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Efficient Phase Estimation for Interferogram Stacks
Homa Ansari , Francesco De Zan , and Richard Bamler , Fellow, IEEE

Abstract— Signal decorrelation poses a limitation to multipass
SAR interferometry. In pursuit of overcoming this limita-
tion to achieve high-precision deformation estimates, different
techniques have been developed, with short baseline subset,
SqueeSAR, and CAESAR as the overarching schemes. These
different analysis approaches raise the question of their effi-
ciency and limitation in phase and consequently deformation
estimation. This contribution first addresses this question and
then proposes a new estimator with improved performance,
called Eigendecomposition-based Maximum-likelihood-estimator
of Interferometric phase (EMI). The proposed estimator com-
bines the advantages of the state-of-the-art techniques. Iden-
tical to CAESAR, EMI is solved using eigendecomposition;
it is therefore computationally efficient and straightforward in
implementation. Similar to SqueeSAR, EMI is a maximum-
likelihood-estimator; hence, it retains estimation efficiency. The
computational and estimation efficiency of EMI renders it as an
optimum choice for phase estimation. A further marriage of EMI
with the proposed Sequential Estimator by Ansari et al. provides
an efficient processing scheme tailored to the analysis of Big
InSAR Data. EMI is formulated and verified in relation to the
state-of-the-art approaches via mathematical formulation, simu-
lation analysis, and experiments with time series of Sentinel-1
data over the volcanic island of Vulcano, Italy.

Index Terms— Big Data, coherence matrix, covariance
estimation, differential interferometric synthetic aperture radar,
distributed scatterers (DS), efficiency, error analysis, maximum-
likelihood estimation, near real-time (NRT) processing.

NOMENCLATURE

CCG Complex circular gaussian.
CRLB Cramér–Rao lower bound.
DS Distributed scatterers.
EVD Eigenvalue decomposition.
InSAR Interferometric SAR.
MLE Maximum likelihood estimator.
NRT Near real-time.
PDF Probability density function.
EMI Eigendecomposition-based Maximum-likelihood-

estimator of Interferometric phase.
PL Phase linking.
PS Persistent scatterers.
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PSI Persistent scatterer interferometry.
PTA Phase triangulation algorithm.
RMSE Root mean square error.
SAR Synthetic aperture radar.
SCM Sample correlation matrix.
SLC Single look complex.

I. INTRODUCTION

INTERFEROMETRIC analysis of multitemporal SAR data
has proven to be a powerful technique in geodetic monitor-

ing of the Earth surface deformation. The interferometric phase
between two SAR acquisitions comprises a systematic compo-
nent corrupted by a stochastic noise. The former is attributed to
the variation of the optical path between the SAR sensor and
the sensed area [2] and caused for instance by deformation
and atmospheric-induced range variation [3]. The latter is
related to abrupt alteration or stochastic position/property
changes of the subresolution scatterers and causes decorre-
lation of the SAR signal between two acquisitions [4]. The
focus of InSAR time series analysis techniques has been
dedicated to tackling the signal decorrelation as well as the
separation of the deformation and atmospheric signal. The
first breakthrough in this regard was the introduction of PSI
technique [5], [6]. In tackling the decorrelation, the technique
bounds the estimation of systemic signal to PSs. PS are
phase-stable scatterers, which undergo minor decorrelation in
the time series. PSI was later generalized by the relaxation
of the limit on the stability of the scatterers and exploiting
DSs. DS are natural scatterers distributed over an area larger
than PS that undergo coherence loss in the time series. To
overcome the decorrelation, DS techniques either limit the
analysis to moderate coherent interferograms to high coherent
interferograms or estimate the systematic phase behavior by
incorporation of all possible interferograms relative to their
statistical characteristics. The former approach is known as
the Short BAseline Subset (SBAS) technique [7]; the latter is
pioneered by the PTA [8], [9], and its further variations are
introduced by EVD [10]–[12]. After the pioneering authors,
the estimation of systematic phase series from all possible
interferograms is hereafter referred to as PL. The difference
between PL and SBAS is in the full versus partial exploitation
of the abundance of interferograms. As statistically expected,
the exploitation of all even weakly coherent interferograms
in PL improves the signal-to-noise ratio (SNR) in phase
estimation and consequently enhances the sensitivity to mm-
level deformation estimation. Furthermore, PL is theoretically
expected to decrease the estimation bias in the presence of
phase inconsistencies [13], [14].

The PL techniques are mathematically compared in [15].
Here, the authors interpret the difference of PL approaches
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in terms of the adopted weighting strategy for incorporation
of the interferograms. These various weighting strategies raise
the question of the optimum approach for PL. This question
is addressed by the CRLB of phase estimation in [16].
Theoretically, the weighting considered by PTA is the opti-
mum choice for PL. Imposing the phase consistency [9], [13],
PTA introduces a model for PL. The model is fitted to the
interferometric data in an MLE formulation. The MLE is
asymptotically the closest estimator to the CRLB. Therefore,
under the validity of the assumptions of PTA, it provides the
optimum solution to the retrieval of the sought systematic
phase series. However, the violation of these assumptions com-
promises this optimum performance [1], [17]–[19]. One such
assumption is the sufficiency of the data covariance, estimated
empirically, to describe data statistics. The latter estimator is,
however, known to be erroneous, especially for small ensem-
bles and covariance close to zero [20], [21]. The performance
of PTA is known and shown to be severely degraded in such
cases [1], [2], [18], [19]. However, the occurrence of such
extreme scenarios is rare and detectable in postprocessing.
In this specific case, the heuristic weighting strategy intro-
duced in [22] may substitute the optimum weighting to mar-
ginally improve the performance. Despite this disadvantage,
PTA provides a data-adaptive time series analysis technique
tailored to mm-level deformation monitoring. Therefore, it ful-
fills the demand for an optimum analysis technique for the
interferometric time series.

The recent launch and planning of global monitoring wide-
swath SAR missions provide an unprecedented wealth of data.
The exploitation of the emerging Big Data entails a new
demand on the computational efficiency of the time series
analysis techniques. On the one hand, the exploitation of
all interferometric pairs in an MLE framework increases the
estimation efficiency in deformation monitoring. On the other
hand, this processing scheme is computationally demanding,
pitting the estimation efficiency against the computational
efficiency. One attitude toward managing the challenges of
Big Data is to resort to parallel computing and exploita-
tion of a mere selection of the interferometric data in the
framework of SBAS [23]. A second attitude is to migrate
from the conventional state-of-the-art algorithms and invest
in alternative estimators to exploit the wealth of data as far as
possible (the role of full exploitation of data is twofold: first,
it improves the SNR in phase estimation and consequently
enhances the sensitivity to mm-level deformation estimation;
second, it is theoretically expected to decrease the estimation
bias in the presence of phase inconsistencies [13], [14]). The
design criterion for the alternative estimators shall be the
optimization of the tradeoff between the estimation and com-
putational efficiency. A marriage of such alternative estimators
with the parallel computing capabilities is an obvious further
step toward a fully optimized processing scheme tailored to
efficient Big Data mining.

The recent proposal of Sequential Estimator [1] moves
toward optimized algorithms for NRT processing of the Big
Data. In the interest of improving the computational efficiency,
this estimator divides the time series into isolated small data
batches, processes them in turn with the PTA, and finally

compresses each batch. In retaining the estimation efficiency,
it retrieves the lost interferometric signal among the isolated
batches via the formation of the so-called artificial interfero-
grams and incorporates them in the phase estimation. Although
successful in reducing both the computational burden and
the demanding data storage capacity of the Big Data under
process, the core PTA of the Sequential Estimator is still a
performance bottleneck for NRT data processing both in terms
of computation and estimation efficiency.

The focus of this paper is to revisit PL and put forward
an alternative estimator with an improved efficiency. The pro-
posed estimator generalizes the PTA model for PL. Following
the generalized model, it pursues the maximization of the
resulted likelihood probability. In the interest of retaining
computational efficiency, the reference MLE is approximated
and constrained. With these interventions, the generalized PL
is transformed to an optimization with equality constraint
and is formulated in a Lagrangian. The latter is efficiently
solved by eigendecomposition. The proposed generalized PL
is termed EMI to best capture the mathematical background
behind its derivation.

The incentive behind the generalization of the PTA model
by EMI is to allow extra degrees of freedom to the estimator
for the calibration of the employed covariance as the data
statistics. In the absence of covariance estimation error, the two
models converge and the two estimators are equivalent. In the
presence of this error, EMI is expected to improve the estima-
tion efficiency. Besides the proposal of a new PL approach,
this paper contributes to advancing the understanding of PL
approaches by the following:

1) mathematical comparison of PTA, EVD, and EMI esti-
mators and interpretation of their difference in terms of
factorization of the covariance matrix;

2) formulation of the MLE for PL and showing that both
PTA and EMI are approximations of the MLE based on
different assumptions;

3) analysis of the estimation and computational efficiency
of the three estimators;

4) revisiting PTA and its efficient numerical solution pro-
posed in [8];

5) highlighting the impact of initialization on the numerical
solution of PTA;

6) investigation of the convergence behavior of PTA;
7) validating the computational and estimation efficiency of

EMI, in support of its selection as an optimum choice
for Big Data processing.

In the continuation of this paper, the different approaches
to PL are reviewed, and their distinction is mathematically
interpreted. EMI is formulated and compared in relation to
these state-of-the-art approaches via mathematical formula-
tion, simulation analysis, and experiments with time series of
Sentinel-1 data, in Sections II–IV, respectively.

II. EMI: A PROPOSAL FOR EFFICIENT PL

A. State-of-the-Art PL Approaches

PL aims at the estimation of a common-master interfer-
ometric phase series from all possible interferograms in a
time series of the SAR data. That is, having n coregistered
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SAR images, PL estimates n − 1 independent phase values
from the n(n − 1)/2 interferograms. The estimated phase
series is relative to an arbitrary master. It pertains to a
systematic phase between the master and slave, induced by the
variation in the optical path of the sensor to the scatterers [2].
Thus, the systematic phase is attributed to the superimposition
of atmospheric, topographic, and geophysical changes [4].
Similar to PSI, the isolation of the geophysical signal from
the latter systematic effects follows in a separate estimation
step [2], [8], [9].

To commence with the formulation of PL, let us consider
a statistically homogeneous region of � of l pixels in a
time series of n SAR images, arranged in a matrix Z ∈
Cn×l , where l refers to the spatial domain and n refers
to the temporal domain; Z is therefore a spatio-temporal
aggregation of the pixels of the � region. Based on the
central limit theorem, Z follows the zero-mean n-variate CCG
distribution [21], [24]. Under the assumption of validity of this
distribution, the second moment of the data suffices for the
description of its statistics. The sample covariance matrix, or
its normalized version SCM, is known to be the MLE of the
second-order moment [24]. The SCM is given by

C = Z Z H
�
�Z�2 (�Z�2)T

(1)

where .H indicates the Hermitian conjugation, �Z� gives the
rowwise L2 norm of the matrix Z , and the power-2 and
division operations are elementwise. Under the assumption of
validity of CCG, the SCM is a concise and sufficient descriptor
of SAR data. Allowing the decomposition of the complex
SCM to its elementwise modulus and argument

C = |C| ◦ I� = � ◦ I�
with (I�)ik = exp( j�φik) (2)

where ◦ is the Hadamard product. In this decomposition,
� indicates the signal coherence between the corresponding
images in the stack; it is hereafter referred to as the coherence
matrix. I� contains the spatially estimated interferograms
obtained by averaging over the � ensemble. They pertain to
the sought systematic phase and are, however, corrupted by
SCM estimation variance and temporal decorrelation. PL is an
additional estimator, designed to improve the spatial estimation
of this systematic phase signature by the exploitation of data
statistics in the temporal direction. Different PL approaches
consider different matrix factorizations in modeling the SCM.

1) PTA Approach to PL: It introduces � as a model
for the underlying covariance, or better correlation, of an
n-variate CCG process. It further proposes a factorization of
this matrix to two complex diagonals (�) and one full-rank
real-symmetric matrix (�) [8], [9]

with � ∈ R
n×n

and � = diag[ψ] = diag[exp( jφi )]
� = ���H = � ◦ ψψH . (3)

It further assumes that the coherence provides a sufficient
estimation of � and allows �̂ik = |Cik |. In so doing, PTA
assumes the estimated coherence to be of high precision and
accuracy and is limited to estimating the phase series in ψ .

2) EVD Approach to PL: It proposes a different factor-
ization to two full-rank complex matrices (V ), forming an
orthonormal basis, and one diagonal real matrix (�)

with � = diag[λ] ; λ ∈ R
n

and V V H = I ; V ∈ C
n×n

� = V�V H . (4)

The model may be fitted either to the complex sample covari-
ance matrix [10], [11] or its normalized form, the complex
correlation matrix [12].

Both PTA and EVD provide single dyadic approximations
of the SCM. Comparing (2) to (3), it is clear that in PTA,
the rank-1 dyad (ψψH ) merely approximates I�. The system-
atic phase signature may be fairly assumed to be low rank, or
even rank-1 in the absence of multiple systematic signatures in
the � neighborhood. In the case of EVD, the dyad attempts to
explain both the observed interferometric phase (I�) as well
as the decorrelation process (�). However, the latter is not of
a low-rank nature. It may even resemble a symmetric Toeplitz
matrix and therefore require the entire spectral components
to be sufficiently explained (e.g., in the case of exponential
decorrelation). The power of EVD lies in the tomographic
separation of the scattering mechanism, where it is separable
with respect to the Rayleigh resolution [11]. For the mere
purpose of PL, PTA outperforms EVD [1], [18], [19].

In short, PTA provides high estimation efficiency, although
at the cost of computational complexity, while EVD is advan-
tageous in terms of computational efficiency but compromises
the optimality in phase estimation. Our proposal for efficient
PL is a bridge between the two PLs. Similar to the PTA,
EMI is an MLE for phase estimation; identical to EVD,
it uses eigendecomposition as its solver. EMI is elaborated
in Section II-B.

B. EMI as a New Efficient Approach for PL

Let us commence the introduction of EMI from a proba-
bilistic view toward the estimation of SCM [15]. Recalling �
as a model for the underlying covariance of an n-variate CCG
process, the pdf of SCM evaluated from an ensemble of size l
follows the complex Wishart distribution [24]:

p(C|�) = c det(C)l−n det(�)−l exp(−tr[l�−1C]) (5)

where det(.) and tr(.) indicate the determinant and trace
operator and c is a coefficient as a function of n and l.

PL may be reformulated into the estimation of � via the
maximization of the Wishart likelihood distribution [15]. This
reformulation is employed hereafter.

We propose the following covariance model for EMI:
with � ∈ R

n×n

α ∈ R
1×1

and � = α diag[ξ ] = α diag[σ i ψ i ]
� = ���H . (6)

The factorization is similar to (3) with the difference that, here,
the covariance is approximated by two dyads, a full-rank real
matrix, and a scaling parameter, i.e.,

� = α2 � ◦ σσ T ◦ ψψH . (7)
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This proposal is a slight generalization of the employed fac-
torization of PTA in (3). Similar to PTA, the full-rank matrix
is assumed to be known as �̂ik = |Cik |, and the dyadic ψψH

approximates I� and provides the estimated interferograms.
Different to PTA, here, the real-valued dyadic α2 σσ T allows
extra freedom for the calibration of �̂, which is expected to
be poorly estimated. The introduction of the calibration dyad
serves a purpose when the estimation of coherence matrix
is erroneous. In the absence of coherence estimation error,
calibration is redundant, i.e., α2 = 1 and σ = �1.

The MLE of the proposed factorized covariance matrix
follows from the maximization of the Wishart pdf given by (5):
�̂ = argmax�{ ln(p(C|�)) }
= argmin�{tr(�−1 C)+ ln(det(�)) }
= argmin�{tr(�−H�−1�−1 C)+ ln(det(���H ))}. (8)

Given that �̂ik = |Cik |, the optimization simplifies to

with ζ i = ξ−1
i = σ−1

i exp(− jφi )

�̂ = argminφ,σ ,α

⎧⎨
⎩α−2ζ H (�̂−1 ◦ C) ζ + ln

⎛
⎝ n�

i=1

(ασ i )
2

⎞
⎠
⎫⎬
⎭ (9)

= argminφ,σ ,α

⎧⎨
⎩α−2ζ H (�̂−1 ◦ C) ζ −

n

i=1

ln
�
(ασ i )

−2
�⎫⎬
⎭

(10)

Note that ζ is introduced for brevity of notation and is defined
as the reciprocal of the elements of ξ .

The above-mentioned double objective optimization is ana-
lytically solved via the provided solution in Appendix A,
however, at the cost of increased computation. Hereafter,
the aim is to substitute this optimization with a proxy, which
allows a computationally efficient solution while retaining
the estimation efficiency. The sought proxy is defined by the
following two steps.

Firstly, the second objective of the formulated MLE is
substituted by a linear surrogate to accelerate the convergence
of the target optimization. We allow this linearization by the
substitution of ln(ασ i )

−2 with its first-order Taylor series at
the proximity of (ασ i )

−2 ≈ 1

�̂ = argminα,φ,σ

�
α−2ζ H (�̂−1 ◦ C) ζ −

n

i=1

(ασ i )
−2 + n

�
.

(11)

Following this linearization, the second objective is approxi-
mated by the norm of the calibration vector.

In the second step toward finding an efficient solver, without
loss of generality, the norm of the vector σ ◦−1 is constrained
to
√

n. Note that the norm of the calibration vector ασ is a
target of optimization in the second objective term of (11).
Therefore, the α parameter adjusts the norm of σ ◦−1, and the
equality constraint can be set to any arbitrary constant.

Addition of the equality constraint is realized through the
method of Lagrange multipliers. Aggregating the norm con-
straint, i.e.,

�n
i=1σ

−2
i = ζ Hζ = n, the following Lagrangian

results:
�̂ = argminφ,σ ,α,λ̃{α−2ζ H (�̂−1 ◦ C)ζ

− . . . α−2ζ Hζ − λ̃(ζ H ζ − n)}. (12)

Seeking the minimum of (12) through its gradient with respect
to ζ yields

(�̂−1 ◦ C)ζ̂ = λ ζ̂ (13)

with

λ = α2λ̃+ 1. (14)

This is the formulation of eigendecomposition of the
Hadamard product �̂−1◦C , with λ as the minimum eigenvalue
and ζ̂ as its corresponding eigenvector. Appendix B highlights
the properties of the Hadamard product.

The last open question concerns the optimum α parameter.
In seeking this parameter, let the rearrangement of (13) by
the multiplication of ζ̂

H
to its left- and right-hand side and

further simplification with the considered norm constraint

ζ̂
H
(�̂−1 ◦ C)ζ̂ = λn. (15)

Substituting (15) into (10) further yields

α̂ = argminα,λ

�
nα−2λ− n ln(α−2)−

n

i=1

ln
�
σ̂
−2
i

��
. (16)

The estimate of α follows from the gradient of the
above-mentioned optimization objective with respect to this
parameter

−2nλα−3 + 2nα−1 = 0

α̂ = √λ. (17)

In summary, considering ξ̂ i = ζ̂
−1
i , the solution of the

Lagrangian as the minimum eigenpair of the Hadamard prod-
uct �̂−1 ◦ C provides the following.

1) Estimated Phase Series: φ̂ = � ξ̂ .

2) Estimated SCM: �̂ = λ�̂ ◦ ξ̂ ξ̂ H
.

3) Estimation Quality Measure: λ (elaborated in the fol-
lowing).

Note that the same as other PL approaches, the estimation of
absolute phase series is ambiguous. The phase of an arbitrary
image in the time series is set to zero, and the remaining
phases are measured relative to this arbitrary datum. A second
caution is in order in setting the norm of the estimated ζ̂ value.
The eigenvector and the sought solution of Lagrangian belong
to the same equivalence class. They merely differ in their
norm. EMI requires the vector norm to be

√
n. To consider

this constraint, the eigenvector’s norm ought to be adjusted to
yield the sought solution of the target Lagrangian by allowing
ζ̂ ←

√
n���ζ̂��� ζ̂ .

Furthermore, λ may be interpreted as a quality measure for
the phase estimation, adding a further feature to the proposed
estimator. To introduce this measure, let the expansion of (15)

λ = 1

n

n

i=1

n

k=1

σ̂
−1
i σ̂

−1
k (�̂−1 ◦ �)ikcos(�φik − φ̂k + φ̂i ).

(18)
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TABLE I

SUMMARY OF THE PL APPROACHES. ALL APPROACHES ARE ITERATIVE AND THEORETICALLY COMPARABLE IN TERMS OF COMPUTATIONAL

EFFICIENCY. REGULARIZATION IS PERFORMED OCCASIONALLY, IN CASES WHERE �̂ IS NOT POSITIVE DEFINITE. IT IMPOSES NEGLIGIBLE

COMPUTATIONAL BURDEN (SEE SECTION IV-B). REFER TO THE TEXT FOR THE DETAILS ON THE INITIALIZATION AND REGULARIZATION

Following this reformulation, the Lagrange parameter is seen
to reflect the goodness-of-fit of the proposed SCM model
of (6) to the data set. Ideally, if �̂ is an adequate estimator
of the true statistics of the data, the calibration vector is
redundant, i.e., σ = �1, and the misfit between the observed
and estimated phases is close to zero [see Fig. 1(a) and (b)].
Therefore, following the quasi-bistochastic property of the
Hadamard product �−1 ◦ � in Appendix B, the Lagrange
parameter yields:

λideal = 1

n

n

i=1

n

k=1

(�̂−1 ◦ �)ik cos(0) = 1. (19)

Deviation of λ from 1 indicates the inefficiency of the
proposed model in coherence calibration and/or phase esti-
mation. EMI assumes the inadequacy of coherence estimation
and increases its model complexity to account for coherence
calibration. However, it first limits the calibration to a rank-1
dyadic and second employs a linear approximation. This mar-
ginal increase in the model complexity may not be sufficient
for efficient calibration of the coherence. The λ parameter
provides a measure to indicate EMI’s model inadequacy.

C. EMI Versus PTA and EVD

In the decision for choosing the optimum estimator for
efficient NRT time series analysis, here, the three estimators
are theoretically compared in terms of their computational and
estimation efficiency. Table I summarizes this comparison.

1) Estimation Efficiency: EMI and PTA follow the MLE in
phase estimation with different implicit assumptions. Under
the validity of their underlying assumptions, the two estimators
are the closest to the CRLB. It is therefore theoretically clear
that that the two estimators outperform EVD in terms of
estimation efficiency (cf., simulation analysis and real data
experiments for the quantification of this comparison). Here-
after, the focus is on the mathematical comparison between
PTA and EMI.

The difference between the two estimators lies on the
introduced degree of freedom by the calibration dyadic
[cf., (6) with (3)]. To convey their similarity, let us consider
the case of λ = α2 = 1 and revisit (11). Substituting the
PTA-proposed vector of ξ = ψ = �1 exp( jφ) in (11) yields

�̂ = argminψ {ψ◦−H (�̂−1 ◦ C)ψ◦−1 − ψ◦−Hψ◦−1 + n}.
(20)

Following the gradient of the above-mentioned objective func-
tion with respect to ψ gives:

(�̂−1 ◦ � ◦ I� − I ) exp( j φ̂) = �0 (21)

where I is the identity matrix. Expanding the left-hand side
of (21) and rearranging the outcome result in the analytical
solution for the sought optimization

exp( j φ̂i ) =
1

1− (�̂−1)ii

n

k=1
k �=i

(�̂−1 ◦ �)ik exp( j (�φik + φ̂k))

(22)

which is the very iterative solution to the PTA proposed in [8].
PTA imposes the strict model of σ = �1. EMI attempts to relax
the choice of σ . However, the adaptability of the latter vector
is still limited by the employed first-order approximation.

In the absence of coherence estimation error, the two estima-
tors are expected to perform identically, and their parameters
are expected to converge (λ→ 1 and σ̂ → �1).

2) Computational Efficiency: PTA, EVD, and EMI are
theoretically comparable in terms of computational efficiency.
The latter two estimators resort to eigendecomposition for
their solution, while PTA is iteratively solved via (22). The
eigendecomposition is as well an iterative approach for finding
the eigenpairs. Thus, in terms of computational efficiency, all
three estimators are subject to iterative numerical search of
the parameter space and expected to have comparable com-
putational complexity. In this regard, the mere computational
advantage of EMI and EVD over PTA is the availability of an
arsenal of optimized numerical recipes for their efficient solu-
tion [25]. However, subject to additional effort and research,
the computational efficiency of PTA may be optimized as well.

A note is in order for a thorough analysis of the
computational efficiency of PTA. In [9], the expensive
Broyden–Fletcher–Goldfarb–Shanno algorithm is suggested
for solving the corresponding optimization of PTA. A more
efficient approach is suggested in [8] via the iterative solution
of (22). However, the latter requires an initialization step.
As conveyed in the continuation of this paper, both the
convergence speed of the iterative optimization and its estima-
tion efficiency are influenced by the choice of initialization.
Guarnieri and Tebaldini [8] introduce the "phase of the vector
minimizing the quadratic form {ψH �̂−1 ◦ C ψ}" as their
choice of initialization. We interpret this minimizing vector
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as the minimum eigenvector of the Hadamard product �−1 ◦C
(which is the solution of EMI). According to our simulation
studies and real data experiments, this initialization enhances
the convergence speed of the PTA. Moreover, it occasionally
improves the performance of phase estimation. Therefore,
we favor this initialization for the iterative PTA, as it affects
both the estimation and computational efficiency. Adopting
this initialization, PTA must not only afford for the same
eigendecomposition employed by EMI but also shall undergo
an iterative search for fitting the ψ model to the data. Thus,
compared with EMI, it imposes an additional computational
burden on PL. The extra cost is not justified by any gain
in the estimation efficiency (see Sections III-A and IV-A).
If initialized differently, the number of iterations for PTA to
converge increases, further compromising the computational
efficiency (see Section IV-B).

Another note concerns the additional matrix inversion oper-
ation in evaluating �̂−1, as required by EMI and PTA. In rare
cases, where the coherence matrix is not positive definite,
a regularization of the matrix is required prior to inversion.
Regularization is efficiently performed via gradual increase
of small negative eigenvalue(s) of the coherence matrix,
as explained in [1] and [17]. Therefore, PTA and EMI undergo
an additional matrix inversion plus occasional regularization
compared with EVD. These operations marginally increase the
computational cost as the price for an improved estimation
efficiency. Section IV-B corroborates the negligibility of this
additional cost.

In efficient solution of eigendecomposition, one of the
most recent numerical recipes is provided by the method of
multiple relatively robust representations (MRRR) [26]. This
numerical approach allows the efficient retrieval of a subset of
eigenpairs with reduced complexity compared with retrieving
all eigenpairs. For EMI, the minimum eigenpair is merely
desired, decreasing the latter complexity.

III. PERFORMANCE ASSESSMENT: SIMULATION STUDY

Using simulations, here, the performance of EMI is vali-
dated and compared with the state-of-the-art algorithms.

Reflected in the coherence matrix, the performance of PL
algorithms is bound by signal decorrelation [16]. Considering
a generic decorrelation model [27]

�ik = (γ0 − γ∞) exp(−δtik/τ) + γ∞ (23)

and introducing γ0 and γ∞, respectively, as the short-term
decaying and the long-term persistent coherence, δt as the
corresponding temporal baseline, and τ as the signal corre-
lation length, two contradicting decorrelation scenarios are
introduced for PL. In the first, γ∞ = 0, indicating the total
decorrelation of the interferometric signal beyond temporal
baseline of δt ∼ 4τ , while in the second, γ∞ �= 0, rendering
even the long temporal baseline interferograms to bear a
coherent signal. The presence of such, even weak, long-term
coherent signal has been shown to have a strong impact on
the performance of PL [1], [28]. The first scenario is hereafter
referred to as the exponential decay and the second as the
long-term coherence.

For the investigations of this section, two coherence matri-
ces are simulated following the aforementioned scenarios. γ0 is
set to 0.6 in both cases, while γ∞ is, respectively, 0 and 0.2 for
the exponential decay and long-term coherence. Based on the
coherence matrices, two stacks of 50 images each containing
an ensemble of 300 statistically homogeneous samples are
synthesized as follows: a CCG process is assumed in the
generation of the data stack; the stationarity of the interfer-
ometric signal within the ensemble is imposed by setting the
topographic- and atmospheric-induced phase components to
zero; the deformation phase is simulated with a temporal linear
trend with a velocity of 1 mm/year; and the temporal sampling
interval, similar to Sentinel-1, is set to six days. τ is set to
50 days.

A. Performance in Phase Estimation
As highlighted in [1], [18], and [19], the performance of

PTA is affected by the well-known error in the coherence
estimation [20], [21]. Recall that PTA uses the inverse of
the coherence matrix as the optimum weighting. The high
sensitivity of PTA to coherence error is due to the amplification
of coherence estimation noise by the inverse operator. Using
the same metric for weighting the data, EMI is prone to
the same noise amplification by the inverse of the erroneous
coherence. In order to investigate this effect, PL is studied in
two cases as follows.

1) In the first case, �̂ is set to the simulated coherence
provided by (23), representing an ideal case where the
optimum estimate of the coherence is at hand and the
coherence error is negligible.

2) In the second case, �̂ is set to the estimated coherence
of (1). This case is closer to reality as coherence is
unknown and its estimation is inevitable.

The RMSE of phase estimation is reported in Fig. 1(a) and
(b) for the former and Fig. 1(c) and (d) for the latter case. The
theoretical lower bound for PL is provided by CRLB [16].

As revealed in Fig. 1(a) and (b), in the absence of coherence
estimation error, EMI and PTA perform identically and close
to the CRLB, while EVD provides a suboptimum estimation
deviant from the CRLB. However, the coherence estimation
error degrades the performance of the probability-based esti-
mators, as evident from Fig. 1(c) and (d). In Fig. 1(c) and (d),
two solutions are considered for the phase estimation, namely
the conventional PL processing based on the full data stack
and the proposed Sequential Estimator of [1] (ministacks of
10 images and compression to 1 component are considered
here). As evident, using EMI as its PL algorithm, the Sequen-
tial Estimator is able to slightly improve the performance and
approach the CRLB. The Sequential Estimator improves the
performance thanks to two implicit effects. First, it bounds
the analysis to isolated mini-stacks within which the drop
of coherence to zero is limited. Second, in the formation
of the artificial interferograms between the isolated mini-
stacks, an implicit filtering occurs. The latter enhances the
efficiency of coherence estimation for the respective artificial
interferograms [1].

The degraded performance of PL in the case of exponential
decay compared with the long-term coherence is due to the
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Fig. 1. Performance assessment of different PL estimators compared to CRLB using simulated cases: (a) and (c) exponential-decaying scenario, (b) and
(d) long-term coherence. The impact of coherence estimation error on PL is studied in (a) and (b) the absence and (c) and (d) the presence of this error.
In (a) (b) and (d), where coherence estimation error is absent/insignificant, EMI performs identical to PTA. In (c), where coherence is significantly erroneous,
EMI performs slightly better than the PTA. EVD is shown to be suboptimum in phase estimation, as apparent from (a) and (b) where its performance is
highly deviant from the CRLB.

pronounced coherence estimation error for the former. The
estimation of coherence degrades significantly for coherence
close to zero [20], [21]. In the case of long-term coherence,
the presence of low coherent signal prevents the drop of
coherence to zero. It is therefore exempted from the significant
coherence estimation error for zero coherence.

Note that the error in coherence estimation decreases by the
increase in the size of homogeneous ensemble �. However,
the enlargement of � is restricted, as the stationary of the
systematic signals may be violated over large spatial windows.
In practice, even if the topography is compensated with high
accuracy/precision or is irrelevant, the correlation length of the
atmospheric and deformation signal plays a role in violation
of stationarity.

B. λ as a Quality Measure

In Section II-B, the Lagrange parameter λ was proposed
as a quality measure for phase estimation. The attempt here
is on the evaluation of this proposition by comparing λ to
a conventional a posteriori quality measure. Here, the a
posteriori coherence of [9] is considered for this purpose,

which reads as

γapt = 2

n(n − 1)

n

i=1

n

k=i+1

cos(�φik − φ̂k + φ̂i ) (24)

and provides a goodness-of-fit of the estimated phases. Com-
pared with λ in (18), γapt only reflects the phase misfit,
while λ indicates the inadequacy of the stochastic model as
well as the residual phase error. To investigate the correlation
between the two measures, the same simulation strategy of
Section III-A is pursued with a slight change; here, the para-
meter l, i.e., the size of the ensemble �, is varied. As l
increases, the coherence estimation asymptotically approaches
its optimum performance [20], [21]. As a consequence of
the decreased coherence error, a gain in the performance of
PL is expected. Theoretically, such gain shall be reflected in
both the conventional and proposed quality measures. Fig. 2
corroborates this hypothesis by showing the approach of γapt
and λ to 1 as the coherence estimation improves. It as well
reveals the correlation between the two quality measures.

Note that the performance of the coherence estimation is
known to be degraded for coherence levels close to 0. The
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Fig. 2. Correlation between the Lagrange parameter as the proposed quality
measure and the a posteriori coherence using simulated cases for a varied
size of ensemble (l). As l increases, coherence estimation asymptotically
approaches its optimal performance and its error decreases, leading to the
improvement of phase estimation in PL. The enhanced PL performance is
reflected in the approach of both quality measures to 1.

latter is the case in the exponential-decaying scenario. In the
long-term coherence, the presence of weak coherent signal,
with γ∞ = 0.2, prevents the drop of coherence to zero; hence,
the improved performance of the coherence and consequently
the quality measures.

IV. EXPERIMENT WITH REAL DATA

A time series of Sentinel-1 data over the Italian island of
Vulcano is chosen as a test site for the demonstration of EMI.
Fig. 3 provides a view of the island from optical and SAR
amplitude data, revealing the variety of land cover in the scene.
Data in interferometric wide-swath mode and VV polarization
are obtained for this test site. The time series is acquired
from December 2014 to April 2016 from a descending orbit,
providing 38 SLCs. Fig. 4 presents the coherence of the
observed interferograms with the shortest and longest temporal
baselines, revealing the severe temporal decorrelation of the
data set. Fig. 4(c) shows the observed interferogram pertaining
to the longest temporal baseline of 564 days. The coherence
maps and the observed interferogram are estimated by spatial
adaptive multilooking using the Anderson–Darling statistical
similarity test on the amplitude data [29]. The aim of PL is
to enhance the spatial estimation of the interferograms via the
exploitation of the time series.

PL estimates the wrapped phase series, inclusive of the geo-
physical and atmospheric signals. Isolation of the geophysical
signal of interest follows from the second processing step as
in the case of PSs [5], [8]. Phase estimation is performed on
the full spatial resolution. However, the pointwise complex
coherence matrices are estimated based on an ensemble of
pixels in the homogeneous � region surrounding each pixel.
� is detected via the Anderson–Darling statistical similarity

test with a false-alarm rate of 5%. Regions with an ensemble
size of 100 pixels and larger are detected as DS; only the
DS undergoes PL. To improve the spatial stationarity in the
homogeneous region, the topographic-induced phase is simu-
lated using the SRTM digital elevation model and subtracted
from the SLCs prior to the coherence estimation.

The focus of this experiment is to compare the different
PL approaches in terms of estimation and computational
efficiency. Therefore, PL is performed via EMI, PTA, and
EVD. The PTA is solved efficiently using (22) and initialized
with two different strategies as follows.

1) PTA 1: Using the phase of the minimum eigenvector of
�̂−1 ◦ C , i.e., φ̂ = � ξ̂ .

2) PTA 2: Using a null vector of φ̂ = �0.

Therefore, four different cases are compared in total. The
implementation details of all compared cases are kept similar
as far as the estimators allow.

A. Performance Assessment in Phase Estimation

EMI’s performance is assessed and compared with different
approaches from four aspects.

1) Visual Inspection: The performance of PL in phase
estimation may be visually assessed from the inspection of
the estimated interferograms. The longer temporal baseline
interferograms are expected to undergo a more severe temporal
decorrelation. Therefore, the inspection of such interferograms
is more conclusive for the examination of the merit of the per-
formed temporal phase filtering by PL. Bearing this in mind,
the largest temporal baseline interferogram with a baseline of
564 days is chosen to be presented in Fig. 6. Comparison of
these interferograms to the observed interferogram of Fig. 4(c)
reveals the improved phase estimation achieved by PL. Fur-
thermore, the performance of EMI may be compared with PTA
estimated interferograms. The difference in their performance
is specifically visible over the volcanic caldera (indicated by
boxes). Note that the improved performance of EMI over PTA
approaches, as well as the role of different initializations in
the performance of PTA, by inspecting the spatial noise of the
estimated interferograms over the caldera.

Due to the visual similarity of EVD and EMI estimated
interferograms, their difference is provided instead (see Fig. 5).
Similar to EMI, EVD is successful in recovering the signal
over the caldera.

2) A Posteriori Coherence: The estimation quality of EMI,
PTA1, and PTA2 is further assessed in Fig. 7 via the provision
of the a posteriori coherence of (24). Inspecting the quality
of EMI shows a reasonable performance in phase estimation,
except for the sparse vegetated areas and the surrounding
water. Note, for instance, that the volcanic caldera, as one of
the geophysically interesting parts of this test site, is retrieved
with the coherence of ≥ 0.9.

Comparing these three estimators specifically over the vol-
canic caldera, the inferred improved performance of EMI over
PTA, as well as PTA1 over PTA2, is confirmed. Investigating
the behavior of PTA over the low-quality part of the volcanic
caldera reveals its failure in convergence to a solution for 40%
of cases (convergence criterion is defined as phase estimation
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Fig. 3. View of the Vulcano Island located in Southern Italy. (Left) Optical image from Google Earth showing the various land cover of the chosen test site.
(Right) Temporally averaged amplitude map of the test site estimated from 38 SLCs of the Sentinel-1 SAR data stack.

Fig. 4. Interferometric data of Vulcano; coherence of the observed interferograms with temporal baseline of (a) 12 and (b) 564 days, and (c) observed
interferogram of the latter. These maps are estimated by spatial adaptive multilooking. Comparing the coherence map of the shortest and longest temporal
baseline interferograms in (a) and (b) indicates the severity of the temporal decorrelation. The goal of PL is to improve this spatial estimation of interferograms
via the exploitation of the time series (see Fig. 6 for visual inspection of the enhancement in interferogram estimation).

with a precision of 10−3 rad; the maximum permissible
number of iterations in the parameter search is set to 4000
iterations). In Appendix C, a simulation analysis over this area
is reported.

3) Quantitative Assessment—Cross Comparison of the Esti-
mators: Here, the focus is on the quantification of the dif-
ference between the three estimators. Setting EMI as the
benchmark for this analysis, the discrepancy between the
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Fig. 5. Spatial inspection of the difference in interferogram estimation
(temporal baseline: 564 days), employing EMI and EVD.

estimated phases of PTA1 and EVD with the latter is evaluated
for each resolution cell in the time series. Having performed
PL in a pixelwise fashion, the phase discrepancies consist of
rrg × raz values in the spatial direction and n − 1 values in
the temporal direction. To have a statistical analysis on the
performance, the rrg × raz × (n − 1) values are accumulated.
The spatio-temporally accumulated phase discrepancies are
clustered according to their respective a posteriori coherence.
The normalized histogram of each cluster is presented, with
its first- and second-order moment describing the bias and
variance of each estimator with respect to EMI, respectively.
The resulted normalized histograms are presented in Fig. 8.
Note that the quantitative assessment is relative to EMI.
An independent assessment follows in Section IV-A4 to
answer the question on which PL outperforms the others.

In analyzing Fig. 8(a), the bias and variance of EMI
compared with PTA decrease as the a posteriori coherence
increases, as theoretically expected. Coherence level of γapt ≥
0.6 is associated with cases where �̂ is an efficient estimator of
the coherence (see Section III-A). In such cases, the calibration
dyadic is expected to be redundant, and the performance of
EMI and PTA in phase estimation is expected to be similar.
EMI’s model diverges from PTA for lower coherence levels,
explaining the increase in the variance between the two.
However, it is important to notice that the two estimators are
unbiased with respect to each other, even at low coherence
levels. Comparing Fig. 8(a) and (b), the theoretical degraded
estimation efficiency of EVD compared with the probabilistic-
based approaches is verified. Note that the increased bias
and variance of EVD are compared with EMI at different

coherence levels. The latter observation justifies the selection
of EMI compared with the EVD.

4) Quantitative Assessment—Variation in SNR: The dis-
crepancy between the estimators has been cross compared in
Section IV-A3. The focus in this section is on the independent
performance assessment of PL approaches. Recall that PL is
devised for improving the SNR of the spatially multilooked
interferograms in I�. Therefore, we propose the variation
in SNR of the estimated interferograms relative to I� as a
potential-independent quality measure

δSNR = SNRφ̂ − SNRφ = 10 log10

⎛
⎝δ2

φ

δ2
φ̂

⎞
⎠ (25)

where δ2 represents the phase variance and its subscripts φ̂
and φ indicate the PL-estimated versus the spatial-multilooked
interferograms. The variance δ2 is estimated spatially for
each interferogram in a pixelwise fashion as follows: a sym-
metric window is considered about each pixel (200 m in
the range/azimuth direction). The ensemble of phases falling
in this window is used for variance estimation. Note that
the employed coarse ensemble selection criterion does not
guarantee the stationarity of the interferometric signal within
the estimation window. To account for the arising hetero-
geneity, the variance shall be estimated robustly to withstand
the outlying samples [30]. Among different robust estimators
of variance [31], the normalized median absolute deviation
(MAD) is chosen here [32], [33]. MAD has a high breakdown
point of 50%, i.e., it resists 50% contamination of the ensemble
by outliers. It reads as [32]

δ̂mad = 1.4826 median(|φ −median(φ)|) (26)

where φ represents the ensemble. The normalization constant
1.4826 renders the estimator consistent with the standard
deviation of a normal distribution. In the presence of high-
frequency systematic signal within the assumed 200-m dis-
tance, MAD is expected to resist against the nonstationarity
up to its breakdown point. However, it fails in noise estimation
beyond this tolerance.

Note that in the evaluation of δSNR for each estimator,
the low-quality result pertaining to γapt ≤ 0.35 is excluded.
In the case of PTA1, the failed estimation result over the
caldera is disregarded by this masking. The surrounding water
of the island is as well masked by this thresholding.

For a concise quantitative analysis over the entire spatio-
temporal extent of the data, the estimated δSNR values are
aggregated spatially over each interferogram in the time series.
The median of such aggregated data provides a robust measure
for the overall performance of PL for each interferogram.
Fig. 9 reports the barplots of overall δSNR for each inter-
ferogram as a function of their temporal baseline. EMI, EVD,
and PTA1 are compared in Fig. 9. As apparent, EMI slightly
outperforms the other approaches throughout the time series.
A feature worthy of notice is the exacerbated noise of the
estimated interferograms with temporal baseline of 12 and
24 days. In the mentioned interferograms, the performance
degradation of EMI and EVD is the least and most pro-
nounced, respectively.
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Fig. 6. Spatial inspection of the estimated interferograms with the longest temporal baseline of 564 days: the estimated interferogram using (a) EMI,
(b) PTA1 initialized by the solution of EMI, and (c) PTA2 initialized by null phases. Compared with EMI, the performance of PTA estimators is seen to be
degraded over the volcanic caldera, indicated by the box. Note also that the different initialization is seen to impact the estimation efficiency over the caldera.
Appendix V reports on a simulation analysis based on the volcanic caldera.

Fig. 7. A posteriori coherence as the quality measure for phase estimation performed by (a) EMI, (b) PTA1 initialized by the solution of EMI, and
(c) PTA2 initialized by null phases. Note that the degraded quality of PTA estimators in comparison with EMI over the volcanic caldera. The figures verify
the conclusions about estimation efficiency inferred from Fig. 6.

This independent evaluation of the estimation efficiency
proves the optimality of EMI over EVD and PTA and therefore
validates the choice of EMI as a benchmark for comparisons of
Section IV-A3 and the reported estimation bias and efficiency
therein.

5) Summary: The following conclusions are drawn from the
performed comparisons.

1) The result over the volcanic caldera proves the improved
efficiency of EMI compared with PTA in terms of phase
estimation (see Figs. 6 and 7).
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Fig. 8. Spatio-temporal assessment of the estimation bias and variance compared with EMI at different a posteriori coherence levels as a quantitative
assessment of phase discrepancy between EMI and (a) PTA1 and (b) EVD. The bias (μi ) and standard deviation (σi ) of the estimators are reported relative to
the a posteriori coherence, with i referring to the reported coherence level. The agreement between the methods increases with the increase of the coherence.
This analysis is relative to EMI, an independent quantitative assessment follows to validate EMI as an outperforming estimator.

Fig. 9. Temporal assessment of δSNR, as an independent quality descriptor of each PL approach; reported for the time series of estimated interferograms.
Positive values of δSNR indicate improved SNR of the PL-estimated over the spatially multilooked interferograms. As an overall trend, EMI is observed to
slightly outperform EVD and PTA. This behavior is in line with the conclusions of the simulation analysis in Fig. 1(c) and (d).

2) The initialization of PTA is proved to have an impact
on its estimation efficiency (see Figs. 6 and 7)

3) Between the two compared initialization methods,
the eigenvector is a more efficient approach
(see Figs. 6 and 7).

4) PTA’s subjective choice of initialization highlights the
merit of EMI in efficient data processing, as the latter
is exempt from initialization.

5) PTA1 is initialized by the solution of EMI and spends
extra effort on fitting its model through further iterations.
The additional iterative solution not only imposes extra
computation but may also compromise the estimation
efficiency and cause divergence from an optimum solu-
tion (see Figs. 6 and 7).

6) EVD is quantitatively shown to increase the estimation

bias and variance compared with the probabilistic-based
approaches (see Figs. 8 and 9).

7) The negligible increment in the computational cost of
EMI with respect to EVD increases the estimation
efficiency (see Figs. 8 and 9).

B. Computational Efficiency

The cumulative processing time of PL for the entire scene
is provided in Fig. 10 in order to assess the computational
efficiency of different approaches. Note that the reported run
time excludes the preprocessing/postprocessing steps of PL
(e.g., adaptive multilooking). To insure the validity of these
comparisons, the implementation of the estimators is kept
similar, as far as the algorithmic details allow. However, EMI
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Fig. 10. Cumulative processing time of the estimators over the entire
test site as an assessment of computational efficiency. Note that the cross
comparison of the left and right plots is inadmissible due to difference in
implementation of the estimators. However, the within plot comparisons are
fair and conclusive. The comparison of EMI and EVD reveals the negligible
imposed computation of the latter. PTA1 and PTA2 differ only in their
initialization; their comparison highlights the impact of initialization on the
computational efficiency.

and EVD benefit from highly optimized eigendecomposition
libraries, namely the MRRR method, while PTA employs
a self-developed optimization module based on the analyt-
ical solution of (22) proposed in [8]. Due to this reason,
the direct comparison of eigendecomposition-based solvers
to PTA approaches is unfair and inconclusive. EMI may,
however, be fairly compared with EVD and PTA1 with PTA2.
From the comparison of EMI to EVD, it is apparent that
the additional computation, regarding the coherence matrix
inversion and its occasional regularization, has negligible
impact on the computational efficiency of EMI. Comparison
of PTA1 and PTA2 highlights the impact of initialization
on the computational efficiency of PTA. Note that the first
initialization method improves the efficiency by ≈ 50%.

The convergence behavior of PTA is further investigated,
revealing that PTA1 and PTA2 fail in convergence over 7%
and 18% of the test site, respectively. According to the
spatial analysis, failures in convergence occur over the vol-
canic caldera as well as the surrounding water. A comparison
between the number of iterations of PTA is presented
in Fig. 11. For visualization purposes, the axis is limited to
400 iterations, and convergence failures occurring at 4000 iter-
ations are excluded. The plot illustrates that nearly 11% of
the scene convergence occurs with less than 10 iterations for
PTA1, indicating that the solution of EMI and PTA coincides
for the respective regions. Also noticeable is the increase in
the number of iterations from PTA1 to PTA2, which is another
proof on the impact of initialization.

Spatial analysis of the convergence behavior shows that PTA
mostly spends its computational effort over fast decorrelated
regions. Examples are the surrounding water as well as the
sparse vegetated areas of the island, for which the a poste-
riori quality of phase estimation is poor. Due to their low
quality, such regions will be discarded in post-PL steps. This
observation proves that the additional effort of PTA for fitting
its model is not rewarded by any information gain in terms of
improving the spatial sampling.

Fig. 11. PDF of the number of iterations performed by PTA. For visualization,
the reported iteration range is limited, despite the maximum allowable iteration
of 4000. 7% and 18% of the scene fail in convergence after 4000 iterations
by PTA1 and PTA2, respectively.

Fig. 12. Lagrange parameter as a by-product of EMI. The closer the
parameter is to 1, the better is the fit of the EMI model to the data stack.

Final word on the computational efficiency regards the
comparison between EMI and PTA. Recall that the PTA1 is
initialized by the solution of EMI. It therefore has the iterative
analytical solution as an additional computation step compared
with EMI. On average, PTA1 performs 300 iterations for fitting
its model. This effort has been shown to be in vain, as it does
not improve the estimation efficiency and in part even results
in divergence from an optimum phase estimation (e.g., over
the caldera in Figs. 6 and 7). Therefore, EMI is argued to be
computationally more efficient than PTA.

C. Performance of λ as a Quality Measure

The Lagrange parameter of EMI has been introduced as
a quality measure for phase estimation. Fig. 12 reports this
parameter for the test site. In order to validate the merit of λ as
a quality measure, its relation with the a posteriori coherence
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Fig. 13. Bivariate distribution of the two quality measures for all pixels
in the scene. The correlation between the Lagrange parameter as a proposed
quality measure and the a posteriori coherence is observed. The approach of
both parameters γapt and λ to 1 indicates the validity of the EMI model for
the DS region. The center of this pdf at γapt = 0.23 and λ = 1.065 pertains
to the surrounding water as well as the dense vegetated area over the island
(see Fig. 12).

is investigated here. Fig. 13 shows the bivariate distribution
of the two measures for all pixels in the scene and reveals a
strong correlation between the two. The observed correlation
is explained based on the hypothesis of Section II-B; the
approach of λ to 1 indicates the goodness-of-fit of the SCM
model proposed by EMI as well as the convergence of models
in PTA and EMI. The center of this pdf at γapt = 0.23
and λ = 1.065 pertains to the surrounding water as well
as the dense vegetated area over the island (see Fig. 12).
These areas are masked from the presented interferograms
in Fig. 6.

V. CONCLUSION AND DISCUSSION

The coherence estimation error is known to affect the per-
formance of PL in general and PTA in particular. In the current
contribution, it has been demonstrated that the error affects the
computational efficiency of the algorithm as well. In the inter-
est of improving the estimation and computational efficiency
and approaching further to NRT processing of the emerging
SAR Big Data, we allowed the generalization of the PTA pro-
posed model. In modeling the SCM, the proposed generaliza-
tion accounts for the calibration of the (erroneous) coherence
matrix by a rank-1 dyad. An MLE of the proposed model has
been presented. The reference MLE has been approximated
and constrained to arrive at an efficient PL, provided by the
method of Lagrange multiplier. Both the eigenvalue and eigen-
vector of the Lagrangian solution have been investigated as
effective parameters for NRT data processing. Via simulation,
EMI has been shown to retain estimation efficiency close to
the CRLB.

Aside from the proposal of EMI, the efficient implementa-
tion of PTA in [8] has been brought into light. The estimation
and computational efficiency of the PTA have been shown to
be influenced by its initialization choice. This impact asserts
the advantage of eigendecomposition-based solvers in PL,
as they are exempted from initialization.

The EVD estimator has been argued to be suboptimum in
phase estimation. This theoretical proposition has been vali-
dated with simulation analysis and real data experiments. The
advantage of MLEs over the EVD is especially noticeable with
improved coherence estimation [see Fig. 1(a) and (b)]. Upon
enhancing coherence estimation, e.g., by nonlocal approaches
[34], [35], the performance of EMI improves beyond the
reported values in real data experiments. Furthermore, the
MLE-based approaches have been shown to be the outperform-
ing candidates for efficient time series analysis with Sequential
Estimator [1] [see Fig. 1(c)]. The computational efficiency of
EMI has been compared with EVD to verify the former as
an agile algorithm for NRT processing. Through simulation
and real data experiments, EMI was shown to be the optimum
approach for PL.

The incentive behind EMI is to generalize the covariance
model in reducing the impact of coherence estimation error
on PL. However, the extra degree of freedom provided by
EMI’s rank-1 calibration dyadic has been shown to be only
marginally successful in improving the performance of phase
estimation. A follow-on research direction is to further gen-
eralize the covariance model in order to better account for
higher rank coherence estimation error. As was the case for
EMI, a generalized model would allow a joint estimation
of the systematic phase series and the coherence matrix.
This research question falls in the realm of classical model
selection. The generalization of the model shall be dealt with
care, as an increase in model complexity raises the probability
of overparameterization. Ergo, further research is necessary for
the proposal and validation of new covariance models.

EMI’s efficiency has been investigated with respect to the
state-of-the-art PL techniques. The comparisons verify EMI
as the optimum choice for phase estimation compared with
the latter techniques. The incentive behind the proposal of
EMI is to advance the state-of-the-art techniques in efficient
NRT processing of Big InSAR Data. The Sequential Estimator
[1] was our initial proposal for efficient InSAR time series
analysis. A further marriage of EMI with the Sequential
Estimator is expected to enhance the performance of phase
estimation in the support of NRT processing of Big Data. The
integration of these two approaches and investigation of the
(possible) gained efficiency is a topic for follow-on research.

APPENDIX A

This appendix is dedicated to the derivation of the analytical
solution of MLE following the minimization of (10). To solve
this optimization, the following gradient is sought for finding
the extremum:

∂ I

∂ ζ H
+ ∂ II

∂ ζ H
= 0

with I := α−2ζ H (�̂−1 ◦ C) ζ

and II := −
n


i=1

ln(|ζ i |2)+ 2nln(2). (27)

Following the calculation of the two gradients, we have:
∂ I

∂ ζ H
= α−2(�̂−1 ◦ C) ζ
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and �
∂ II

∂ ζ H

�
k
= − (ζ )k

σ−2
k

. (28)

Substituting (28) into (27), the estimate of ζ̂ yields

(�̂−1 ◦ C) ζ̂ = α2σ̂
2 ◦ ζ̂ . (29)

The estimate of α̂ results from

∂ I

∂α
+ ∂ II

∂α
= 0 (30)

α̂ = 1

n
ζ̂

H
(�̂−1 ◦ C) ζ̂ . (31)

The analytical solution is different from both PTA and EMI.
To provide a recipe for the calculation of the sought parame-
ters, we further expand (29) and arrive at

α2σkexp(− jφk) =
n�

i=1

(�−1 ◦ C)ki σ
−1
i exp(− jφi)

(α2σk − σ−1
k (�−1)kk)exp(− jφk)

=
n�

i=1
i �=k

(�−1 ◦ C)kiσ
−1
i exp(− jφi).

Pursuing an iterative solution one has the following.

Let: rk =
n�

i=1
i �=k

(�−1 ◦ C)ki σ
−1
i exp(− jφi) :

φ̂k = � (rk)

α2σ̂k − σ̂k
−1(�−1)kk = |rk |

→ α2σ̂ 2
k − |rk |σ̂k − (�−1)kk = 0

→ σ̂k = |rk | ±
�|rk |2 + 4α2(�−1)kk

2
. (32)

Note that following the positive definiteness of � and con-
sequently �−1, (�−1)kk > 0; hence, the existence of two
solutions to (32) is guaranteed. To find a unique solution, σ
vector with lower norm is preferred for the MLE.

For σ = �1 to hold, the following condition will be met:
|rk | = 2−2α2(�−1)kk . In the cases where this condition holds,
the solution of PTA is in fact MLE.

APPENDIX B

Following the probabilistic approach to PL, the optimum
metric for weighting the interferograms in estimation of the
sought phase series is given by �−1 ◦�. Under this metric, PL
is translated into finding the complex vector, which minimizes
the objective function eH (�−1 ◦ � ◦ I�) e. The additional
constraints that each PTA and EMI impose on the sought
vector e to approach this optimization were reviewed in this
paper.

The mentioned metric of �−1 ◦ � possesses mathematical
features worthy of remark [36]. The elements of this matrix
are given by [37]

(�−1 ◦ �)ik = �ik

det(�)
γik . (33)

Fig. 14. Performance assessment of different PL estimators compared with
CRLB simulated with a coherence matrix over the volcanic caldera for which
PTA fails in phase estimation. (Top) Coherence matrix used for simulation.
(Bottom) RMSE of phase estimation for a simulated stack of 38 images under
the CCG statistic. This analysis further validates the optimality of EMI among
the PL estimators.

Here, γik is the (i, j) cofactor of matrix � defined by

γik = (−1)i+ j �(i | j) (34)

where �(i | j) is the first minor of �, as the determinant of the
submatrix formed by the elimination of row i and column k
of matrix �. Summation of the cofactor matrices yields the
Laplace expansion, which reads as

det(�) =
n�

i=1

�ik γik . (35)

Substituting (35) into (33), it is observed that the product �−1◦
� is a quasi-bistochastic matrix, i.e.,

n�
i=1

(�−1 ◦ �)ik =
n�

k=1

(�−1 ◦ �)ik = 1. (36)

The quasi-bistochastic property entails that

(�−1 ◦ �)e = e

with

e = 1√
n

�1. (37)

The latter introduces λ = 1 and e as the minimum eigenvalue
and eigenvector of the matrix under study. This eigenvector
coincides with the normalized modulus of the PTA model.

Note that the bistochastic property and the respective infer-
ence on the minimum eigenvector hold for the matrix �−1 ◦�.
Recurring to the product �−1 ◦ � ◦ I� in the objective
function of MLE, the observed interferograms of I� violate
the bistochastic property, rendering the optimum choice of
minimizing vector deviant from �1 exp( jφ).
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APPENDIX C

PTA has been observed to perform poorly over the volcanic
caldera. In order to investigate its behavior, a frequently
observed coherence structure over the volcanic caldera for
which PTA fails, while EMI and EVD are both successful is
studied here. The estimated coherence � is used to simulate
a stack of 38 images under the CCG statistics (according
to Section III). The coherence matrix and the RMSE of
phase estimation for PTA1, EVD, and EMI are provided
in Fig. 14. The convergence rate of PTA1 in this restricted
simulation scenario is 89%. It, however, decreases to 13.6%,
when including the observed phases from real data in I� to
the simulations. From this and similar analysis over other parts
of the volcanic caldera, it is concluded that the odd behavior
of PTA is related to the phase and possible violation of CCG
statistics. Further in-depth investigations are required to prove
the relation to the latter. This investigated coherence structure
is as well shown to affect the efficiency of the estimators
and further validates the optimality of EMI among the PL
estimators.
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