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Abstract— Meteosat Third Generation (MTG) is the next
generation of European meteorological geostationary satellites,
set to be launched in 2021. Besides ensuring continuity with
Meteosat Second Generation imagery mission, the new series
will feature new instruments, such as the Lightning Imager (LI),
a high-speed optical detector providing near real-time lightning
detection capabilities over Europe and Africa. The instrument
will register events on pixels, where a lightning pulse generates a
transient in the acquired radiance. In parallel, signal variations
due to a number of unwanted sources, e.g., acquisition noise or
jitter movement, are expected to produce false events. The chal-
lenge for on-board and on-ground processing is, thus, to discard
as many false events as possible while keeping a majority of the
true lightning events. This paper discusses a chain of algorithms
that can be used by the LI for the detection of lightning and for
the filtering of false events. Some of these algorithms have been
developed in the framework of internal research and simulations
conducted by the MTG team at the European Space Agency on
an in-house LI simulator and therefore will not necessarily reflect
the ultimate operational processing chain. The application of the
chain on a representative scenario shows that 99.5% of the false
events can be eliminated while keeping 83.6% of the true events,
before generating the LI higher level data products. Machine
learning techniques have also been studied as an alternative
for on-ground event processing, and preliminary results indicate
promising potential.

Index Terms— Filtering, jitter, lightning, machine learning,
Meteosat Third Generation (MTG), Satellite Meteorology,
transient detection.

I. INTRODUCTION

EUROPE’s next fleet of meteorological geostationary satel-
lites, Meteosat Third Generation (MTG), is set to debut

from 2021 [1]. The new series, realized through a cooperation
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between EUMETSAT and the European Space Agency (ESA),
will comprise six spacecrafts: four MTG-I (imaging) and two
MTG-S (sounding) satellites.

In addition to ensuring continuity with the current Meteosat
satellite family, MTG-I satellites will fly the Lightning
Imager (LI), an instrument performing full disk observations of
lightning from the geostationary orbit (GEO). The LI products
will, amongst other purposes, be used to provide near real-
time monitoring and short-range forecast of severe weather
phenomena.

The LI will complement other systems dedicated to the
observation of lightning activity. Several on-ground systems,
such as ATDnet [2], make use of a network of sensor stations
detecting the electromagnetic field generated by a cloud-to-
ground discharge and apply arrival time difference calculations
to determine its location.

Optical lightning detection from space, which consists
in measuring top-of-atmosphere radiances, started as early
as 1995 with the optical transient detector (OTD) [3]. The OTD
was the precursor instrument of the Lightning Imaging Sensor
(LIS) [4] launched in 1997 and whose mission ended in 2015.
The LIS, on which the new generation of GEO lightning
sensors is based, is having its original flight spare installed
on the International Space Station (ISS) in 2017 [5]. In the
future, near global lightning detection coverage from GEO
will be ensured through the Geostationary Operational Envi-
ronmental Satellite R-series Geostationary Lightning Mapper
(GLM) [6] centered on the Americas, the Feng-Yun-4 Geosta-
tionary Lightning Imager [7] over Asia–Oceania territory and,
as discussed in this paper, the MTG LI covering Europe and
Africa.

The fundamental working principle behind the LI lightning
detection consists in triggering events on pixels where and
when a sudden increase of energy is measured over the
background radiance image. In addition to lightning pulses,
other sources, such as acquisition noise, jitter movements of
the instrument line of sight or high-energy particles will induce
signal variations that will trigger events. A succession of
on-board and on-ground filters is therefore needed to discard
the false events while keeping the true lightning information.

In this paper, we present algorithms for the data processing
of events generated by the MTG LI. Calibration and geoloca-
tion aspects are excluded from the scope of this paper. The
ideas reflected here are the result of internal research and sim-
ulations conducted by the ESA MTG team on an LI simulator
developed in-house. Therefore, the presented algorithms will
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Fig. 1. LI configuration with the four optical heads.

not necessarily be those which will be used for the operational
on-board and on-ground LI data processing chain.

The remainder of this paper is organized as follows.
Section II describes the main features of the LI and the pro-
posed algorithmic chain. The process of triggering lightning
events from the LI acquisitions is covered in Section III.
Section IV discusses the different sources of false events
and presents a number of suitable filters for on-board and
on-ground processing. A performance analysis is shown on
a representative simulation scenario. Section V explains how
machine learning concepts, such as decision trees and sup-
port vector machines (SVMs), could be used for improved
on-ground filtering. Finally, concluding remarks are drawn
in Section VI.

II. MTG LIGHTNING IMAGER

The LI will be mounted on-board the four MTG-I satel-
lites [8]. These three-axis stabilized satellites have a mass
of about 3600 kg and are designed to operate for 8.5 years
on the geostationary arc. Their main payload will be an
imaging instrument, the Flexible Combined Imager, which will
provide images of the Earth in 16 spectral channels between
0.44 and 13.3 μm [9].

The LI will measure radiances at cloud top and provide
a near real-time lightning (in-cloud and cloud-to-ground)
detection and location service. The instrument comprises four
optical heads in an envelope of 718 × 1200 × 1456 mm3,
as illustrated in Fig. 1, weighs about 100 kg and has an

Fig. 2. LI algorithmic chain as proposed in this paper. An image is
first acquired and fed to the detection algorithm, based on which events
are generated. The events are successively processed by on-board filters,
transmitted to the ground segment, and fed to on-ground filters and to a flash
clustering processor that will aggregate them to produce the flash products.
See Sections III and IV for a detailed description of the different blocks and
acronyms.

allocated bandwidth of 30 Mb/s toward the MTG platform.
The instrument design and the hardware on which the on-board
processing algorithms run are described in detail in [10].

In order to establish the MTG LI specifications, statisti-
cal studies have been conducted on the data sets of light-
ning pulses detected by the OTD, LIS, and Fast On-orbit
Recording of Transient Events [11] instruments. A lightning
pulse is produced by an electric discharge within or below
a cloud. The strongest emission features are produced by
a triplet of neutral oxygen lines in the near infrared [12].
The released photons are transported to the cloud surfaces
by scattering. The resulting lightning optical signal at the top
of atmosphere can be described as a transient phenomenon
with an average duration of 0.6 ms and an average footprint
of 100 km2 [13], [14].

The LI aims to measure lightning pulses with radi-
ances as low as 7 mW/(m2sr) during night conditions and
17 mW/(m2sr) in day conditions on top of clouds. The
instrument has been designed as a high-speed (acquisi-
tion frequency of 1000 Hz) event detector operating in
a 1.9-nm-wide spectral window centered on 777.4 nm. The
spatial sampling is 4.5 km at subsatellite point and the LI will
contain 4.7 million pixels, divided into the four detectors, one
for each of the separate optical heads.

Because of the high acquisition frequency, the high num-
ber of pixels, and the limitations on the data rate to the
ground station, the data processing of the LI differs from
that of most imagers. Fig. 2 shows a diagram of the on-
board and on-ground processing chain, considered in this
paper, ignoring calibration and geolocation aspects. At each
time frame of 1 ms, the radiance is acquired and lightning
events are triggered where the detector reading has exceeded
a certain threshold. The information related to the events is
then successively processed by on-board filters, transmitted to
the ground, and further processed by on-ground filters. The
goal of these filters is to eliminate as many false events as
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Fig. 3. RTEP. This detection algorithm monitors, on each pixel, the signal acquired at a frequency fs of 1 kHz. For each integration period, the delta radiance
is calculated by subtracting the background estimate from the pixel signal. An event is triggered at each time step for each pixel, where the delta radiance is
higher than an adaptive threshold τ1, which is a function of the background estimate. The delta radiance is also used to update the background estimate via
an IIR filter. Adapted from [17].

possible while keeping a high number of true events so as to
be able to detect, at the end of the chain, as many lightning
pulses as possible. Without these filters, the thresholds used
in the detection stage should be raised to limit the number of
false events, hence reducing the sensitivity of the instrument
to lightning pulses of weak energy.

The pixel-level events that have not been discarded at that
stage are then fed into a flash clustering (FC) processor. The
principle of this processor consists in aggregating adjacent
events occurring during the same time frame into groups, and
in further consolidating groups that are in close temporal and
spatial proximity to each other to form flashes [15]. The flashes
are the primary science data product for most users.

III. LIGHTNING DETECTION

From the point of view of the instrument, a lightning event
will appear as a transient signal, i.e., a sudden increase in the
measured energy, over a background slowly varying due to the
evolution of sun illumination and cloud movements. The role
of the real-time event processor (RTEP) [16] is to read, for
each pixel, the signal acquired during the integration frame
and to trigger lightning events based on this information. The
working principle of this algorithm is illustrated in Fig. 3.

After acquiring the signal L collected on the pixel during the
integration frame, the latest estimate of the background L̂ is
subtracted to determine the delta radiance �L, which is
defined as the signal that could have been caused by a lightning
pulse

�L[n] = L[n] − L̂[n]
where n is the time frame number.

This delta radiance is then compared to an adaptive thresh-
old τ1, which is a function of the estimated background at
that time frame. For every integration period during which the
threshold is exceeded, an event is triggered

if �L[n] > τ1(L̂[n]) → trigger event.

The determination of the proper threshold level is a trade-
off between being sufficiently low to trigger true events from
weak lightning pulses and being sufficiently high not to trigger
too many false events due to noise sources. The adaptation of
the threshold to the estimated background ensures a constant
expected false event rate due to acquisition noise when the
background scene illumination varies. The brighter the back-
ground is (e.g., during the day), the higher the noise will be.
Consequently, at night, the threshold can be lowered, which
allows the LI to be able to detect weaker lightning pulses.

The background estimate is updated after each integration
period via an infinite-impulse response (IIR) filter. The update
law can be tuned with the parameter K to set the rate at which
the estimator should follow variations in the signal:

L̂[n + 1] = L̂[n] + �L[n]
K

.

Once triggered, the events are passed to the successive on-
board filters. For each event, the information transmitted by the
RTEP contains the coordinates of the triggering pixel, the time
frame number during which it happened, the detector readings,
and the background estimate for a 3×3-pixel window centered
on the triggering pixel.

IV. FALSE EVENT FILTERING

Other sources than lightning can produce signal variations
that will be wrongly recognized as such. Filters can be
implemented to discard the false events generated by these
noise sources.

The use of efficient filters is critical to have an instrument
able to detect lightning pulses of low intensity. Indeed, in order
to be sensitive to weak lightning signals, low detection thresh-
olds have to be used in the RTEP. This results in the generation
of an increased number of false events, which need to be
filtered out.

Since the number of false events can be significantly higher
than the number of true events, and since the downlink
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Fig. 4. Jitter movement creating a transient signal. Initially, at time t0,
the pixel FOV is only observing a dark scene (i.e., the sea). At time t1,
the jitter movement of the line of sight has moved the FOV toward a bright
element (i.e., a cloud), increasing the signal acquired on the pixel. At time t2,
the FOV has moved in the opposite direction and the signal has decreased.
These jitter-induced signal variations can be mistaken for a lightning event.

bandwidth allocated to the LI is limited, a part of the filtering
has to be done on-board the satellite, where the processing
power is limited. The additional on-ground filters, applied
to the remaining events sent to Earth, will benefit from
more powerful hardware equipment to realize more elaborate
calculations and further reduce the number of false events
before reaching the FC processor.

A. Sources of False Events

In order to design efficient filters for false events, it is
important to understand their origin. The two main sources
have been identified as the random acquisition noise and the
jitter movements of the line of sight.

In this context, acquisition noise refers to random phenom-
ena capable of provoking a sudden increase in the radiance
measured over an integration period, such as the shot noise,
read-out, or quantization noise. It is worth noting that the shot
noise is proportional to the background energy, therefore this
type of noise is larger during the day when the observed scene
is brighter.

The other main contributor is the jitter movements of the
line of sight when observing highly heterogeneous scenes
(e.g., coastlines or cloud edges). The LI is mounted on
a satellite that can be affected by microvibrations coming
from sources external to the instrument, such as the reaction
wheels or a cryocooler. The spectrum of the vibrations may
contain high frequencies, which would result in the back-
ground estimator not being able to follow the induced signal
variations. A possible scenario of a false event induced by jitter
is illustrated in Fig. 4. The field of view (FOV) of a pixel is
initially (t0) centered on a dark background (e.g., sea). At the
next time step (t1), the microvibration affecting the line of
sight of the instrument shifts the pixel FOV toward a nearby
brighter scene element (e.g., cloud), creating an increase in the
measured pixel radiance that could be mistaken for a lightning
event. This type of false event may occur when a high contrast
scene is observed, i.e., under daylight conditions, not during
the night when the scene will be uniformly dark.

Other sources will be able to produce transients in the
acquired signal, including high-energy particles hitting the

Fig. 5. SDTF. The central pixel (i.e., pixel 5) has triggered an event due to
the presence of a lightning pulse (orange circle). Since the pulse is bigger than
the pixel’s size and not centered on the central pixel, some energy will also
be found on the neighboring pixels (i.e., pixels 1–4 and 6–9). The CNDR is a
quantity defined to collect the sum of the delta radiances from the neighboring
pixels.

detector array, random telegraphic signals (RTSs), stray
light, or sun glint. When considering the low detection thresh-
olds used for the LI, simulations have shown that these
phenomena are secondary contributors to the production of
false events. Specific algorithms to tackle these sources are
foreseen but are beyond the scope of this paper.

B. On-Board Filters

The on-board filters are the first filters in the chain
(see Fig. 2). They will be fed with the events registered by
the RTEP. Their purpose is to reduce the large amount of
data coming from the detection step in order to fit within the
bandwidth of the communication link to the ground station.
The processing power available on-board being limited, these
filters must be designed with simple, fast, and yet very
discriminating decision criteria.

1) Single-Detected-Transient Filter: The rationale of the
single-detected-transient filter (SDTF) [10] is that the FOV
of the pixels is small enough so that a lightning pulse is likely
to illuminate multiple adjacent pixels, as shown in Fig. 5. The
cumulative neighboring delta radiance (CNDR) is defined as
the sum of the delta radiances of the eight neighboring pixels
surrounding the pixel having triggered an event and serves,
therefore, as a measure of the pulse energy not contained in
the central pixel

CNDR =
9∑

i=1,i �=5

�Li

where i indexes the pixels according to the notation introduced
in Fig. 5.

The CNDR of each event is then compared to a threshold τ2,
which is a function of the average estimated background of
the neighboring pixels

if CNDR < τ2

⎛
⎝1

8

9∑
i=1,i �=5

L̂i

⎞
⎠ → discard event.
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Fig. 6. GF. Distribution of true event concentration according to the CNDR
and the SG of events. False events tend to have a high SG and low CNDR.
Dashed line: separation curve of the GF, events above this curve are considered
false events and are therefore discarded. Data are extracted from the test case
simulation described in Section IV-D.

This filter is aimed at eliminating false events due to
acquisition noise. Indeed, for these events, the random noise on
the central pixel is strong enough to trigger an event. But, since
this noise is not spatially correlated, it is unlikely that it would
trigger high delta radiances on neighboring pixels during the
same integration time frame. These events will therefore have
a low CNDR. Most single false events created by high-energy
particles and RTS will also be removed by the SDTF.

2) Gradient Filter: The gradient filter (GF) is designed
to discard false events due to jitter movements affecting the
instrument. Jitter-induced false events appear on heteroge-
neous scenes, such as coastlines or cloud edges (see Fig. 4).
The GF uses the Sobel gradient (SG) [18] as a tool to measure
the degree of heterogeneity of the background scene around
the pixel having triggered an event

SGx =
⎡
⎣
−1 0 1
−2 0 2
−1 0 1

⎤
⎦ �

⎡
⎣

L̂1 L̂2 L̂3

L̂4 L̂5 L̂6

L̂7 L̂8 L̂9

⎤
⎦

SGy =
⎡
⎣
−1 −2 −1
0 0 0
1 2 1

⎤
⎦ �

⎡
⎣

L̂1 L̂2 L̂3

L̂4 L̂5 L̂6

L̂7 L̂8 L̂9

⎤
⎦

SG =

√√√√√
⎛
⎝

3∑
i=1

3∑
j=1

SGxi j

⎞
⎠

2

+
⎛
⎝

3∑
i=1

3∑
j=1

SGyi j

⎞
⎠

2

(1)

where � denotes element-wise multiplication and the indexes
of L̂ follow the notation introduced in Fig. 5.

From simulations similar to the one described
in Section IV-D, it has been found that sorting events
in an SG versus CNDR domain provides a rather neat
distinction between true and false events, as shown in Fig. 6.
False events tend to have a high SG and a small CNDR. The
GF therefore implements a comparison between gradient and
CNDR

if SG > a · CNDR + b → discard event

where a and b are parameters obtained by logistic regression
of training data. The use of a higher order polynomial function

of CNDR would slightly increase precision but at the expense
of a higher computational cost.

This comparison criterion can be represented by a separation
curve (dashed line in Fig. 6) in the SG versus CNDR domain.
The position of this curve can be dynamically shifted (offset b)
to regulate the number of events exiting the filter. Since the
total number of events that the instrument can send to Earth is
constrained by the allocated bandwidth, the separation curve
is shifted downward when the number of incoming events
increases, in order to eliminate more events. When fewer
events are given as input to the filter, the curve is shifted
upward. Therefore, the GF allows to maximize the number of
true events kept, under the constraint of limited bandwidth.

C. On-Ground Filters

On-ground filters receive the limited number of events that
have not been discarded by the on-board filters and must
further reduce it to reach the specifications required by the
FC processor. Compared with the on-board filters, on-ground
processing can benefit from more expensive computations.

1) Jitter Reconstruction Filter: The purpose of the jitter
reconstruction filter (JRF) is to analyze the events received
on-ground to estimate a posteriori the jitter movements of the
instrument line of sight during the considered period of time.
Once the approximation of the jitter is known, it is possible
to remove the contribution of this perturbation from the delta
radiance of each event and reapply the detection criterion on
the remaining signal.

The delta radiance �L of an event can be broken down into
a contribution �L p coming from a lightning pulse (in the case
of a true event), a contribution �L j coming from the jitter
movements, and a contribution �Ln from other sources of
noise

�L = �L p + �L j + �Ln.

The jitter contribution �L j can be seen as the result of
a small-amplitude movement of the line of sight, projected
on North–South ( jNS) and East–West ( jEW) axes, over an
heterogeneous scene surrounding the central pixel

�L j ≈ ∂Lbkg

∂NS
· jNS + ∂Lbkg

∂EW
· jEW

where (∂Lbkg/∂NS) and (∂Lbkg/∂EW) are the derivatives of
the background scene seen by the instrument at the central
pixel in the North–South and East–West directions. The move-
ments jNS and jEW are the part of the jitter that has not been
captured in the estimation of the background by the IIR filter.
For a particular optical head, these movements of the line of
sight are considered identical for all the events occurring at
the same time step.

First, the JRF selects a number of events amongst the ones
received on the ground, which will be used as beacons to be
analyzed in order to reconstruct the jitter. A good beacon is
defined as an event whose signal �L is primarily composed of
the jitter contribution �L j . It is characterized by a large scene
gradient (to get a large �L j ) and a comparatively small �L
(to limit the other contributors �L p and �Ln). The beacon
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Fig. 7. JRF. East–West normalized amplitudes of the original jitter profile
injected in the LI simulator (blue solid line), of the discrete jitter points
calculated by solving the linear system (green circles) and of the final
reconstructed jitter after the fitting of three harmonics (red dashed line). Data
are extracted from the test case simulation described in Section IV-D.

selection criterion is therefore to select the events with the
smallest ratio of �L over scene gradient.

For each time step where beacons have been identified,
the JRF conducts an analysis to estimate the jitter movement
during that specific time frame. The analysis assumes that
the entire delta radiance of the beacons comes from the
jitter contribution and that the background scene derivatives
(∂Lbkg/∂NS) and (∂Lbkg/∂EW) can be well approximated
by a simple calculation based on the estimated background
information of the nine-pixel window attached to each event.
At time frame n, if m beacons are available, the JRF solves,
in the least-squares sense, the m-equation linear system for
the two unknowns jNS[n] and jEW[n]

⎛
⎜⎜⎜⎝

�L1
�L2

...
�Lm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ L̂1

∂NS
∂ L̂2

∂NS
...

∂ L̂m

∂NS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· jNS[n] +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ L̂1

∂EW
∂ L̂2

∂EW
...

∂ L̂m

∂EW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· jEW[n]

where (∂ L̂/∂NS) and (∂ L̂/∂EW) are the approximated deriv-
atives of the estimated background in the nine-pixel windows
with respect to the North–South and East–West directions.

The next stage in the JRF algorithm consists in fitting a
set of harmonics on the discrete jitter points jNS and jEW.
This is based on the assumption that the dominant frequencies
(e.g., first harmonics of the cryocooler) of the microvibration
spectrum affecting the LI detection are known. After the
removal of outliers in the jNS and jEW vectors, a least-squares
method is applied to find the best phases and amplitudes that
fit the set of harmonics on the jNS and jEW points. This step
increases the precision and extends the estimation of the jitter
movements to time steps where no beacons were identified.
This process is illustrated in Fig. 7, showing the original jitter,
the discrete jitter points obtained by solving the linear systems
of equations at different time steps, and the final reconstructed
jitter after the harmonic fit.

Fig. 8. HF. Distribution of true event concentration according to RTEPm
and SDTFm. False events tend to have small margins. Dashed line: separation
curve of the HF, events below this curve are considered false events and are
therefore discarded. Data are extracted from the test case simulation described
in Section IV-D.

Knowing an approximation of the jitter movements at every
time step n, the JRF algorithm can now, for each event received
on the ground, estimate the contribution of the jitter to the delta
radiance

̂�L j = ∂ L̂

∂NS
· jNS[n] + ∂ L̂

∂EW
· jEW[n].

The last step consists of removing the estimated jitter
contribution and reapplying the RTEP detection criterion
(see Section III) to discard false events due to jitter

if �L − ̂�L j ≤ τ1(L̂) → discard event.

2) Hybrid Filter: The hybrid filter (HF) is aimed at further
discarding false events due to acquisition noise. It can be
likened to a combination of the RTEP and SDTF criteria.
Rather than limiting itself to the binary decision (true or false
events), the HF expands these criteria by defining continuous
variables indicating the margin by which the events pass the
criteria.

For each event, the RTEP margin, RTEPm , and the SDTF
margin, SDTFm , are defined as

RTEPm = �L − τ1

SDTFm = CNDR − τ2.

False events due to random acquisition noise tend to pass
the RTEP and SDTF criteria with low margins. The HF
therefore discards events that feature a small RTEPm at the
same time as a small SDTFm . An example of distribution of
true event concentration in the SDTFm versus RTEPm domain
is presented in Fig. 8, with an HF separation curve (dashed
line) to discard false events.

3) Spatio-Temporal Coherency Filter: From the study of
physical lightning processes [13], it can be inferred that the LI
should not trigger spatially and temporally isolated lightning
events. This spatio-temporal coherency feature can be used to
further discard isolated false events.

The spatio-temporal coherency filter (STCF) checks that, for
each pixel-level event, there exists at least one other event in
close spatial and temporal proximity (see illustration in Fig. 9).
The performance of this filter is dictated by the spatial and
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Fig. 9. STCF. An event (orange lightning symbol) occurring at time t0 is
considered false event if no other events can be found in close geographical
proximity (gray circles) in any of the time frames between t0−�t and t0+�t .

temporal distances used to define the proximity of events.
Since this filter is dependent on the number of events given as
input, this algorithm must be placed at the end of the chain:
the fewer the events that have to be processed by the STCF,
the less likely it is that two false events will be in proximity
of each other.

This spatio-temporal behavior of the lightning events is used
in a more refined way in the FC processor when consolidating
the events into group and flash products [15].

D. Test Case and Results

The algorithmic chain described in this paper has been
tested on a simulation. The chosen scenario is based on
a background scene generated with a Meteosat Second
Generation Spinning Enhanced Visible and Infrared Imager
(MSG SEVIRI) image of the October 29, 2011, 12:12 P.M.
This has been identified as a representative example of a scene
that is apt to produce a high number of false events: the
scene is particularly bright and the cloud coverage is made
of a multitude of small clouds providing numerous highly
contrasted edges (see Fig. 10), which leads to the triggering
of a large number of false events due to acquisition noise
and jitter. For this scenario, one second of representative LI
measurements has been simulated.

The MSG SEVIRI image is processed to produce a top-
of-atmosphere background scene spatially and spectrally rep-
resentative of what the LI would see. On top of this scene,
a set of artificial pulses is added, with a random distribution
in time and in space, but restricted to cloudy areas (using
the corresponding MSG cloud mask product). The generated
pulses are circular with a radius of 5 km, have a duration
of 0.6 ms, and their energy L p is set to minimum values
as described in the LI specifications [15], using a formula
linking it to the background level Lbkg on which the lightning
is simulated

L p = 6.7

1.9

√
1 + 0.02 Lbkg [Wm−2sr−1μm−1].

Fig. 10. MSG SEVIRI image (0.8 − μm channel), from the October 29,
2011, 12:12 P.M., used as background scene for the test case.

TABLE I

RESULTS FROM THE TEST CASE

The random distribution of the lightning pulses in space and
time is not representative of the typical coherence that exists
in lightning storms where pulses are occurring in close spatio-
temporal proximity to each other, in the shape of flashes. With
the exception of the STCF, this coherency behavior of the
lightning is not exploited by the algorithms developed in this
paper, which rather focus on the features of each individual
event. Hence, the idea behind the random distribution is to
obtain a population of true events representative of lightning
pulses occurring at various locations in the FOV and with
various levels of energy.

The scene and the pulses are then processed by a series
of geometric, optical, radiometric, and jitter models simulat-
ing the behavior of the LI with the best knowledge of the
instrument design as of 2016. The 1000 simulated LI-acquired
images are then fed to the algorithmic chain, illustrated
in Fig. 2, for events triggering and filtering.

Performance results are presented in Table I. They are
expressed in terms of relative number of true events #TE and
false events #FE, with respect to the number of events at RTEP
output. For each filter, the true event recall TErecall, defined
as the proportion of true events that have not been discarded
by the filter, and the false event reduction FEreduction, defined
as the proportion of false events that have been discarded by
the filter, are also shown.
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In this particular scenario, it can be seen that the proposed
algorithmic chain discards 99.5% of the false events while
keeping 83.6% of the true events triggered by the RTEP.
Most of the reduction in false events (95.8%) is done by the
on-board filters, at the cost of the major part of the true
events loss (11%). The more complex on-ground filters further
reduce the number of false events by an extra 3.7% while only
losing an extra 5.4% of true events. If the events received
on-ground are taken as reference, the overall performance of
the on-ground filters on this particular scenario is a recall
of 93.9% and a false event reduction of 88.1%.

The performance numbers presented here correspond to one
particular point on the recall versus false event reduction
performance curve for the overall chain. All the described
algorithms have parameters that can be tuned in either direc-
tion: achieving a higher true event recall performance at the
expense of a lower false events reduction, or vice-versa. The
algorithmic chain can thus be optimized to find the best
compromise between the two objectives.

V. MACHINE LEARNING AS

ALTERNATIVE PROCESSING

Alternative ideas for the on-ground processing of events
are being investigated, using other techniques from the field
of machine learning. The motivation is to make parallel use
of all information made available during the execution of
the algorithmic chain. Indeed, the chain illustrated in Fig. 2
successively applies filters using only binary decision criteria
(i.e., keep or discard the event). The HF was already one
step in this direction of parallel usage, combining margin
information from RTEP and SDTF. Another goal is to find
dependencies of events on other, not yet considered parameters
such as the geolocation or the time of the day they occurred.

Separating false events from true events is a typical example
of binary classification problems, for which machine learning
algorithms have been shown to be extremely powerful. These
algorithms are nowadays widely used for the automatic extrac-
tion of relevant information from large amounts of data, and
increasingly in the field of remote sensing [19].

The followed approach consisted of gathering 200k
(100k true and 100k false) simulated events that would
have arrived at the ground segment (therefore after appli-
cation of RTEP, SDTF, and GF) and generated using six
different simulation scenarios (various dates, time of day,
and jitter profiles). From each event from this large pool,
12 features (i.e., measurable properties) are derived.

1) The identifier of the optical head producing the event.
2) The position of the event computed as a distance to the

(0°N, 0°E) point: (latitude2 + longitude2)1/2.
3) Whether the event has occurred during the night or dur-

ing the day (based on the position and timing of the
event).

4) RTEP margin, as defined in Section IV-C2.
5) SDTF margin, as defined in Section IV-C2.
6) GF margin, defined as the distance to the separation

curve in the SG versus CNDR domain.
7) Whether the event is eliminated by the JRF or not.

TABLE II

RESULTS ON THE POOL OF 200K EVENTS

8) The amplitude of the jitter determined by the JRF at the
time of the event.

9) The SG calculated on the nine-pixel window.
10) The pixel reading L of the pixel having triggered the

event.
11) The delta radiance �L of the pixel having triggered the

event.
12) The CNDR.

On this large collection of data, various machine learning
algorithms can be trained to build a classification model.
The choice of a machine learning algorithm is dictated by
a trade-off between performance (accuracy in separating the
true events from the false events) and interpretability (capacity
to understand the underlying classification model, i.e., why
the algorithm determines that an event is true or false?). The
most powerful machine learning algorithms are generally not
easily interpretable [20]. In this particular case, interpretability
is critical to verify that the machine learning algorithm is not
building a classification model distinguishing true and false
events based on characteristics or behaviors linked to unwanted
biases introduced in the simulated data.

For this paper, two different machine learning algorithms
have been implemented: a decision tree approach, for which
the resulting classification model can be interpreted, and a
SVM algorithm, known to be more powerful but not easily
interpretable. Results of the different approaches are presented
in Table II.

The nominal on-ground algorithmic chain (JRF + HF) is
applied to the pool of 200k events, which leads to a true event
recall of 91.0% and a false event reduction of 68.3%. The
STCF is not taken into account here since its working principle
is a comparison of all the events generated by a particular
simulation scenario to look for spatio-temporal proximity,
which is not directly related to the features of individual
events.

A custom-made decision tree approach, with a focus on
boosting the recall of true events, has also been implemented.
The best tree had a performance on the pool of events of 98.3%
recall and 70.8% false event reduction. A better performing
SVM algorithm has also been tested on the pool of events.
By adapting the SVM class biases to improve the true event
recall, a recall of 98.3% and a false event reduction of 85.3%
could be achieved.

Thanks to the good interpretability of the decision tree,
some simple and direct improvements to the previously pre-
sented algorithmic chain have been derived and implemented,
such as having different HF separation curves for night-time
and day-time events. The modified chain led to a true event
recall of 93.7% and a false event reduction of 79.7%.
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It should be emphasized that these are only preliminary
studies which would need to be followed up by more detailed
work. The machine learning approach would deliver its highest
potential when actual validated data generated by the LI is
available. One could imagine using actual events received
on-ground from the MTG LI validated with information com-
ing from the ISS LIS or from the GLM, to train machine
learning algorithms with actual true lightning events. More
investigations on the machine learning approach would still
be needed, but the preliminary results presented here already
show its potential to design a high-performance on-ground
event processor.

VI. CONCLUSION

The LI is an Earth observation instrument that will fly
on-board MTG Imaging satellites and will perform obser-
vations of lightning from a geostationary position. The LI
functioning principle consists of acquiring, at a 1000-Hz fre-
quency, monochromatic images to which a detection algorithm
is applied to extract lightning events at pixel level.

In order to detect lightning pulses of small energy, the detec-
tion thresholds of the instrument need to be set to a low
value. Unwanted signal variations due to acquisition noise
and jitter movement of the line of sight have been found
to be the main sources of false events, with a less favorable
situation occurring under daylight conditions. Filters, on-board
and on-ground, are needed to discard most of these false events
before feeding the data into the FC processor in charge of
aggregating events into flash science data products. The benefit
of implementing these filters is to allow for the setting of
low detection thresholds in order to maximize the detection of
weak lightning pulses.

The algorithmic chain proposed in this paper includes filters
aimed at eliminating false events due to random acquisition
noises (SDTF, HF, and STCF) and jitter movements of the
instrument line of sight (GF and JRF). The application of
this chain to a test case scenario, representative of a situation
producing a high number of false events at the detection stage,
showed satisfying results with 83.6% overall recall of true
events and 99.5% overall reduction of false events. A machine
learning approach has also been investigated to improve the
performance of the on-ground part of the processing, using
decision tree and SVM algorithms. This approach was shown
to be promising but would only realize its full potential if sets
of cross-instrument validated true lightning events produced
by the LI were available.
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