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Nonlinear Split-Window Algorithms for Estimating
Land and Sea Surface Temperatures From
Simulated Chinese Gaofen-5 Satellite Data
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Abstract— This paper proposes a different thermal channel
combination split-window (DTCC-SW) method to estimate the
land surface temperature (LST) and sea ST (SST) from the
Chinese Gaofen-5 (GF-5) satellite thermal infrared (TIR) data.
A nonlinear combination of two adjacent channels CH8.20
(centered at 8.20 µm) and CH8.63 (centered at 8.63 µm) was
proposed to estimate LST for low-emissivity surfaces. A nonlinear
combination of two adjacent channels, CH10.80 (centered at
10.80 µm) and CH11.95 (centered at 11.92 µm), was developed
to estimate LST and SST for high-emissivity surfaces under
dry atmospheric conditions, and a nonlinear combination of
two channels, CH8.63 and CH11.95, was used to estimate LST
and SST for high-emissivity surfaces under wet atmospheric
conditions. The numerical values of the DTCC-SW coefficients
were obtained using a statistical regression method from synthetic
data simulated with an accurate atmospheric radiative transfer
model moderate spectral resolution atmospheric transmittance
mode 5 over a wide range of atmospheric and surface condi-
tions. The LST (SST), mean emissivity, and atmospheric water
vapor content were divided into several tractable subranges to
improve the fitting accuracy. The experimental results and the
preliminary evaluation results showed that the root-mean-square
error between the actual and estimated LSTs (SSTs) is less than
0.7 K (0.3 K), provided that the land surface emissivities are
known, which indicates that the proposed DTCC-SW method
can accurately estimate the LST and SST from the GF-5 TIR
data.

Index Terms— Different thermal channel combination split-
window (DTCC-SW), Gaofen-5 (GF-5), land surface tem-
perature (LST), sea surface temperature (SST), thermal
infrared (TIR).

I. INTRODUCTION

SURFACE temperature (ST) is a critical parameter in the
physical processes of the earth’s surface energy budget and

water cycle from local to global scales [1], [2]. Knowledge of
the sea ST (SST) and land ST (LST) provides information on
the temporal and spatial variations of the surface equilibrium
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state and is of fundamental importance in many applications,
such as oceanography, global climate studies, geology, hydrol-
ogy, and vegetation monitoring [3]–[7]. It is, consequently,
crucial to have access to reliable estimates of SST and LST
over large spatial and temporal scales, such as satellite obser-
vations in the thermal infrared (TIR) channels [8]–[10].

Estimations of SST and LST from satellite TIR data have
been ongoing for several decades, and a large number of meth-
ods have been proposed. Based on differential water vapor
absorption in two adjacent TIR channels at 11 and 12 μm,
McMillin [11] first proposed the so-called split-window (SW)
technique to estimate SST from satellite measurements with-
out any information about atmospheric profiles. Since then,
a variety of SW algorithms have been developed and modified
to successfully estimate SST [8], [12]–[15]. Encouraged by
the success of the SW technique, many efforts have been
made to extend the SW technique to estimate the LST since
the late 1980s. To date, various SW algorithms have been
developed for estimating the LST from multispectral data
observed by sensors onboard different polar-orbiting satellites
and geostationary satellites [16]–[24]. Li et al. [9] insightfully
reviewed the current algorithms and grouped the different
SW algorithms into two categories, including a linear SW
algorithm and a nonlinear SW algorithm, providing that the
land surface emissivities (LSEs) in both the SW channels are
known a priori. The linear SW algorithm expressed the LST as
a simple linear combination of the top of atmosphere (TOA)
brightness temperatures of two adjacent channels. The non-
linear SW algorithm was developed by adding a quadratic
term of the difference between brightness temperatures in two
adjacent channels to improve the LST retrieval accuracy for
wet and hot atmospheric conditions. More detailed information
is reported in [9].

The Gaofen-5 (GF-5), a polar-orbiting satellite of a series
of China High-resolution Earth Observation System (CHEOS)
satellites of the China National Space Administration, is sched-
uled to launch in 2018. It is configured with six payloads,
including a visible (VIS) and shortwave infrared hyperspectral
camera, a multiple spectral imager (MSI), greenhouse gas
detector, an atmospheric environment infrared detector at very
high spectral resolution, a differential absorption spectrometer
for atmospheric trace gases, and a multiangle polarization
detector. The mission of MSI is to collect land information
at high spatial resolution for disaster monitoring. The MSI
has a narrow swath (approximately 60 km) and observes the
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Fig. 1. Spectral response functions of four GF-5 TIR channels.

earth almost at nadir. It provides 13 channels that cover the
spectral range from VIS/near infrared (20-m spatial resolution)
to TIR (40-m spatial resolution), in which four TIR channels
are centered at 8.20 (CH8.20), 8.63 (CH8.63), 10.80 (CH10.80),
and 11.95 μm (CH11.95). Fig. 1 shows the spectral response
functions of the four TIR channels.

Currently, two algorithms reported in the literature have
been proposed to retrieve LST from the GF-5 TIR
data [25], [26]. Ye et al. [25] proposed a four-channel algo-
rithm to estimate the LST. The algorithm needs four channel
emissivities, four channel TOA brightness temperatures, and
the atmospheric water vapor content (WVC) as model inputs.
Note that more input parameters needed in a model will reduce
the robustness of the model. It is well known that accurately
determining the channel emissivity at the pixel scale from
satellite data is still problematic. The uncertainties of the four-
channel emissivities and WVC will decrease the LST retrieval
accuracy. In addition, the instrument noises that accompany the
four TIR channels will further enlarge the LST retrieval error.
Chen et al. [26] proposed a quadratic SW equation to retrieve
LST in which the constant was parameterized as functions
of the WVC, the channel mean emissivity, and the channel
emissivity difference for WVC less than 1 g/cm2 and WVC
larger than 1 g/cm2. As the authors expected, the proposed
method was very sensitive to instrument noise. Assuming
instrument noise of 0.2 K, 20% uncertainty in WVC and 1%
uncertainty in the channel mean emissivity and the channel
emissivity difference, the LST retrieval error reached 1.29 K.
In addition, more than 10% of the errors between the actual
and the estimated LSTs using the proposed method were larger
(or less) than ±1 K, with a maximum difference larger than
5 K or lower than −5 K.

Actually, the GF-5 satellite data have four TIR channels
and meet the requirements of the temperature and emissivity
separation (TES) method that can simultaneously retrieve LST
and LSE [20]. However, the TES method requires synchronous
atmospheric profiles to accurately correct the atmospheric
effect. Otherwise, inaccurate atmospheric corrections may
produce LST retrieval errors of 2–4 K for bare soil [27].
In addition, it exhibited significant errors in the estimates
of LSTs and LSEs for surfaces with low spectral contrast
emissivity (e.g., vegetation, water, and snow/ice) and under
hot and wet atmospheric conditions [28], [29].

Fig. 2. Channel effective emissivities of four GF-5 TIR channels.

The objective of this paper is to develop practical SW
algorithms for estimating LST and SST from the GF-5 MSI
TIR data. Section II introduces the data that are used in this
paper. Section III describes the development of the method to
estimate LST and SST from the simulated GF-5 TIR data.
The resultant LST and SST are presented in Section IV,
where the sensitivity analyses in terms of the instrument
noise, the uncertainty in the LSEs, and atmospheric WVC are
given. Section V provides preliminary evaluations with some
independent simulated GF-5 TIR data. Finally, the conclusion
is drawn in Section VI.

II. DATA

A. Spectral Library Data

Two spectral databases, one from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) University of
California at Santa Barbara (UCSB) emissivity library of
the MODIS LST group (http://www.icess.ucsb.edu/modis/
EMIS/html/em.html) and the other from Johns Hopkins
University (JHU) (http://speclib.jpl.nasa.gov/), are used. The
library includes spectra of rocks, minerals, lunar soils, ter-
restrial soils, man-made materials, meteorites, vegetation, and
snow and ice covering the VIS through TIR wavelength region
(0.4–14.0 μm). In total, 160 emissivity spectra consisting
of 109 soil/rock types, 31 vegetation types, 10 water types, and
10 snow/ice types are used in this paper. The emissivity spectra
are convolved with the spectral response functions of four
GF-5 TIR channels to obtain channel effective emissivities,
respectively. Fig. 2 depicts the corresponding channel effective
emissivities of four GF-5 TIR channels. The emissivity values
in channel CH8.20 range from 0.744 to 0.995, from 0.734 to
0.995 for channel CH8.63, from 0.819 to 0.995 for channel
CH10.80, and from 0.861 to 0.994 for channel CH11.95.

B. Atmospheric Profile Data

The latest version of the Thermodynamic Initial Guess
Retrieval (TIGR) database TIGR2002, constructed by the
Laboratoire de Meteorologie Dynamique and representing a
worldwide set of atmospheric situations (2311 radisoundings)
from polar to tropical atmospheres with varying water vapor
amounts ranging from 0.1 to 8 g/cm2, is used for developing
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the ST retrieval algorithm. Taking into account that the ST
retrieval only considers atmospheric variation in clear-sky
conditions, the profiles with relative humidity of one layer
greater than 90% or two consecutive layers greater than 85% in
TIGR2002 are discarded as this seldom happens under clear-
sky conditions. In addition, the profiles with relative humidity
at one layer within the first 2 km near the surface greater
than 80% are also discarded because such skies are usually
foggy. In total, 948 representative atmospheric situations are
used, consisting of 813 profiles with the atmospheric WVC
in [0, 2.5] g/cm2, 60 profiles with WVC in [2.5, 3.5] g/cm2,
49 profiles with WVC in [3.5, 4.5] g/cm2, 26 profiles with
WVC in [4.5, 6.5] g/cm2, and the air temperatures at the
bottom boundary vary from 231.25 to 314.16 K.

The six standard atmospheric profiles (tropical, midlati-
tude summer, midlatitude winter, subarctic summer, subarctic
winter, and US76) stored in the latest atmospheric radiative
transfer model moderate spectral resolution atmospheric trans-
mittance mode (MODTRAN 5) [30] are used to evaluate the
proposed LST and SST retrieval algorithms in this paper.

C. Simulated GF-5 Data

On the basis of the radiative transfer theory, for a cloud-free
atmosphere under thermodynamic equilibrium, the channel
radiance measured at the TOA in a TIR channel of the sensor
is given with a good approximation as [31]

Bi (Ti ) = εi Bi (Ts)τi + R↑
atm_i + (1 − εi )R↓

atm_iτi (1)

in which Ti is the channel brightness temperature observed in
channel i at the TOA, Bi is the Planck function, Bi (Ts) is the
radiance measured if the surface is a blackbody with ST Ts ,
εi is the channel emissivity in channel i , τi is the total
atmospheric transmittance along the target to sensor path in
channel i , R↑

atm_i is the thermal path atmospheric upwelling

radiance in channel i , and R↓
atm_i is the channel downwelling

atmospheric radiance in channel i .
MODTRAN5 is used with the inputs of 948 atmospheric

profile data to simulate atmospheric parameters: the total
spectral atmospheric transmittance τλ, the spectral thermal
path atmospheric upwelling radiance R↑

atm_λ, and the spec-

tral downwelling atmospheric radiance R↓
atm_λ. The channel

atmospheric parameters (τi , R↑
atm_i , and R↓

atm_i ) are determined
by convolving the spectral atmospheric parameters with the
spectral response functions of four GF-5 TIR channels.

To make the simulations more representative, the reasonable
variations of LST are varied in a wide range according to the
atmospheric temperature T0 at the bottom boundary layer of
the atmospheric profiles. That is, LST varies from T0 − 5 to
T0 + 15 K in steps of 5 K for T0 ≥ 290 K, and from T0 − 5
to T0 + 5 K in steps of 5 K for T0 < 290 K.

Then, for a given LST (Ts) in combination with the chan-
nel atmospheric parameters (τi , R↑

atm_i , and R↓
atm_i ) and the

channel effective emissivity εi mentioned earlier, the channel
brightness temperature (Ti ) at the TOA can be determined
according to (1) with the inverse of Planck’s law. In total,
517 760 different situations with Ts directly related to the
TOA brightness temperatures Ti (i = 1, . . . , 4) were obtained

for viewing zenith angle (VZA) equivalent to 0°. Taking
into account that the angular dependence of TOA radiance,
an LST retrieval algorithm should account for the effect of
satellite zenith angle [21], [23], [32]. However, note that the
GF-5 MSI TIR sensor observes the earth’s surface almost at
nadir, the effect of the VZA variation on the retrieval accuracy
is not considered in the development of the LST retrieval
algorithm.

To simulate the GF-5 satellite data observed over the sea
surface, 550 representative sea surface atmospheric profiles
under cloud-free skies are extracted from TIGR2002 database.
To broaden atmospheric variations to cover all possible real
situations, the SST varies from T0 − 5 to T0 + 5 K in steps
of 5 K for T0 ≥ 290 K, and from T0 − 3 to T0 + 3 K
in steps of 3 K for T0 < 290 K. Taking into account that
the sea surface emissivities (SSEs) are basically constants for
VZA less than 30° [33], [34], all seawater emissivity spectra
from the JHU and UCSB databases are convolved with the
spectral response functions of four GF-5 TIR channels to
obtain the channel effective emissivities. Then, a mean channel
emissivity is calculated for each TIR channel, i.e., 0.9817,
0.9830, 0.9866, and 0.9868 for channels CH8.20, CH8.63,
CH10.80, and CH11.95, respectively. In total, 1650 different
situations with SST directly related to the TOA brightness
temperatures Ti (i = 1, . . . , 4) are obtained for VZA = 0°.

III. METHODOLOGY

A. Development of LST Retrieval Algorithms

Wan [35] proposed a refined generalized SW (GSW) algo-
rithm for retrieving LST (Ts) from MODIS data by adding
a quadratic term of the difference between two adjacent TIR
channels, written as

Ts = a0 +
(

a1 + a2
1 − ε̄

ε̄
+ a3

�ε

ε̄2

)
Ti + Tj

2

+
(

a4+a5
1−ε̄

ε̄
+a6

�ε

ε̄2

)
Ti −Tj

2
+a7(Ti −Tj )

2 (2)

with ε̄ = (εi + ε j )/2 and �ε = εi − ε j ,
where Ti and Tj are the TOA brightness temperatures

measured in channels i and j , respectively; εi and ε j are
the LSEs in channels i and j , respectively; ε̄ is the averaged
emissivity; �ε is the emissivity difference between the two
adjacent channels; and ak (k = 0, 1, . . . , 7) are unknown
coefficients.

Wan and Dozier (1996) [18] divided the averaged emissivity,
atmospheric WVC, and atmospheric ST (T0) into several sub-
ranges for improving the fitting accuracy. To make the GSW
algorithm more practical, Tang et al. [23] proposed to use
an approximate LST, replacing T0 in the determination of the
coefficients. For different values of the numerical experiments,
in order to improve the accuracy of the retrieval LST, the aver-
aged emissivities are divided into two groups: one group with
averaged emissivity ε̄ less than 0.96 (low emissivity group)
and the other with ε̄ larger than 0.94 (high emissivity group).
The WVCs are divided into six subranges with an overlap
of 0.5 g/cm2: [0, 1.5], [1.0, 2.5], [2.0, 3.5], [3.0, 4.5], [4.0, 5.5],
and [5.0, 6.5] g/cm2. Ts is divided into five subranges with an
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overlap of 5 K: Ts ≤ 280, 275 ≤ Ts ≤ 295, 290 ≤ Ts ≤ 310,
305 ≤ Ts ≤ 325, and Ts ≥ 320 K. Then, the coefficients
ak(k = 0, 1, . . . , 7) in (2) are obtained through a statistical
regressions method for each subrange.

In practice, estimating LST from the actual satellite data is
conducted in two steps. First, an approximate LST is estimated
using (2) with the coefficients derived for the entire range
of LST, provided that the subranges of the emissivity and
WVC are known; then, a more accurate LST is estimated
again using (2), but with the coefficients corresponding to the
tractable subrange of LST, which is determined according to
the approximate LST obtained in the first step.

B. Development of SST Retrieval Algorithms

SST retrieval from the satellite TIR data was first proposed
using the SW technique in the 1970s [11]. Mostly, a linear
combination of two adjacent TIR channels was proposed to
develop the SW algorithm. Similar to LST retrieval, to improve
the retrieval accuracy of SST, particularly over hot and wet
atmospheric conditions, a nonlinear SW algorithm is proposed
to retrieve SST for GF-5 TIR data

Ts = b0 + b1
Ti + Tj

2
+ b2

Ti − Tj

2
+ b3(Ti − Tj )

2 (3)

where Ts represents the SST, Ti and Tj are the TOA bright-
ness temperatures observed over the sea surface, and bk

(k = 0, 1, . . . , 3) is a set of unknown coefficients.
Similarly, the simulated GF-5 TOA brightness temperatures

over sea surface are also divided into several tractable sub-
ranges for improving the fitting accuracy. Because the SSEs
are assumed to be constants in this paper, the subranges
are grouped as follows: 1) the WVCs are divided into four
subranges with an overlap of 0.5 g/cm2: [0, 2.0], [1.5, 3.5],
[3.0, 5.0], and [4.5, 6.5] g/cm2 and 2) Ts are divided into three
subranges with an overlap of 5 K: Ts ≤ 290, 285 ≤ Ts ≤ 300,
and Ts ≥ 295 K. Then, the coefficients bk(k = 0, 1, . . . , 3)
in (3) can be obtained through a statistical regressions method
for each subrange.

IV. RESULTS AND ANALYSIS

A. Estimation and Analysis of LST

As mentioned in Section I, GF-5 MSI has four TIR channels
with two groups of adjacent channels: CH8.20 and CH8.63 and
CH10.80 and CH11.95. To assess the retrieval accuracy of LST
estimated using the refined GSW algorithm, the LSTs are
estimated separately using each combination of the four TIR
channels. Fig. 3 shows the root-mean-square errors (RMSEs)
between the actual and estimated LSTs for the two emissivity
groups with different subranges for channel combinations of
CH8.20 and CH8.63, CH8.63 and CH10.80, CH8.63 and CH11.95,
and CH10.80 and CH11.95. Because the LST retrieval errors
are very significant using the combinations of CH8.20 and
CH10.80 and CH8.20 and CH11.95, those two combinations
are not considered in this paper. Taking into account that,
in reality, a lower LST is usually accompanied by less WVC,
for LST less than 280 K, the maximum WVC is less than
5.5 g/cm2. As such, there are 58 tractable subranges used in

Fig. 3. RMSEs between the actual and estimated LSTs for different tractable
subranges with different channel combinations of four GF-5 TIR channels.

this paper. As shown in Fig. 3, the numbered subranges below
29 belong to the low emissivity group, and the others belong
to the high emissivity group.

From Fig. 3, it is apparent that the combination of two
adjacent channels CH8.20 and CH8.63 is comparable with the
combination of channels CH10.80 and CH11.95 for estimating
LST using the refined GSW algorithm. All RMSEs are below
0.8 K for those two combinations. For low emissivity group,
the combination of CH8.20 and CH8.63 is better than the com-
bination of CH10.80 and CH11.95, where the RMSEs are below
0.5 K for low WVC conditions (WVC ≤ 3.5 g/cm2) and are
below 0.7 K for high WVC conditions (WVC > 3.5 g/cm2).
In addition, it is also apparent that the combination of channels
CH8.63 and CH11.95 can be used to retrieve LST with the
GSW algorithm. Particularly, for the high emissivity group and
high WVC conditions (WVC > 3.5 g/cm2), the combination
of CH8.63 and CH11.95 retrieves LST with the lowest RMSE
errors, and all RMSEs in subranges from 39 to 58 are
below 0.5 K. Consequently, the combination of channels
CH8.20 and CH8.63 is selected to retrieve LST for the low
emissivity group. For the high emissivity group, the combina-
tion of channels CH10.80 and CH11.95 is used to retrieve LST
if WVC ≤ 3.5 g/cm2, and the combination of channels CH8.63
and CH11.95 is used to retrieve LST for WVC > 3.5 g/cm2.
Hereafter, the different channel combination selections used in
this paper are called the different thermal channel combination
SW (DTCC-SW) method.

As an example, Fig. 4 shows the histogram of the difference
between the actual Ts and those estimated using the channel
combination of CH8.20 and CH8.63 for the low emissiv-
ity group with coefficients corresponding to the subranges
WVC ∈ [0, 1.5], Ts ≤ 280 K, and WVC ∈ [5.0, 6.5],
Ts ≥ 320 K, respectively. As shown in Fig. 4, the RMSE
is 0.44 K for very dry and cold atmospheres, and is 0.55 K
for very wet and hot atmospheres. Similar results are obtained
for the other 27 subranges, and all RMSEs are below 0.7 K.
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Fig. 4. Histogram of the difference between the actual Ts and those estimated
using the channel combination of CH8.20 and CH8.63 for the low emissivity
group. (a) For the subrange with WVC ∈ [0, 1.5] and Ts ≤ 280 K. (b) For
the subrange with WVC ∈ [5.0, 6.5] and Ts ≥ 320 K.

As far as the high emissivity group is concerned, Fig. 5(a)
shows one histogram of the difference between the actual and
the estimated Ts using the channel combination of CH10.80 and
CH11.95 for the subrange with WVC ∈ [1.0, 2.5] g/cm2 and
Ts ∈ [290, 310] K. As shown in Fig. 5(a), the RMSE is 0.27 K
and the maximum differences are within ±1 K. Fig. 5(b) shows
the histogram of the difference between the actual and the
estimated Ts using the channel combination of CH8.63 and
CH11.95 for the subrange with WVC ∈ [5.0, 6.5] g/cm2 and
Ts ∈ [290, 310] K. The RMSE is 0.38 K and the maximum
differences are within ±1.5 K. For the other 27 subranges,
similar results are obtained using the two combinations, and
all RMSEs are below 0.5 K.

B. Estimation and Analysis of SST

Similar to the LST retrieval, the four GF-5 TIR channels
are separately combined and the SSTs are retrieved using
each combination of the channels with the proposed SW
algorithm of (3), respectively. Since the lower LST is very few
accompanied by very high WVC, the subrange with LST less
than 290 K and WVC ∈ [4.5, 6.5] g/cm2 is not considered.
Therefore, there are 11 tractable subranges used in this paper.
Fig. 6 shows the RMSEs between the actual and estimated
SSTs for different tractable subranges with different channel
combinations of four GF-5 TIR channels. As shown in Fig. 6,
the numbered subranges 1–6 belong to the low WVC group
(WVC ≤ 3.5 g/cm2) and the others belong to the high WVC
group (WVC > 3.5 g/cm2).

From Fig. 6, it is apparent that channels CH10.80 and
CH11.95 constitute the best combination for estimating SST
using the proposed SW algorithm with all RMSEs below 0.3 K
for the low WVC group. The combination of channels CH8.63

Fig. 5. Histogram of the difference between the actual and estimated
Ts for the high emissivity group. (a) Using the channel combination of
CH10.80 and CH11.95 for the subrange with WVC ∈ [1.0, 2.5] g/cm2 and
Ts ∈ [290, 310] K. (b) Using the channel combination of CH8.63 and CH11.95
for the subrange with WVC ∈ [5.0, 6.5] g/cm2 and Ts ∈ [290, 310] K.

Fig. 6. RMSEs between the actual and estimated SSTs for different tractable
subranges with different channel combinations of four GF-5 TIR channels.

and CH11.95 is the best for estimating SST with all RMSEs
less than 0.34 K for the high WVC group. Consequently, the
combination of channels CH10.80 and CH11.95 is selected to
retrieve SST for the low WVC group, and the combination of
channels CH8.63 and CH11.95 is used to retrieve SST for the
high WVC group in this paper.

Fig. 7(a) shows the histogram of the differences between the
estimated and the actual SSTs using the channel combination
of CH10.80 and CH11.95 for all six subranges in the low WVC
group. The maximum difference is below 0.7 K and 97%
of the differences are within ±0.3 K. Fig. 7(b) shows the
histogram of the estimated and actual SST differences for the
channel combination of CH8.63 and CH11.95 for the other five
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Fig. 7. Histogram of the difference between the actual and estimated SSTs for (a) using the channel combination of CH10.80 and CH11.95 for the low WVC
group and (b) using the channel combination of CH8.63 and CH11.95 for the high WVC group.

TABLE I

LST RETRIEVAL ERRORS CAUSED BY INSTRUMENT NOISE (NE�T) FOR SIX SUBRANGES WITH ε̄ > 0.94 AND Ts ∈ [290, 310] K

TABLE II

SST RETRIEVAL ERRORS CAUSED BY INSTRUMENT NOISE (NE�T) FOR FOUR SUBRANGES WITH DIFFERENT WVCS AND SST > 295 K

subranges in the high WVC group. The maximum difference is
below 1.0 K and 82.6% of the differences are within ±0.3 K.

C. Sensitivity Analysis

Three main error sources related to the instrument
noise (NE�T), the uncertainty of LSEs, and the uncertainty of
WVC that influence the ST retrieval accuracy are taken into
account in this investigation.

1) Instrument Noise (NE�T): Noise-equivalent temperature
differences (NE�T) mainly come from the radiometric perfor-
mance of the instrument and influences the values of the TOA
brightness temperatures. The N�T is desigated as 0.2 K for
the four GF-5 MSI TIR channels. To assess the influence of
the instrument N�T on the ST retrieva, a Gaussian random
distribution of noises (totally 100 numbers) with a mean of
0 K and a standard deviation of 0.1 K is added to each of the
simulated GF-5 TOA brightness temperature. Then, the STs
are recalculated using the proposed DTCC-SW algorithm with

the noised TOA brightness temperatures. In addition, to assess
the significance of the influence, an N�T of 0.2 and 0.5 K
is also investigated in this paper. As an example, Table I lists
comparisons between the RMSEs of LSTs estimated using
the simulated TOA brightness temperatures without N�T and
those with N�T for the high emissivity group and LST ranging
from 20 to 310 K. From Table I, it is apparent that the LST
retrieval error increases as N� increases, and the influence
of NE�T on the LST retrieval error under dry atmospheres
is greater than under wet atmospheres. The maximum of the
RMSE difference is 0.34 K for WVC ∈ [0.0, 1.5] g/cm2 when
NE�T equals 0.5 K. However, when NE�T equals 0.2 K,
the maximum RMSE difference is 0.09 K for the subrange
ε̄ > 0.94, WVC ∈ [0.0, 1.5]g/cm2, and Ts ∈ [290, 310] K.

In addition, to assess the influence of the instrument NE�T
on the SST retrieval, Table II depicts comparisons of the
RMSEs estimated using the TOA brightness temperatures
with/without NE�T. The SST retrieval error also increases as
NE�T increases. Keep in mind that the proposed DTCC-SW
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TABLE III

LST RETRIEVAL ERRORS (RMSES) CAUSED BY THE UNCERTAINTY OF LSES FOR TWELVE SUBRANGES WITH Ts ∈ [290, 310] K

TABLE IV

LST RETRIEVAL ERRORS CAUSED BY THE UNCERTAINTY OF WVC FOR SIX SUBRANGES WITH ε̄ > 0.94 AND Ts ∈ [290, 310] K.
THE ARROW INDICATES THE RMSE CHANGE CAUSED USING INCORRECT COEFFICIENTS OF AN ADJACENT SUBRANGE

method uses the channel combination of CH10.80 and CH11.95
to retrieve SST for the low WVC group and the combination of
CH8.63 and CH11.95 for the high WVC group. It is interesting
that the influence of NE�T on SST retrieval error under wet
atmospheres is greater than under dry atmospheres for the high
WVC group. The maximum RMSE difference is 0.43 K for the
subrange WVC ∈ [4.5, 6.5] g/cm2 and Ts > 295 K. When the
NE�T equals 0.2 K, the maximum RMSE difference is 0.13 K
for the subrange WVC ∈ [4.5, 6.5] g/cm2 and Ts > 295 K.

2) Uncertainty of LSEs: Considering that the SSEs are
assumed to be constants in the development of the SST
retrieval algorithm, only the influence of the uncertainty of
LSEs on the LST retrieval is analyzed in this paper, assuming
that 1% uncertainty of LSEs is added to the averaged ε̄ and
the emissivity difference �ε. The LSTs are recalculated again
using (2). Table III gives comparisons of the LST retrieval
errors with/without the uncertainty of LSEs for 12 subranges
with the same LST variation range Ts ∈ [290, 310] K.
As shown in Table III, the influence of LSEs uncertainty on
the LST retrieval for the low emissivity group can be ignored
with a maximum difference of 0.04 K. However, the influence
for the high emissivity group is very significant, particularly
for the dry atmospheres with a maximum difference up to
1.36 K, where the LSTs are estimated using the combination
of channels CH10.80 and CH11.95. This indicates that the LSEs
should be known in priori for accurately estimating the LST
for surfaces with high emissivities under dry atmospheric
conditions.

3) Uncertainty of WVC: Note that the proposed DTCC-SW
method divides the WVC into six subranges with an overlap
of 0.5 g/cm2. The overlapped WVC can be divided into
two adjacent subranges. Specifically, the two subranges cor-
respond to two pairs of coefficients. As such, the effect of
the uncertainty of WVC on ST retrieval is mainly due to the
incorrect subrange selection of WVC. To analyze the effect of

TABLE V

SST RETRIEVAL ERRORS CAUSED BY THE UNCERTAINTY OF WVC
FOR FOUR SUBRANGES WITH Ts > 295 K. THE ARROW

INDICATES THE RMSE CHANGE USING INCORRECT

COEFFICIENTS OF AN ADJACENT SUBRANGE

WVC overlap on ST retrieval, the STs are recalculated using
the coefficients obtained for the adjacent subranges. Table IV
gives the LST retrieval errors caused by using incorrect
coefficients in adjacent subranges for the high emissivity group
and Ts ∈ [290, 310] K. The arrow implies that the RMSE will
change when the LST is estimated using incorrect coefficients
of an adjacent subrange. The results reveal that the RMSE
differences range from 0.04 to 0.48 K, and the maximum
occurs for the subrange WVC ∈ [4.0, 5.5] g/cm2 when using
the coefficients from the subrange WVC ∈ [5.0, 6.5] g/cm2.

It should be noted here that the proposed method uses the
channel combination of CH10.80 and CH11.95 to retrieve LST
for the low WVC group and the combination of CH8.63 and
CH11.95 for the high WVC group. No matter what the WVC
overlap [3.0, 3.5] is classified as, the LST will be retrieved
using the corrected coefficients of the subrange. As such,
the influence of the uncertainty of WVC on the retrieval of
LST is the least.

Table V gives the SST retrieval errors caused by using
incorrect coefficients in adjacent subranges for Ts > 295 K.
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Fig. 8. (a) Comparison and (b) histogram of the difference between the actual
LSTs and those estimated from independent GF-5 satellite data simulated
using the six standard atmospheric profiles of MODTRAN5 and the JHU and
UCSB emissivity spectra.

The results reveal that the RMSE differences vary from 0.05 to
0.49 K, and the maximum occurs for the subrange WVC ∈
[3.0, 5.5] g/cm2 when using the coefficients of the subrange
WVC ∈ [4.5, 6.5] g/cm2.

V. EVALUATIONS

Considering that the GF-5 satellite has not yet been
launched, some independent GF-5 satellite data simulated
using the six standard atmospheric profiles of MODTRAN5
and the JHU and UCSB emissivity spectra are used to prelim-
inarily evaluate the proposed DTCC-SW algorithm. Fig. 8(a)
shows a comparison of the actual LSTs and those estimated
using the proposed method. The comparison results show that
the LSTs are slightly overestimated when the WVC is greater
than 3.5 g/cm2 for all cases. However, overall, the bias and
RMSE are 0.37 and 0.58 K, respectively. Fig. 8(b) shows the
corresponding histogram of the differences between the actual
and estimated LSTs. As Fig. 8 shows, the maximum difference
is less than 2.0 K, and 87.6% of the differences are within
±0.7 K, indicating that the proposed algorithm is appropriate
for retrieving LST from the GF-5 satellite data.

In addition, the proposed SST retrieval algorithm is also
evaluated using the simulated GF-5 satellite data over the sea
surface. The six standard atmospheric profiles of MODTRAN5
and the constant emissivity of each channel are used for the
simulations. Fig. 9(a) shows comparisons of the actual SSTs
and those estimated using the proposed DTCC-SW algorithm,
and Fig. 9(b) shows the corresponding histogram of the differ-
ence. As shown in Fig. 9, the proposed DTCC-SW algorithm

Fig. 9. (a) Comparison and (b) histogram of the difference between actual
SSTs and those estimated from independent GF-5 satellite data simulated
using the six standard atmospheric profiles of MODTRAN5 and the constant
channel emissivities.

slightly overestimates the SSTs, particularly for high WVC
conditions. However, generally speaking, the retrieval accuracy
is encouraging. The bias and RMSE are 0.09 and 0.30 K,
respectively, which meet the requirements of the global cli-
mate change study that needs SST retrieval accuracy better
than 0.3 K.

VI. CONCLUSION

In this paper, a DTCC-SW method is proposed to estimate
ST from the CHEOS GF-5 satellite TIR data. To improve
the ST retrieval accuracy, a nonlinear channel combination
of CH8.20 (centered at 8.20 μm) and CH8.63 (centered at
8.63 μm) was proposed to estimate LST for low-emissivity
surfaces; a nonlinear combination of channels CH10.80 (cen-
tered at 10.80 μm) and CH11.95 (centered at 11.92 μm)
was developed to estimate LST and SST for high-emissivity
surfaces under dry atmospheric conditions; and a nonlinear
combination of channels CH8.63 and CH11.95 was used to
estimate LST and SST for high-emissivity surfaces under wet
atmospheric conditions.

On the basis of a radiative transfer theory, the pro-
posed DTCC-SW algorithm was developed using an accurate
atmospheric radiative transfer model MODTRAN5 with inputs
of the TIGR atmospheric profile database and the JHU and
UCSB spectral databases. The coefficients in the DTCC-SW
algorithm were derived using a statistical regression method
from numerically simulated GF-5 TIR data, which were
divided into several tractable subranges according to the ranges
of the mean emissivity, WVC, and ST.



6288 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 11, NOVEMBER 2018

Sensitivity analyses related to instrument noise, the uncer-
tainty in the LSEs, and atmospheric WVC were performed.
The results showed that the ST retrieval errors increased
as NE�T increased. The influence of NE�T on the LST
retrieval errors under dry atmospheres was larger than under
wet atmospheres, whereas the opposite result was obtained
for SST retrieval errors. Compared to LST retrieval without
NE�T, adding NE�T of 0.2 K resulted in a maximum RMSE
difference of 0.09 K, as well as 0.13 K for the SST retrieval.
Assuming that 1% uncertainty of LSEs was added to the
averaged ε̄ and the emissivity difference �ε, the influence on
the LST retrieval error could be ignored for the low emissivity
group with a maximum RMSE difference of 0.04 K. However,
the influence for the high emissivity group was very signif-
icant, particularly for the dry atmospheres with a maximum
RMSE difference up to 1.36 K. The uncertainty of WVC could
cause the LST retrieval errors of the RMSE differences that
ranged from 0.04 to 0.48 K, and from 0.05 to 0.49 K for SST
retrieval errors.

The experimental results showed that the RMSE between
the actual LSTs and those estimated using the proposed
DTCC-SW algorithm for low emissivity group was 0.44 K
under very dry and cold atmospheres, and 0.55 K for very
wet and hot atmospheres. For the high emissivity group,
the maximum RMSE was below 0.5 K. For SST retrieval,
the maximum RMSE was less than 0.3 K for the low WVC
group, and was 0.34 K for the high WVC group. Preliminary
evaluations with some independently simulated GF-5 TIR data
demonstrated that the bias and RMSE between the actual
and estimated LSTs were 0.37 and 0.58 K, respectively, and
those for SST were 0.09 and 0.30 K, respectively. Generally,
the proposed DTCC-SW method is appropriate for estimating
ST from the GF-5 satellite data, with an accuracy of 0.7 K for
LST retrieval and an accuracy of 0.3 K for SST retrieval.
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