related classes , ∫, and are correctly identified by the

approach: and ∫ represent two different kinds of low-entropy
surface scatterings, while shows the medium-entropy sur-
face scattering. The identification of only depends on Hs X

since in Fig. 10(d) and (f) just corresponds to the high-
entropy area in Fig. 10(a) and (c), while the discrimination

of from ∫ in low entropy is determined by the similarities r .

Both classes and ∫ can be observed from Fig. 10(d)–(f). Thus,
the determination of scattering mechanism is also influenced
by all the parameters θ , �, and ε. These just exemplify a
physical reality of polarimetric radar targets: the polarimetric
classification result of the targets is determined not only by
the targets themselves, but also by the observation geometry
of radar. This should be kept in our mind when we use the
classification for any advanced application.

VI. DISCUSSION

Characterizing the complex scattering using the combination
of canonical models is a promising method to the PolSAR data
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classification. Unlike the model-based target decompositions
in which the canonical models are serially applied to pursuing
the components of the complex scattering, the canonical
models in the proposed approach are used parallel to pursue
the scattering mechanism of the complex scattering. Hence,
instead of solving the balance equations for the scattering
power of each canonical model, the contribution of each
canonical model is determined by the simple similarity
measurement in the proposed approach. This presumes a
flexible scattering characterization and allows us to try
different canonical models parallelly. For example, all the
three models T R H , T RV , and T R D are utilized to characterize
the scattering mechanism of a medium-entropy scattering in
the proposed classification, but only one of them is identified
when decomposing a scattering because only one volume
component is allowed in the extended four-component decom-
position [14]. Thus, the canonical scattering models in the
proposed approach are not competitive but cooperative. They
together provide us a good characterization of the complex
scattering.

The eigenvector-based decomposition and the model-based
decomposition constitute two main branches of the polari-
metric target decomposition approaches [2]. As a hybrid,
the developed approach adopts the canonical scattering
models widely used in the model-based decomposition to
obtain a target classification consistent with H/α, and
provides us a novel improvement and understanding of
H/α from the model-based point of view. The correspon-
dence principle is employed to adaptively identify the mod-
els in terms of entropy matching, which may be also
useful in model-based decompositions for parallel model
selection.

By incorporating the 12 classes into the techniques such
as fuzzy clustering [47], neural network [48], and fuzzy
neural network [49] by virtue of the complex Wishart distribu-
tion [50], the proposed approach can be used for unsupervised
terrain and land-use classification. The application to physical
information (such as soil moisture) retrieval will be conducted
in the future. The nice performance of the approach has also
been checked on other PolSAR data sets with a different
frequency and resolution.

VII. CONCLUSION

The eigenvector-based and model-based decompositions are
not independent of each other but can be integrated to enable
an adaptive classification of PolSAR images. Random simi-
larity is a useful tool for the parallel analysis of the complex
scatterings. The scattering similarity-based Chen classification
is susceptible to deorientation operation, and cannot enable
the equivalent discrimination as H/α although it can solve
certain obscures in H/α. The correspondence principle-based
adaptive selection of the canonical models enables a data-
independent determination of the scattering randomness states
and a competent alternative to the Cloude–Pottier deciding
of the states, which validates that the H borders in H/α
are not dependent on a particular data set. Entropy Hs is
a nice alternative to Cloude–Pottier entropy H for scat-
tering randomness depiction. Unlike the model-based target

decompositions, the canonical models are parallelly permu-
tated and combined in the classification to achieve a fine
depiction of the scattering mechanism based on the scattering
similarity, and the assumption in H/α that there is always
a dominant average scattering in each cell is also avoided.
The classification covers 12 classes with each one carrying
a unique symbol to reveal a specific scattering. It does not
depend on a particular data set, provides a model-based
improvement of H/α, avoids the hard thresholding and seman-
tic obscures in H/α, and presents better target discrimination
than H/α and Chen classification.

APPENDIX A

The deoriented coherency T � is expressed as

T � = Uϕ TUH
ϕ , Uϕ =

⎡
⎢⎣

1 0 0

0 cos 2ϕ sin 2ϕ

0 − sin 2ϕ cos 2ϕ

⎤
⎥⎦ (A1)

where Uϕ denotes the unitary roll transform. Bring (1)
into (A1)⎧⎪⎨

⎪⎩
T11 = T �

11

T �
22 = T22 cos2 2ϕ + Re(T23) sin 4ϕ + T33 sin2 2ϕ

T �
33 = T22 sin2 2ϕ − Re(T23) sin 4ϕ + T33 cos2 2ϕ.

(A2)

The rotation ϕ is obtained by minimizing T �
33

term [39]–[41]

∂T �
33

∂ϕ
= 0 ⇒ tan 4ϕ = 2Re (T23)

T22 − T33
. (A3)

Hence,⎧⎪⎪⎨
⎪⎪⎩

sin 4ϕ = 2Re(T23)

(T22 − T33)2 + 4(Re(T23))2

cos 4ϕ = T22 − T33

(T22 − T33)2 + 4(Re(T23))2.

(A4)

Combine (A2) and (A4), we have

T �
22 − T �

33 = (T22 − T33) cos 4ϕ+2Re(T23) sin 4ϕ

=



(T22 − T33)2 + 4(Re(T23))2 ≥ 0. (A5)

The deoriented similarity parameters r �
S , r �

D , and r �
R are

defined ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r �
S = r(T �, T S) = T �

11

T �
11 + T �

22 + T �
33

= T11

T11 + T22 + T33
= rS

r �
D = r(T �, T D) = T �

22

T �
11 + T �

22 + T �
33

= T �
22

T11 + T22 + T33
≥rD

r �
R = r(T �, T R) = T �

33

T �
11 + T �

22 + T �
33

= T �
33

T11 + T22 + T33
≤rR .

(A6)

Then, (A5) indicates that

r �
D ≥ r �

R . (A7)
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Therefore, four of the ten classes in the Chen classification,
i.e., LV, MSV, MVS, and MVD, will be disenabled after
deorientation.
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