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Abstract— Continuous, consistent, and long time-series from
remote sensing are essential to monitoring changes on Earth’s
surface. However, analyzing such data sets is often challenging
due to missing values introduced by cloud cover, missing orbits,
sensor geometry artifacts, and so on. We propose a new and
accurate spatio-temporal prediction method to replace missing
values in remote sensing data sets. The method exploits the
spatial coherence and temporal seasonal regularity that are
inherent in many data sets. The key parts of the method are:
1) the adaptively chosen spatio-temporal subsets around missing
values; 2) the ranking of images within the subsets based on
a scoring algorithm; 3) the estimation of empirical quantiles
characterizing the missing values; and 4) the prediction of missing
values through quantile regression. One advantage of quantile
regression is the robustness to outliers, which enables more
accurate parameter retrieval in the analysis of remote sensing
data sets. In addition, we provide bootstrap-based quantification
of prediction uncertainties. The proposed prediction method was
applied to a Normalized Difference Vegetation Index data set
from the Moderate Resolution Imaging Spectroradiometer and
assessed with realistic test data sets featuring between 20%
and 50% missing values. Validation against established methods
showed that the proposed method has a good performance in
terms of the root-mean-squared prediction error and significantly
outperforms its competitors. This paper is accompanied by the
open-source R package gapfill, which provides a flexible, fast,
and ready-to-use implementation of the method.

Index Terms— Alaska, gap filling, imputation, interpolation,
Moderate Resolution Imaging Spectroradiometer Normalized
Difference Vegetation Index (MODIS NDVI), quantile regression,
R gapfill, TIMESAT, uncertainty.

I. INTRODUCTION

REMOTE sensing data are used to study a wide range
of Earth surface processes. The derived data sets have

the advantage of extensive spatial and temporal coverage.
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A less attractive feature is that they often contain low-
quality or missing values. In particular, data sets derived from
optical satellite sensors partially show clouds instead of the
Earth’s surface. As a consequence, the usability of the data is
limited. For example, proper monitoring of continuous vege-
tation change can be inhibited (see Arctic [1], Amazon [2],
and general [3]). To deal with this issue, low-quality and
missing values are often excluded from the analysis or they are
replaced with predictions from a variety of prediction methods
(also called “gap filling methods” or “imputation methods”).
Many prediction methods exploit the temporal correlation of
the data [4], [5], but only little attempt has been undertaken
to date to exploit the spatio-temporal nature of the data [6].
In this paper, we introduce a new spatio-temporal prediction
method and assess its performance.

A. Existing Methods to Predict Missing Values

A selection of methods to replace missing values in remote
sensing data sets is presented in Table I. They are grouped into
methods that exploit the temporal, spatial, or spatio-temporal
dependence structure of the data. Furthermore, software imple-
mentations and distribution under open-source licenses as well
as eventual provisioning of uncertainties for the predicted
values are listed in Table I. It should be noted that some
methods focus on the prediction of missing values and are
applied before data analysis (e.g., gapfill-MAP), while others
are designed to analyze the data and return predictions for
missing values as a byproduct (e.g., TIMESAT).

B. Novelty and Outline of the Proposed Method

The methods listed in Table I are well founded and capable
of predicting missing values in remote sensing data sets.
However, we discovered at least one of the following draw-
backs in each of the methods that we studied: 1) predictions
partially fail, especially when missing values are within large
gaps; 2) lack of quantification of prediction uncertainties;
3) nonavailability of well-documented open-source software
to support the usage and further developments of the method;
4) nonscalability to large data sets, especially through the
choice of methodology that prevents effective parallelization;
and 5) low speed because of computationally expensive meth-
ods that require large-scale storage.

The novelty of the proposed prediction method is that it
overcomes all of these drawbacks. More precisely, it avoids
drawback: 1) by predicting all missing values separately based
on dynamically chosen subsets, which allows the method to
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TABLE I

OVERVIEW OF PUBLISHED METHODS TO PREDICT MISSING VALUES IN REMOTE SENSING DATA SETS. IF A SOFTWARE IMPLEMENTATION OF THE
METHOD IS AVAILABLE, THE PROGRAMMING LANGUAGE IS INDICATED IN THE COLUMN “LANGUAGE.” OPEN-SOURCE SOFTWARE IS MARKED

WITH A � SYMBOL. THE COLUMN NAME “PU” ABBREVIATES “PREDICTION UNCERTAINTY” AND THE �SYMBOL IN THAT COLUMN

INDICATES WHETHER THE METHOD PROVIDES UNCERTAINTY QUANTIFICATION OF THE PREDICTED VALUES

deal with small and large gaps; 2) by including statistical
considerations, which enable the quantification of prediction
uncertainties; 3) because it is available as open-source R pack-
age gapfill featuring well-structured R and C++ code, unit
tests, and documentation; 4) by choosing a parallelizable
method and implementation; and 5) by relying on algorithms
that allow high computing speed.

The proposed method performs the following four steps
[see Fig. 1(a)] for each missing value.

1) Extract Subset: Iteratively select a large enough spatio-
temporal neighborhood of the target value, i.e., the
considered missing value to predict. We call that neigh-
borhood the “prediction set.”

2) Rank Images: Calculate a score for each image in the
prediction set based on valuewise comparisons between
all images in the prediction set. (An image refers to all
values of the data set observed at one point in time.)
Rank the images in the prediction set based on their
scores and index the images by their ranks.

3) Estimate Quantile: For all images in the prediction set
that have an observed value at the spatial location of the
target value, determine to which empirical quantile that
value corresponds relative to all values of the image.
Take the mean of the resulting empirical quantile levels
obtained from all images and use that as a target quantile
level τ .

4) Quantile Regression: Regress all values in the prediction
set on their associated image ranks using τ -quantile
regression. And finally, predict the target value based
on the fitted quantile regression.

Therefore, we can classify the proposed method within all
other methods. It belongs to the group of spatio-temporal

methods, exploiting the characteristic tendency of spatial
coherence as well as the temporal seasonal dynamics of remote
sensing data sets in order to predict missing values. Similar to
the methods described in [28], [30], and [31], this method
predicts the missing values in a data set based on spatio-
temporal subsets around the missing values.

II. PREDICTION METHOD

We start this section with an illustration of the proposed
method (see Section II-A), such that the main ideas become
immediately clear. In the following, the complete formal
description (see Section II-B) is given in order to explain
details, which are important for potential extensions and
modifications of the method.

A. Illustration With a Test Data Example

For illustration, we consider the test data set shown
in Fig. 1(b), which is based on the Moderate Resolution
Imaging Spectroradiometer Normalized Difference Vegetation
Index (MODIS NDVI) product MOD13A1. This product com-
prises several data layers (variables) containing values on a
common regular grid in space and time with a resolution
of 500 m, covering 16 days. One of the layers consists of
NDVI values and another one indicates the reliability of each
value based on quality assignments [35]. The selected data set
has a spatial extent of nx · ny = 21 · 21 values and consists
of 16 images having ns = 4 seasonal indices (the days 145,
161, 177, and 193 of the year) observed over na = 4 years
(2004–2007). In total, the data set has nx nynsna = 7056
(observed or missing) values. The 1603 (≈ 23%) values shown
in black are flagged as less than “good quality” by the quality



GERBER et al.: PREDICTING MISSING VALUES IN SPATIO-TEMPORAL REMOTE SENSING DATA 2843

Fig. 1. (a) Flow diagram of the proposed method showing the subset and prediction components as well as the involved steps 1–4 used to predict one
missing value. (b) Example MODIS NDVI data set featuring values for 21×21 spatial locations and 4×4 time points. The 1603 missing values are shown in
black. The prediction of the target value (⊗-symbol) is based on the subimages of the prediction set (indicated by dashed squares). (c) Five subimages of the
prediction set ranked 8–12 and a scatter plot of the observed NDVI values (y-axis) and the rank of the subimages (x-axis) are shown. The scatter plot also
shows the fitted line of the quantile regression (dashed line) and the predicted value (⊗-symbol). The τ̂s,a values are estimates from the empirical quantiles
of the values marked with ×-symbols relative to their respective subimages.

layer of the data set and we treat them as missing. The
proposed method predicts each missing value separately and
applies steps 1–4 summarized in Fig. 1(a) to each of them.
In the following, we illustrate the prediction of the missing
value highlighted by the ⊗-symbol in the image of day 177
in the year 2005 [see Fig. 1(b)]. We refer to that value as the
“target value.”

In step 1, we select the prediction set, which is a sufficiently
large spatio-temporal neighborhood of the target value. The
prediction set for the considered target value is indicated by
the dashed squares [see Fig. 1(b)]. It consists of 12 smaller
subimages contained in the test data set. To select the pre-
diction set, we iteratively increase the spatial extent of the
neighborhood until enough subimages thereof are nonempty

and the subimage containing the missing value has enough
observed values. In the remaining steps 2–4, the target value
is predicted from the prediction set.

In step 2, we first score each subimage in the prediction set.
The score of a subimage is defined as the proportion of values
in the subimage that are larger than all values in the prediction
set with the same spatial location. This score induces a ranking
of the subimages, i.e., the subimage with the smallest score has
rank one, and so on. In Fig. 1(c), the subimages ranked 8–12
and their scores are shown.

To explain step 3, we consider the bottom row of Fig. 1(c),
which displays the observed NDVI values of the shown
subimages (y-axis) plotted against the ranks of the subimages
(x-axis) by a scatter plot. The ×-symbols indicate values that



2844 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 5, MAY 2018

have the same spatial location as the target value. Their vertical
positions in the scatter plot provide a visual estimation of their
empirical quantile relative to the values of the corresponding
subimages. If possible, we estimate those empirical quantiles
for each subimage [indicated as τ̂s,a in Fig. 1(c)]. Then,
the empirical quantile of the target value is estimated as the
mean of all estimated empirical quantiles of all subimages.

In the final step 4, we fit a quantile regression to the
observed values of the prediction set. The regression uses
an intercept and the associated ranks of the subimages as
linear predictors. As quantile of interest, we use the estimated
empirical quantile of the target value. In the scatter plot
of Fig. 1(c), the fitted quantile regression line (dashed line)
and the corresponding predicted target value (⊗-symbol) are
shown.

B. Formal Description

In this section, we formalize the proposed prediction method
illustrated in Section II-A. We store the observed remote
sensing data in the nx × ny × ns × na array Z , where nx

and ny ∈ N are the spatial extents of the images, ns ∈ N

is the number of images within a year, and na ∈ N is the
number of years. The values of Z are either observed values
in R or missing (denoted with NA). We use the square bracket
notation to select subsets of arrays. For example, Z [x, y, s, a]
denotes one value of Z , where the indices x ∈ {1, . . . , nx }
and y ∈ {1, . . . , ny} describe the spatial location, the index
s ∈ {1, . . . , ns} the season (position within a year), and
the index a ∈ {1, . . . , na} the year. In addition, we write
k1:k2 with k1, k2 ∈ N as an abbreviation for the integer
sequence k1, . . . , k2. With that, we can specify array subsets,
e.g., Z [1:3, 1, 1, 1] selects three values of Z . We use the dot
notation to indicate all valid indices. For example, Z [·, ·, ·, ·]
equals Z and Z [·, ·, 1, 1] denotes all values of Z with seasonal
index 1 of year 1, and hence a spatial image.

The proposed method predicts each missing value in Z
independently of other missing values. Therefore, it is suf-
ficient to describe the prediction of one missing value
Z [xT , yT , sT , aT ], where the subscript “T ” stands for “target
value.” To simplify notation, we assume that Z [xT , yT , sT , aT ]
is far away from the boundaries of Z . To obtain a flexible and
user-friendly implementation of the method, we split it into a
subset and a prediction component [see Fig. 1(a)]. The subset
component selects a subset of Z around Z [xT , yT , sT , aT ]
according to a neighborhood search scheme detailed in
Section II-B1. The subsequent prediction component decides
whether it is possible to predict Z [xT , yT , sT , aT ] based on
that subset. If so, Z [xT , yT , sT , aT ] is predicted as described
in Section II-B2; otherwise, the procedure returns to the
subset component and updates the subset parameters to
extract a larger subset. This iterative algorithm is repeated
until the prediction component decides that it is possible
to predict Z [xT , yT , sT , aT ] based on the selected subset
[see Fig. 1(a)].

1) Subset Component: To be more specific about the search
strategy for suitable subsets [step 1 in Fig. 1(a)], we define
the following function, which returns a subset of Z around

the target value Z [xT , yT , sT , aT ] :
f (Z , i) = f (Z; i, xT , yT , sT , aT , λx , λy, λs , λa)

= Z [(xT − (λx + i)):(xT + λx + i),

(yT − (λy + i)):(yT + λy + i),

(sT − λs):(sT + λs), (aT−λa):(aT + λa)]. (1)

The parameters λx , λy, λs , λa ∈ N are tuning parameters,
which define the initial size of the subset. The values of the
tuning parameters used in this paper are given in Section III-C.
The index i is set to 0 initially and is increased by one
whenever the selected subset is rejected by the prediction com-
ponent. By increasing i , the subset selected by f (Z; i) grows
in the spatial dimension but not in the temporal dimension.

2) Prediction Component: The first task of the prediction
component is to decide whether it is possible to predict the
target value Z [xT , yT , sT , aT ] based on the subset selected
by f (Z; i). We require that the subset fulfills the following
criteria.

C1: The subset must contain at least θ1 nonempty subim-
ages.

C2: The subimage in the subset containing the target
value Z [xT , yT , sT , aT ] must have at least θ2 observed
values.

θ1 and θ2 are again tuning parameters. If C1 and C2 are
fulfilled, we call the subset selected by f (Z; i) the prediction
set and denote it by P . For further description, let P be
an n p

x × n p
y × n p

s × n p
a array and let xt , yt , st , at be the

indices of the target value relative to P , i.e., P[xt , yt , st , at ] =
Z [xT , yT , sT , aT ].

In step 2, we rank the subimages in the prediction set P
based on a scoring algorithm. The underlying assumption of
the scoring algorithm is that the subimages have similar but
potentially shifted distributions of values. The algorithm scores
each subimage separately and the score of a subimage is
defined as the proportion of values in the subimage that are
larger compared with the values at the same spatial coordinates
in all other subimages. Missing values are automatically
corrected for, since the proportions are calculated based on
observed values only. Pseudocode 1 describes in detail how
the score of a subimage is obtained. Note that the mean
function in the pseudocodes is assumed to return the mean
of the observed values. The scoring algorithm (Pseudocode 1)
is repeated for all subimages in P . Note that some subimages
may receive an NA as a score, e.g., because the subimage
consists of NA values only, and we exclude subimages with
NA scores from the further analysis. The subimages are ranked
by increasing score, i.e., the subimage with the smallest score
is assigned rank r = 1, and so on. With that, each value in
P has an associated rank r . We close this part by mentioning
that scoring of images containing missing values is the subject
of current research [36].

In step 3, we estimate the target quantile level τst ,at

relative to P[·, ·, st , at ], i.e., the subimage containing the
target value. If all values of P[·, ·, st , at ] were observed,
we could simply estimate the empirical cumulative distrib-
ution function (ECDF) F̂st ,at (·) from P[·, ·, st , at ] and set
τ̂st ,at = F̂st ,at (P[xt , yt , st , at ]) to obtain an estimate of the
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Pseudocode 1 Score the Subimage P[·, ·, sk , ak] Relative to
the Other Subimages in P

Input: P , sk , ak , n p
x , n p

y , n p
s , n p

a

Output: Score of the subimage P[·, ·, sk , ak]
Define R as a n p

s × n p
a matrix

R[·, ·] ← NA
Define M as a n p

x × n p
y matrix

for s ∈ {1, . . . , n p
s } and a ∈ {1, . . . , n p

a } do
M[·, ·] ← NA
for x ∈ {1, . . . , n p

x } and y ∈ {1, . . . , n p
y } do

if P[x, y, sk, ak] and P[x, y, s, a] are not NA then
if P[x, y, sk , ak] > P[x, y, s, a] then

M[x, y] ← 1
else

M[x, y] ← 0
end if

end if
end for
R[s, a] ← mean(M)

end for
return mean(R)

target quantile level. However, by definition, P[xt , yt , st , at ]
is missing, and hence, we rely on the algorithm formalized
in Pseudocode 2 to estimate τst ,at from all other subimages
in P . The algorithm first uses the observed values in P to
estimate an ECDF F̂s,a(·) for each subimage. Then, it esti-
mates τ̂s,a = F̂s,a(P[xt , yt , s, a]) for each subimage (i.e., for
all s ∈ {1, . . . , n p

s } and a ∈ {1, . . . , n p
a }) and sets τ̂st ,at to the

mean of all those τ̂s,a values. Note that some τ̂s,a values may
be NA because of missing P[xt , yt , ·, ·] values. We require at
least ν ∈ N observed values in P[xt , yt , ·, ·], where ν is the last
tuning parameter. If this requirement is not met, the ECDFs
F̂s,a are evaluated in a spatial neighborhood of (xt , yt ).

Finally, we fit a quantile regression [37], [38] to all observed
values of P using an intercept and their associated rank r as
linear predictors [see step 4 in Fig. 1(a)]. Quantile regression
fits a regression line for an arbitrary but fixed quantile level τ
(as opposed to ordinary regression where the conditional mean
is modeled). This makes it robust to outliers, which are
common in remote sensing data sets. For the quantile level τ ,
the regression is formalized as

Q(τ | r) = β0(τ )+ β1(τ )r (2)

where β0(τ ) and β1(τ ) ∈ R are the coefficients. We set τ =
τ̂st ,at and fit the τ̂st ,at -quantile regression model to obtain the
estimates β̂0(τ̂st ,at ) and β̂1(τ̂st ,at ). The prediction of the target
value is then

Ẑ [xT , yT , sT , aT ] = P̂[xt , yt , st , at ]
= β̂0(τ̂st ,at )+ β̂1(τ̂st ,at )rt (3)

where rt denotes the rank associated with P[·, ·, st , at ], i.e., the
subimage containing the target value.

Pseudocode 2 Estimate the Quantile τst ,at of the Target Value
P[xt , yt , st , at ] Relative to P[·, ·, st , at ]

Input: P , ν, xt , yt , n p
x , n p

y , n p
s , n p

a

Output: τ̂st ,at

Define V as a n p
s × n p

a matrix
V [·, ·] ← NA, j ← 0, D← P[xt , yt , ·, ·]
while the number of observed values in D < ν do

j ← j+1, D← P[(xt− j):(xt+ j), (yt− j):(yt+ j), ·, ·]
end while
Define A as (2 j + 1)× (2 j + 1)× n p

s × n p
a array

A[·, ·, ·, ·] ← NA
for s ∈ {1, . . . , n p

s } and a ∈ {1, . . . , n p
a } do

Estimate the ECDF Fs,a(·) from P[·, ·, s, a]
for x ∈ {1, . . . , 2 j + 1} and y ∈ {1, . . . , 2 j + 1} do

p← P[xt − ( j + 1)+ x, yt − ( j + 1)+ y, s, a]
if p is not NA then

A[x, y, s, a] ← F̂s,a(p)
end if

end for
V [s, a] ← mean(A[·, ·, s, a])

end for
return mean(V )

C. Prediction Uncertainties

Uncertainty estimates of the predicted values are essential
when using them to derive conclusions in further analyses. Sta-
tistical theory provides ways to quantify uncertainty through
prediction intervals. Possible approaches applicable to the
proposed method are bootstrap and cross validation. However,
both approaches are computationally expensive and inaccurate
if the underlying assumptions about the data are not met.

We study the magnitude of the uncertainties introduced by
steps 1–4 [see Fig. 1(a)] separately by constructing prediction
intervals. We assess the uncertainties introduced in step 1 by
running the proposed method with all possible initial sizes of
the spatial subset. Then, we measure the variability in those
predictions with a 90% prediction interval for each missing
value derived from the 5% and the 95% quantile of the
predicted values. The uncertainty of step 2 is assessed via
permutations of the ranks of the subimages in the prediction
set. We calculate the predicted values for all permutations and
again construct a 90% prediction interval for each missing
value by considering the 5% and the 95% quantile of the
predictions. For step 3, we derive a 90% prediction interval
by quantifying the variability in the estimated quantiles stored
in V of Pseudocode 2. This variability is again summarized
with the interval given by the 5% and the 95% quantiles.
Finally, the uncertainty introduced in step 4 is assessed by
calculating a 90% prediction interval based on bootstrap
methods implemented in the R package quantreg [39].

Estimates of the prediction uncertainties could be derived
by combining the uncertainties of all four previously described
steps. However, doing so in a meaningful way is not straight-
forward due to possible interactions and elimination effects
among them. Nevertheless, we combine the uncertainties from
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steps 2 and 3 in one prediction interval. The lower bound of the
prediction interval is obtained by fitting a quantile regression
for the quantile level set to the 5% quantile of the values in
V of Pseudocode 2. Then, all values in the prediction set P
are predicted using that model fit and the 5% quantile of all
those predictions is taken as lower bound of the interval. The
upper bound is constructed similarly but uses 95% quantiles
instead of 5% quantiles. An evaluation of the properties of
that interval is given in Section IV-B.

D. Software Implementation

The proposed method is implemented in the programming
languages R and C++ and is available as open-source R pack-
age gapfill at https://cran.r-project.org/package=gapfill [27].
gapfill features a flexible design allowing the user to optimize
the prediction for specific data sets. It has separate subset and
prediction functions corresponding to the subset and prediction
components [see Fig. 1(a)]. This enables independent modi-
fication of those components and is useful to construction of
new prediction methods with a little effort. Examples using an
MODIS data set and a detailed documentation of the package
are available in the reference manual [27] and in Section S1 in
the supplementary material.

By design, the method is straightforward to parallelize,
because it predicts each missing value independently of the
others. To enable parallel execution, gapfill relies on tools
from the R package foreach [40], which allows the user to
choose between an OpenMP [41] and an MPI [42] back end
depending on the architecture of the available computer. This
makes the method scalable in the sense that gapfill can exploit
the resources of both small and large computers. Hence,
the method can be used to predict large amounts of missing
values typical of remote sensing data with minimal effort.

III. SETUP FOR EVALUATION

Four test data sets are constructed to investigate the pre-
dicted values and uncertainties. In addition, we compare
the accuracy of the predicted values against those of two
competing prediction methods.

A. Selected MODIS Data

We consider the MODIS satellite product MOD13A1, which
is part of the MODIS vegetation index product MOD13 [43].
MOD13A1 is a land surface product and is based on eight-day
MODIS Level-2G surface reflectance data, which have been
further composited to obtain the final resolution of 16 days
and 500 m [44], [45]. The NDVI layer of MOD13A1 can be
used to describe vegetation activity [46]. Moreover, we use
the “pixel reliability” layer to set NDVI values flagged as less
than “good data” to NA [35].

To evaluate the prediction method, NDVI data from the
years 2004 to 2009 are considered and restricted to the region
of northern Alaska, as shown in Fig. 2. Due to the high
latitudes ranging from 66° north to more than 71° north, the
NDVI values exhibit a strong seasonal component. That is
reflected in both the NDVI values and the number of available

values classified as “good data.” Especially during wintertime,
little data are available because of missing sunlight and snow
cover. Therefore, we restrict the analysis to the seasonal period
starting on the day of the year (DOY) 145 (about May 24) and
ending on DOY 257 (about September 13). The data set then
covers eight dates with observations each year and consists of
at least 30% “good data” per DOY.

The MOD13A1 data are downloaded in six spatial tiles
and merged to one single image per considered point in
time using the R package MODIS [47], which interfaces
the MODIS reprojection tool [48]. Furthermore, the data are
transformed from the sinusoidal to the geographic map pro-
jection (WGS84). The R packages raster [49], sp [50], [51],
fields [52], lattice [53], and ggplot2 [54] are used to handle
and visualize the data.

B. Test Data Sets Based on MODIS Data

Next, we construct four tests data sets based on the
previously described subset of MOD13A1. Using real data,
as opposed to simulated data, has the advantage that the data
come close to the use-case of interest. To construct the four test
data sets, we consider the data from the spatial region labeled
with “Data” in Fig. 2. The “Data” region has a spatial extent
of 100 × 100 values and is selected such that the resulting
data set (referred to as “data subset”) has a relatively few
missing values (about 12%). Moreover, the data subset reflects
typical features of NDVI data sets in high latitudes. Two of
these features are the latitudinal gradient manifesting itself
through lower NDVI values in the northern regions and low
NDVI values that are caused by surface water. Note that the
temporal extent of the data subset remains unchanged and has
eight seasonal time points per year for six years.

The four test data sets are then constructed by artificially
setting NDVI values of the data subset to NA. To mimic
realistic spatio-temporal distributions of missing values, setting
values to NA is performed according to the distributions of
missing values observed at other locations of the Alaska data
set (as opposed to selecting values randomly). We choose the
distribution of missing values observed at the regions of the
rectangles indicated by “20%,” “30%,” “40%,” and “50%”
in Fig. 2. This selection leads to test data sets with fractions of
20%, 30%, 40%, and 50% missing values. The four test data
sets are shown in Figs. S1–S5 in the supplementary material.

For the four test data sets, we know the true values
for most missing values and call them validation values.
Hence, we can apply a prediction method to the test data
sets and compare the predicted values to those validation
values. To measure prediction accuracy, we use the root-mean-
squared prediction error (RMSPE) and the mean absolute
prediction error (MAPE) defined as

(∑n
i=1(ẑi − zi )

2/n
)1/2

and
∑n

i=1

∣∣ẑi − zi
∣∣ /n, respectively. Here, n is the number of

predicted values ẑi , and zi denote the corresponding validation
values [55].

In addition, a data set consisting of the entire spa-
tial extent of northern Alaska, as shown in Fig. 2, was
compiled. While the temporal dimensions of that data set
remained unchanged, the size of the images is increased to
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Fig. 2. Map of the study region of northern Alaska. Colors: percentage of missing values of all 48 considered time points. To construct test data sets,
we consider the NDVI values of the region labeled with “Data,” which has a spatial extent of 100×100 values. That subset exhibits a relatively few (about 12%)
missing values. Test data sets with 20%, 30%, 40%, and 50% missing values are obtained by artificially removing values from the “Data” region according
to the distribution of missing values observed at the regions labeled with “20%,” “30%,” “40%,” and “50%,” respectively. Note that the regions are shown as
rectangles, as opposed to squares, because of the chosen geographic map projection.

271 819 values. 3 696 691 (28%) of the 271 819·8·6 ≈ 13·106

values in that data set are missing. The data set is shown
in Fig. S13 in the supplementary material.

C. Competitors

In addition to the performance measurements of the pro-
posed method referred to as gapfill, we also compare the accu-
racy of its predicted values against those from two competing
prediction methods. The first competitor is presented in [28]
and uses two different prediction algorithms depending on the
amount of missing values. We choose this method, because it
is a relatively new and promising spatio-temporal prediction
method, which is available as open-source Python and C code
(github.com/malaria-atlas-project/modis-gapfilling). We use a
code version downloaded on August 15, 2015 (git commit
c83776c) and refer to that software as “gapfill-MAP.”

The second competitor, the TIMESAT software, is chosen,
because it is well established. The main purpose of TIMESAT
is to smooth time-series of remote sensing data and to estimate
seasonal parameters. TIMESAT treats the values of each
sampled location separately and, hence, does not exploit the
spatial dependence in the data. Several authors report that
the smoothed time-series from TIMESAT can be used to
predict missing values [9], [56], [57]. TIMESAT is a closed-
source software implemented in Fortran and comes with a
MATLAB [58] interface featuring a graphical user interface.
The software (version 3.2) and its documentation are available
at web.nateko.lu.se/timesat/.

gapfill, gapfill-MAP, and TIMESAT have several tuning
parameters, which influence the prediction process and the
accuracy of the predictions. Although we tried to find good
parameter configurations for each competitor, results may

improve with other settings. Nevertheless, the presented com-
parisons give a solid overview of the performance.

For gapfill, the chosen tuning parameters are λx = λy = 10,
λs = 1, λs = 5, θ1 = 5, θ2 = 25, and ν = 2. An exam-
ple R-code showing how to execute the gapfill software is
available in Listing S1 in the supplementary material. gapfill-
MAP has 16 tuning parameters, which are difficult to interpret
because of missing documentation. Important parameters are
those controlling the search of informative values and the
“despeckle” algorithm (see the Python code for more infor-
mation). We used the parameters given in Listing S2 in the
supplementary material. For TIMESAT, the tuning parameters
are described in the software manual [59]. We choose to fit a
“double logistic” smoothing function, which is recommended
for NDVI values in high latitudes with many missing val-
ues [60] and which provides the most satisfying results for
our test data sets. The complete configuration file is shown in
Listing S3 in the supplementary material.

IV. RESULTS

A. Prediction Accuracy

We apply the proposed prediction method to the test data
sets described in Section III-B. It returns predictions for all
missing values in all test data sets. Images of the resulting
completed data sets are shown in Figs. S6–S9 in the supple-
mentary material and Fig. 3 (left). A visual examination of the
predicted values reveals that they have the expected spatial dis-
tribution, including small-scale features such as, e.g., the band
of low NDVI values crossing the images from the west to the
east. Moreover, the predicted values do not show any artifi-
cially introduced patterns. Time-series for three spatial loca-
tions of the test data set with 40% missing values are shown
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Fig. 3. Predictions and accuracy measurements for the test data set with 40% missing values. (Left) Predicted NDVI values for the day 177 of the year 2006.
For that image, 2 335 of 10 000 values were observed (shown in white). (Middle) RMSPE for the indicated dates. (Right) Spatial distribution of the RMSPE.
19 RMSPE values are missing (shown in black), because the corresponding locations have observed values at all considered time points. Note that the left
and right images have an extent of 100× 100 values and each value corresponds to a pair of latitude (y-axis) and longitude (x-axis) coordinates.

Fig. 4. Time-series for three spatial locations of the test data set with 40% missing values. The spatial locations is selected, such that they represent locations
with (top) large, (middle) average, and (bottom) low NDVI values. If validation values are available, they are displayed with circles. The gray areas represent
the time span from mid-September to mid-May with low vegetation activity.

in Fig. 4. The spatial locations are selected such that typical
time-series with large, average, and low NDVI values result.
The predicted values follow the expected seasonal curve and
match the validation values well. Low NDVI values are more
difficult to predict [see Fig. 4 (bottom)] as they have larger
uncertainties (see Fig. S1 in the supplementary material).

To assess the temporal variation of the prediction accuracy,
the mean RMSPEs per time point for the test data set with
40% missing values are shown in Fig. 3 (middle). The
figure shows that the RMSPEs are larger for early DOYs.
This is in accordance with the observation that values at
the beginning of the season are more likely to be missing
and exhibit larger variability compared with values observed
at the end of the season (see Fig. S1 in the supplementary
material). Fig. 3 (right) shows the spatial distribution of the
mean RMSPEs, which resembles the spatial distribution of
the temporal variation in the data (see Fig. S1 (top-right) in
the supplementary material). This is expected, because values
observed at locations with large temporal variability in the
NDVI values are more difficult to predict.

Another way to study prediction accuracy is to plot the val-
idation values against the predicted values, as shown in Fig. 5
(top). Most of the validation values are between 0.3 and 0.8.
In that interval, the predicted values are scattered around the
diagonal (red line) indicating that they are near the validation
values on average. Predictions for values below 0.3 have lower
accuracy. This is in accordance with the observation that those
values tend to have larger variance over time and are, therefore,
more difficult to predict. As expected, the deviation of the
predicted values from the validation values increases with
larger percentages of missing values. This can also be seen in
Fig. 5 (bottom), where the histograms of the prediction errors
(predicted minus validation values) show a wider distribution
with increasing percentages of missing values. While the
medians of the error differences are located at zero, the dis-
tributions of the differences are positively skewed (skewness
between 2.17 and 2.3), which reflects an increased prediction
uncertainty for low NDVI values. The standard deviation of
the distributions of differences is between 0.041 and 0.042
for the test data set with 20%, 30%, and 40% missing values,
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Fig. 5. Accuracy of the gapfill predictions for the four test data sets. (Top) Scatter plots of the predicted values (y-axis) and the validation values (x-axis).
Green color shading: regions with a large density of points. Light green color shading: 100 overlaying points. (A similar figure for the gapfill-MAP and
the TIMESAT method is given in Fig. S16 in the supplementary material.) (Bottom) Histograms of the differences between the predicted and the validation
values. Dashed lines: 2.5%, 50%, and 97.5% quantiles.

Fig. 6. (Left) Uncertainty contribution from the four steps of the prediction method. (Middle) Spatial distribution of the mean 90% prediction interval width
for the test data set with 40% missing values. (Right) Corresponding coverage rates and mean prediction interval widths per DOY.

and increases to 0.059 for the test data set with 50% missing
values. This increase could be due to an increased amount of
missing low NDVI values in the test data set with 50% missing
values.

In addition, gapfill is applied to the 48 images covering the
entire spatial region of northern Alaska (see Fig. 2). To predict
the ≈ 3.7× 106 missing values of that data set, 80 cores of
an Intel Xeon CPU E7-2850 at 2 GHz run for 10 h. The
images of the predicted values are shown in Fig. S14 in
the supplementary material. Again, all missing values are
predicted and a visual inspection of the data does not reveal
any artificially introduced patterns.

B. Uncertainty Assessment
The widths of the prediction intervals, corresponding to

the four main steps of the prediction method, summarize
their uncertainty contributions. Fig. 6 (left) shows the sum-
mary statistics of these widths as boxplots, revealing that
the sorting step 2 (Pseudocode 1) introduced the largest

uncertainties, followed by the estimation of the quantile
of step 3 (Pseudocode 2). To investigate the properties
of the 90% prediction interval combining the uncertainties
from steps 2 and 3, the spatial distribution of the mean
prediction interval widths is shown in Fig. 6 (middle).
It exhibits a similar spatial distribution as the standard devi-
ation estimated for each spatial location of the test data set
(see Fig. S1 (top-right) in the supplementary material) and the
spatial distribution of the average RMSPEs [see Fig. 3 (right)].
Since the seasonal variability of the prediction interval widths
is larger, compared with the interannual variability, we only
show the former in Fig. 6 (bottom-right). It has a U-shape,
which is also observed in the distributions of the missing
values (see Fig. S1 in the supplementary material) with some
deviations early and late in the season, i.e., the values of
DOY 145 and 257. These deviations might be caused by
the fact that we only consider a part of the seasonal cycle,
and, hence, have less information at the boundaries thereof.
The overall coverage rate of the prediction interval for that
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TABLE II

PREDICTED VALUES OF THE FOUR TEST DATA SETS OBTAINED WITH gapfill, GAPFILL-MAP, AND TIMESAT ARE SUMMARIZED IN

TERMS OF THE NUMBER AND PERCENTAGE OF SUCCESSFULLY PREDICTED VALUES AND THE RMSPE×103. TO GET
COMPARABLE RESULTS, THE RMSPEs OF gapfill ARE ALSO GIVEN FOR THE SUBSETS OF SUCCESSFULLY

PREDICTED VALUES FROM GAPFILL-MAP (RMSPEMAP) AND TIMESAT (RMSPET)

Fig. 7. Comparison of the APEs of the predictions of gapfill and gapfill-MAP for the test data set with 40% missing values. (Left) Scatter plot of the square
root APEs of gapfill (y-axis) and gapfill-MAP (x-axis). The green color shading indicates regions with a large density of points (light green color shading
corresponds to 25 overlaying points). (Middle) Difference of the MAPEs of gapfill and gapfill-MAP for the indicated dates. (Right) Spatial comparison of the
MAPEs. Colors indicate for each of the 100 × 100 spatial locations of the test data set whether the MAPE of gapfill or gapfill-MAP is larger. Dark colors
indicate that the differences are significant (Wilcoxon tests, α = 0.05). For the 385 values shown white, no comparison was made, because all values for the
corresponding locations were observed or gapfill-MAP did not return predictions for them.

data set is 93%, i.e., 93% of the validation values lie within
the corresponding prediction intervals. Hence, the prediction
uncertainty is slightly overestimated on average. The average
coverage rate per DOY is shown in Fig. 6 (right).

C. Comparison With Gapfill-MAP and TIMESAT
First, we compare for all three methods the number of

successfully predicted values and their percentages relative to
the numbers of missing values in the test data sets (column
“# predicted” of Table II). While gapfill returned predictions
for all missing values of the four test data sets, gapfill-MAP
and TIMESAT partially returned NAs as predicted values. The
numbers of NAs in the predictions seem to increase with
the numbers of NAs in the test data sets and they represent
a considerable proportion (up to 94%) of the predictions
from TIMESAT. The large amount of missing values in the
TIMESAT predictions might be explained by the uneven
spatial distribution of missing values in the test data sets,
which implies that TIMESAT had to process some time-series
with a large proportion of missing values. Another difficulty
for TIMESAT might be that the test data sets only contain 8
of the 24 time points of the seasonal cycle, because the quality
of the values from the remaining 16 winter time points was
too low.

The RMSPEs for gapfill are between 41.34 × 10−3 and
42.54 × 10−3 for the test data sets with 20%, 30%, and
40% missing values, and increase to 59.58 × 10−3 for the
test data set with 50% missing values (see Table II). This
increase can be explained by the spatio-temporal distribution
of missing values, which is different in all test data sets

and impacts the difficulty of the prediction task. gapfill-MAP
and TIMESAT have more problems in predicting the missing
values of the test data set with 50% missing values, as
indicated by the decrease in the proportion of successfully
predicted values (see Table II). The prediction accuracy in
terms of the RMSPE can only be calculated for successfully
predicted values. To make the RMSPEs of gapfill-MAP and
TIMESAT comparable to those from gapfill, we calculated
the RMSPEs of gapfill relative to the subsets of successfully
predicted values from gapfill-MAP and TIMESAT, and denote
them with RMSPEMAP and RMSPET , respectively. According
to the RMSPEs given in Table II, the gapfill predictions are
the most accurate ones for all test data sets. The MAPEs
show a similar pattern as the RMSPEs (Table S1 in the
supplementary material). Both the RMSPEs and MAPEs of
gapfill are significantly smaller than those from gapfill-MAP
and TIMESAT for all test data sets (Wilcoxon tests [61], all
p-values < 10−15).

While the RMSPEs of gapfill are close to those of gapfill-
MAP, the RMSPEs of TIMESAT are about two times higher
compared with those of gapfill and gapfill-MAP. We, therefore,
restrict the following comparison to the gapfill and gapfill-
MAP methods and investigate their predicted values for the
test data set with 40% missing values in more detail. Fig. 7
(left) shows a scatter plot of the square root absolute prediction
errors (APEs) of gapfill (y-axis) and gapfill-MAP (x-axis). The
square root transformation was chosen to facilitate the visual
inspection of small differences. In Fig. 7, the scattering seems
to be symmetric around the diagonal line and no clear pattern
discriminates the methods. In Fig. 7 (middle), the differences
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of the MAPEs of gapfill and gapfill-MAP are shown for all
time points, i.e., each point in that middle corresponds to the
difference between the MAPEs of gapfill and gapfill-MAP of
one image. For 33 of the 48 time points, the gapfill method
performed better, but no clear temporal pattern can be detected.
Finally, a spatial comparison of the MAPEs is given in Fig. 7
(right). The colors for each of the 100× 100 spatial locations
of the test data set indicate whether the MAPEs of gapfill are
larger or smaller compared with those of gapfill-MAP. For
Fig. 7, the MAPE of a spatial location is calculated from
the APEs of that location and all time points. Dark colors
indicate that the differences are significant (Wilcoxon tests,
α = 0.05). For 372 (72.2%) of the total 508 values exhibiting
significant differences, the gapfill method performed better.
The gapfill predictions perform especially well in the southern
region, where there is a higher concentration of significantly
smaller gapfill MAPEs. However, the MAPEs of both methods
are more similar in other regions. This could be due to
the accumulation of missing values in the southern region
(see Fig. S4 in the supplementary material). Images of the
complete spatio-temporal distribution of the APEs of gapfill
and gapfill-MAP as well as images of their difference are given
in Figs. S10–S12 in the supplementary material.

V. CONCLUSION

The newly proposed prediction method for missing values in
remote sensing data sets is convincing in many respects. First,
the method was able to predict all missing values in data sets
with large proportions of missing values (up to 50%). Second,
the predicted values reconstruct the spatial and temporal
patterns of NDVI data sets with many details. In realistic
test data sets with known validation values, the method has
returned accurate predictions with low RMSPEs and MAPEs.
Third, in comparison with two established prediction meth-
ods (gapfill-MAP and TIMESAT), the proposed method had
significantly lower RMSPEs for all considered test scenarios
(Wilcoxon tests, all p < 10−15). Fourth, the method provides
prediction intervals, which quantify the prediction uncertain-
ties based on statistical considerations.

When developing the method and its software
implementation, a key priority was usability among
practitioners working with remote sensing data. On the
one hand, this influenced methodological choices in
favor of techniques that are computationally efficient and
parallelizable. On the other hand, the focus on potential
users motivated us to develop a software implementation
with several advantageous features. The software is available
as open-source R package gapfill guaranteeing maximum
transparency and making it easy to use and further develop
the method. Moreover, gapfill contains C++ source code and
relies on parallel computing infrastructure from the R package
foreach enabling the users to fully exploit the available
computing resources. All functions of gapfill are accompanied
with documentation and unit tests to make them trustworthy.

We show the use of the proposed method for the prediction
of missing values in MODIS NDVI data sets of the Arctic
region. However, its use is not restricted to Arctic NDVI
data as, e.g., shown by the validation experiment based on

an MODIS NDVI data set from the Amazon region (see Sup-
plementary Material). One of the current limitations is that the
input data set has to be sampled on a regular grid in space and
time. But such data sets are indeed common within and outside
the field of remote sensing, and hence, for plenty of application
types, gapfill may be a beneficial alternative to other methods.
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