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Abstract— This paper develops a model of the synthetic
aperture, interferometric satellite radar altimeter echo power,
and echo cross-product. The model uses the smallness of the
satellite pitch and roll angles, and the limited range of satellite
altitude to provide a semianalytical echo model, whose numer-
ical dimensions are limited to two in the synthetic aperture
case or three in the interferometric case at large roll angles,
making its application to extensive data practical. By not imple-
menting the synthetic beam formation, it is demonstrated that
the model recovers the conventional case of a pulse-limited
altimeter. A theoretical description of the fluctuations in the
multilooked, interferometric cross-product, and the synthetic
aperture and pulse-limited powers is given by extending the
model to describe correlations between individual looks in each
case. The model offers the potential to retrieve ocean-surface
parameters from synthetic aperture and pulse-limited altimeter
data simultaneously, with obvious application to the new genera-
tion of altimeters onboard CryoSat-2, Sentinel-3, and Sentinel-6
during the transition to operational synthetic aperture radar
altimetry.

Index Terms— Geophysical sea measurements, ocean surface,
radar altimetry, radar remote sensing, spaceborne radar,
synthetic aperture radar (SAR).

I. INTRODUCTION

FOR more than three decades, satellite altimetry has pro-
vided a wealth of information concerning the marine

gravity field (see [1], [2]), the ocean dynamic topography
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(see [3]) and its variability (see [4], [5]), ocean tides (see [6]),
the height of the ocean swell waves [7], and the ocean-surface
wind speed [8]. Successive satellites, from Seasat (1978)
onward, have had radar altimeters among their payload, and
the use of radar altimeter observations in operational fore-
casting of ocean dynamics, waves, and winds is now familiar
and well established [9]–[11]. While the intervening period
has seen a continued improvement in the accuracy and pre-
cision of satellite altimeter measurements, arising variously
from the improvement in gravity modeling and microwave
tracking systems (see [12], [13]), increases in the pulse-
repetition frequency (PRF) [14], and the introduction of dual
frequency measurements (see [14], [15]) and of solid-state
power amplification [16], the design of radar altimeters has
not altered greatly from that of Seasat [17], [18]: a normal
incidence, full-deramp, linear frequency-modulated radar with
a circular antenna of around 1-m diameter operating at a
central frequency of 13.6 GHz with 320-MHz bandwidth.
Similarly, the ocean-surface parameters derived from these
measurements use, essentially, the model of the normal inci-
dence scattering of the sea surface developed at the time and
expressed in a closed form in [19].

Despite a design aimed at measuring the properties of the
ocean surface, pulse-limited altimeters have also provided new
insights into the behavior of the large ice sheets of Antarctica
(see [20]) and Greenland [21], and, more recently, Arctic sea
ice at the synoptic scale [22]. Nonetheless, the more variable
topography of ice sheets, and the scattering inhomogeneity of
sea ice interspersed with leads, has limited their performance
and (along with the choice of orbit inclination) their coverage.
For these reasons, the CryoSat-2 satellite [23], whose primary
mission goal is to observe fluctuations in earth’s marine and
continental ice fields, has its main payload, the “SIRAL”
altimeter, which differs in design from earlier, pulse-limited
altimeters. It exploits a design used first in planetary satellite
missions [24] that through improving the spatial resolution
with along-track aperture synthesis, better distinguishes sea ice
floes from the intervening leads, and as proposed in [25], adds
a second altimeter in the across-track direction, with which the
slopes of the marginal regions of the continental ice sheets can
be determined.

However, it has been argued for some time [26], [27] that a
synthetic aperture altimeter might also offer a greater measure-
ment precision over the open ocean than does the pulse-limited
design. By interrupting the synthetic aperture processing,
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it is possible to form the conventional pulse-limited echoes
to examine the equivalence of the two operating modes,
an important step in the transition toward the operational use
of synthetic aperture radar (SAR) altimeters for oceanography.
Based on CryoSat-2 SAR-mode acquisitions over the open
ocean, this equivalence has been demonstrated (see [41]–[43]),
and SAR altimeters are now becoming the standard for
future open ocean applications as the ESA Sentinel-3 and
Sentinel-6 satellites will both carry SAR altimeters. Further,
the calibration of the CryoSat-2 interferometer has demon-
strated sufficient accuracy to measure the across-track slope
of the ocean surface [28].

In this paper, we develop a robust model of the echo power
and echo cross-product from a synthetic aperture, interfero-
metric (SARIN mode) radar altimeter and demonstrate that
by simple modifications, the pulse-limited model is obtained
as a special case of the SAR-mode echo model. We take as a
suitably accurate model of the SARIN echo cross-product, and
SARIN and SAR mode echo powers, the description of [29],
together with the modifications particular to CryoSat-2, such
as the ellipticity of its antennas, given in [28]. As described
there, however, that model would require numerical lookup
tables of considerable size and dimensionality to apply in
practice, and in Section II, the smallness of the satellite pitch
and roll, and the limited range of satellite altitude are exploited
to reduce the size of the lookup tables that are required in
practice to two dimensions, or in the SARIN case, three
dimensions. The model is developed around the CryoSat-2
altimeter parameters; however, the results are generally
applicable to any SAR or SARIN altimeter instrument.

In Section III, we examine the precision, by which we mean
the random fluctuation in the measurements arising from the
presence of radar speckle. As with pulse-limited altimetry, this
depends on the extent to which individual echoes that are gath-
ered prior to multilooking are correlated. However, in addition,
SAR (and SARIN) altimetry is distinct from pulse-limited
altimetry in that the multilooking is also performed from
individual echoes drawn from different statistical populations.
In Section III, these aspects are examined through determining
the effective number of looks—a measure of the effectiveness
of the multilooking in suppressing speckle fluctuations—in
the SARIN and SAR modes, and compared with that pro-
vided by pulse-limited operation. For this purpose, the models
of Section II are extended to include the correlation properties
of the echoes in addition to their means. Section III is
concluded with a comparison of the modeled effective number
of looks with that observed in practice.

Finally, three Appendixes provide a description of the data
that were used in this paper (Appendix A), the details of the
data processing we applied to obtain the results provided in
the main text (Appendix B), and details of the effect of the
altitude rate on the echo shape (Appendix C).

II. MODELS OF THE MEAN ECHO CROSS-PRODUCT

AND ECHO POWER

In general, the aim of SARIN altimeter measurements over
the ocean is to determine the values of the ocean-surface
height, parameterized by a delay time τ0 in the echo, the

across-track gradient, parameterized by an “interferometer
angle” θ in the interferometer echo cross-product (described
more fully below), the ocean backscattering coefficient σ 0

(from which wind-speed is estimated) that depends on the
received echo power, and the standard deviation of the surface-
height distribution σs (from which the significant wave height
is estimated) obtained from the slope of the echo leading
edge. To do so, samples of the echo power are fit to a
model pr (σ

0, σs; τ − τ0) of the variation of echo power, or of
the echo cross-product to a model �r (σ

0, σs , θ; τ − τ0) of
the echo cross-product, by finding the values τ̃0, σ̃

0, σ̃s , and
θ̃ of the parameters that minimize the weighted, least-squares
difference between the observations and the model.

In addition to the ocean parameters, the echo power is
also sensitive to parameters that characterize the measurement
system (detailed in [28]) and which vary from echo to echo:
the measurement altitude, the antenna pointing, generally in
the case of CryoSat-2 requiring two angles to specify it, and,
in the case of SAR and SARIN mode echoes, the velocity of
the satellite. Thus, generally, the echo power is a 7-D or a
9-D function.

Were the models analytic, this presents no particular dif-
ficulty, but when, as is the case here, the model can only
be “exactly” determined numerically, the high dimensionality
presents a challenge in its computation if not its application.
Thus, it is helpful if, to the greatest extent possible, the small-
ness of the variations in some parameters can be exploited to
reduce the dimensionality of the functions that need numerical
calculation. This is the aim of this section, in which we reduce
the numerical dimensionality of the functions used in the SAR
and pulse-limited echo models to two dimensions, and that
for the SARIN echo or cross-product to three dimensions.
We work by discussing first the SARIN echo cross-product
model, and then, by successive simplifications, the SAR and
finally pulse-limited models.

A. Cross-Product Impulse Response

In general, the mean echo cross-product � at near normal
incidence from a rough surface is described by the triple
convolution

�r (τ ) = pt(τ ) ∗ pz(τ ) ∗ X (τ, B) (1)

where pt is the compressed pulse shape (also known as
the “single point-target response”), pz is the surface eleva-
tion probability density function, and X is the cross-product
“impulse response” of the surface [29]. X is a function of
delay and interferometer baseline B . If (1) is evaluated for
zero baseline, the result is the echo power

pr (τ ) = pt (τ ) ∗ pz(τ ) ∗ X (τ , 0). (2)

The decomposition (2) is due to [19] who introduced the
impulse response to describe the echo power; the extension
of (1) to the echo cross-product involves no new assumptions.

The theoretical description of the interferometer echo cross-
product we use is that of [29], in the form tailored to the
parameters of the SIRAL altimeter given in [28]. Fig. 1 shows
the along- and across-track geometry of the radar imaging.
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Fig. 1. (a) Along-track and (b) across-track geometry of the radar imaging.
The satellite proceeds along its orbit [dashed line in (a)]. At any point on
the orbit O , the satellite lies normally above the ellipsoidal nadir point N .
The velocity vector vs lies tangential to the orbit at O . The antennas’
boresight direction na is generally pitched at an angle μ to the nadir direction.
[When the satellite is pitched and rolled, as shown in (b), na has a component
in the across-track direction.] Synthetic beams (only one is shown for clarity)
are formed at a sequence of look angles ξk that describe the angle between
the synthetic beam boresight direction nb and the nadir direction. In the
across-track direction, the transmitting antenna (L for the SIRAL “A” chain
used in this paper) falls on the left when viewed in the direction of flight.
In SAR mode, the left antenna is used for reception; in SARIN mode, the
left and right (R) antennas are used for reception. The antennas’ baseline
normal direction (OQ) is generally rolled by an angle χ with respect to the
nadir direction. The “interferometer” angle θ can be interpreted geometrically
as the angle of the first arrival, measured from the baseline normal, at the
satellite of an echo from a surface with an across-track slope β relative to
the ellipsoid. Due to the earth’s curvature, the surface angle perceived by the
interferometer is smaller than β by a factor η.

The multilooked cross-product impulse response from a
surface slightly inclined to a sphere when using a mispointed,
elliptical antenna is

X (τ, B) ∼
(N−1)

2�
k=− (N−1)

2

Xk(τ, B) (3)

where

Xk(τ, B)

∼ λ2G2
0 D0cσ 0

32π2h3η
H

�
τ + ηhξ2

k

c

�

· e
−ik0 B

(
χ+ β

η

) � 2π

0
dϑd(ρkcosϑ − ξk)e

ik0 Bρksinϑ

· exp

�
−2

�
(ρkcosϑ−μ−ς/η)2

γ 2
1

+ (ρksinϑ−χ−β/η)2
γ 2

2

��
.

(4)

Xk are the cross-product impulse responses of individual
beams. In (4), λ is the carrier wavelength, k0 is the carrier
wavenumber, c is the speed of light, and h is the satellite
altitude. H is the Heaviside step function. η = 1+h/R, where
R is the earth radius, is a geometric factor that arises because
the surface is spherical rather than plane. Equation (4) employs
the description

G(ψ,ω) = G0exp

�
−ψ2

�
cos2ω

γ 2
1

+ sin2ω

γ 2
2

��
(5)

for the antennas’ gain pattern, in which ψ is the polar angle
measured from the antennas’ boresight, ω is the azimuthal
angle measured from the along-track direction, and γ1 and γ2
determine the along- and across-track width of the illumina-
tion. μ and χ are, respectively, the pitch and roll angles of
the antennas (Fig. 1), and ς and β are the along- and across-
track components of the surface vector gradient. D0 is the
one-way gain of a synthetic beam, and d(ξ) is its pattern
at an angle ξ from its boresight in the along-track direction.
ξk is the along-track angle of the boresight of the kth synthetic
beam measured from the nadir direction (Fig. 1), termed the
beam “look angle.” Its value is

ξk = kπ/(Nak0vs�t ) (6)

where Na is the number of samples in the synthetic aperture,
k0 is the carrier wavenumber, vs is the magnitude of the
satellite velocity in an earth-fixed frame, and �t is the pulse-
repetition interval of the synthetic aperture. (Appendix A
describes the transmission sequence in more detail.) In general,
we denote the number of looks that form a multilooked
echo by N . (To distinguish it later from a second measure,
we will sometimes also describe N as the “actual” number
of looks.) In the SAR and SARIN modes, this is equal to
the number of look angles, and in these cases, N is given
by

N = πhη/
�
k0v

2
s�t�b

	
. (7)

Here, �b is the “burst” repetition interval, i.e., the interval
between successive synthetic apertures. �b takes different
values in the SARIN and SAR modes so that the number of
looks is not equal in the two modes, and we will distinguish
these by NS and NSI where necessary. In the pulse-limited
case, the corresponding number of looks is NP = 4Na .
ρk in (4) is given by

ρk =



cτ

ηh
+ ξ2

k (8)

and accounts for the “slant range correction” (given by
[29, eq. (27)]).

The dependence of the impulse response on the spacecraft
attitude is of the form X (μ + ς/η, χ + β/η). This is a
consequence of using small angle approximations for the
attitude and surface gradient and retaining only the lead-order
terms. For the same reason, (4) has no sensitivity to the
spacecraft yaw angle. (See [29] for a detailed discussion.) The
form arises because, to this level of approximation, the impulse
response is not only separately sensible to the pitch and roll
angles and the surface gradient, but also to their relative
orientation: rolling the space craft has the same effect on the
echo shape as tilting the surface. The sensitivity of the echoes
to the along-track slope is negligible, and we shall generally
suppose that ς = 0. This is not the case for the across-track
slope, however, and we define the angle

θ = χ + β/η. (9)

We term θ the “interferometer angle.” For surfaces such as
the ocean, this definition is consistent [28], with the geometric
interpretation illustrated in Fig. 1(b), namely, that θ is the
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angle between the normal to the interferometer baseline and
the direction of the point of closest range to the surface. With
this definition, the dependence of the impulse response on the
attitude becomes X (μ, χ + (β/η)) ≡ X (μ, θ).

B. Small Pitch Angle Form for the Cross-Product
Impulse Response

During nominal operation, the pitch and roll angles are
small, of the order of 0.1° or less. However, as part of this
paper, we wish to apply the results to SARIN data acquired
with larger roll angles, of the order of 1°. We, therefore,
seek an expansion in small pitch angles of (4) to reduce the
numerical complexity of the model of the cross-product, before
proceeding to obtain expansions in small roll and pitch angles
suitable for the SAR mode in Section II-C. The small pitch
expansion is obtained by expanding the antenna gain in (4)
and integrating term by term to obtain� 2π

0
dϑd(ρkcosϑ − ξk)e

ik0 Bρksinϑ

· exp

�
−2

�
(ρkcosϑ − μ)2

γ 2
1

+ (ρksinϑ − θ)2

γ 2
2

��

∼ I1(ρk; θ, ξk)+ 4ρkμ

γ 2
1

I2(ρk; θ, ξk)

+μ2
�

8ρ2
k

γ 4
1

I3(ρk; θ, ξk)− 2

γ 2
1

I1(ρk; θ, ξk)

�
(10)

to second order in the pitch, where⎧⎪⎨
⎪⎩

I1

I2

I3

⎫⎪⎬
⎪⎭ =

� 2π

0
dϑ

⎧⎪⎨
⎪⎩

1
cosϑ

cos2ϑ

⎫⎪⎬
⎪⎭ d(ρkcosϑ − ξk)e

ik0 Bρksinϑ

· exp

�
−2(ρksinϑ − θ)2

γ 2
2

− 2ρ2
k cos2ϑ

γ 2
1

�
. (11)

Substituting (10) into (4) and performing the summation in
(3), one arrives at

X(τ, B) ∼ λ2G2
0 D0cσ 0

32π2h3η

· e−ik0 Bθ

⎛
⎜⎜⎝

H1(τ ; θ)+ μ

γ 2
1

H2(τ ; θ)

+μ2
�

8

γ 4
1

H3(τ ; θ)− 2

γ 2
1

H1(τ ; θ)
�
⎞
⎟⎟⎠

(12)

where the definition of the functions in (12) is apparent from
comparing their coefficients with the terms in (10).

C. Small Pitch and Roll Angle Forms for the SARIN Mode,
SAR Mode, and Pulse-Limited Power Impulse Response

In the case of the SAR measurements used here, the inter-
ferometer angle θ is also small, so that one can expand
the impulse response in terms of θ too. One has in place

of (10)� 2π

0
dϑd(ρkcosϑ − ξk)e

−2
(
(ρk cosϑ−μ)2

γ 2
1

+ (ρk sinϑ−θ)2
γ 2

2

)

∼ J1(ρk; ξk)+ 4ρkμ

γ 2
1

J2(ρk ; ξk)

+μ2
�

8ρ2
k

γ 4
1

J3(ρk; ξk)− 2

γ 2
1

J1(ρk ; ξk)

�

+ θ2
�

8ρ2
k

γ 4
2

J4(ρk; ξk)− 2

γ 2
2

J1(ρk ; ξk)

�
(13)

where now⎧⎨
⎩

J1
J2

J3, J4

⎫⎬
⎭ =

� 2π

0
dϑ

⎧⎨
⎩

1
cosϑ

cos2ϑ, sin2ϑ

⎫⎬
⎭ d(ρkcosϑ − ξk)

· exp

�
−2ρ2

k

�
cos2ϑ

γ 2
1

+ sin2ϑ

γ 2
2

��
(14)

and we have used the fact that in the SAR case, the baseline is
zero. In contrast to the pitch μ, (13) does not contain a linear
term in the interferometer angle θ . This is natural, in that, if the
satellite is pitched nose-up, for example, the forward-looking
synthetic beams have an increased weighting from the antenna
pattern, the backward beams have a decreased weighting, and
the reverse is true if the sign of the pitch changes. On the
other hand, the echo shape in any particular beam is an even
function with respect to the roll angle, i.e., is insensitive to
the sign of the roll.

One may use the symmetry properties of the integrands
in (14) to show that

J2(ρk; ξk) = −J 2(ρk; −ξ k). (15)

If the summation in (3) is formed symmetrically with respect
to forward- and backward-looking beams, as indeed it is
written, the consequence of (15) is that there is no linear
dependence on the pitch in the multilooked echo. (If one
wishes to measure the pitch, the behavior of individual beams
is more sensitive than that of the multilooked echo. The
distribution of power across the beams has been used to
determine the satellite pitch [31].)

In detail, for the measurements we use, the summation
is not exactly symmetric with respect to the forward and
backward beams, and at high values of altitude rate, there is
a correction that is needed to account for this. However, none
of the altitude rates encountered in this paper are sufficient to
warrant a correction. For completeness, the effect is described
in Appendix C. In the remaining main text, we treat the
summation as it appears in (3). Then, one has in place of (12)

X (τ , 0) ∼ λ2G2
0 D0cσ 0

32π2h3η

·
�

F1(τ )+ μ2
�

8

γ 4
1

F3(τ )− 2

γ 2
1

F1(τ )

�

+ θ2
�

8

γ 4
2

F4(τ )− 2

γ 2
2

F1(τ )

��
(16)

for the SAR case, where the functions F are defined in the
obvious way.
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The pulse-limited case can be obtained in a similar fashion,
by setting D0 = d ≡ 1 and ξk = 0 in (4), which removes the
synthetic beam formation and returns the problem to a pulse-
limited geometry. One then has a form sufficiently similar
to (16) that we do not give it separately. In the pulse-limited
case, the functions F in (16) can be given analytical form
by expanding the impulse response of [19] [see also (36)]
and allowing for earth sphericity and the ellipticity of the
antenna gain as has been done by Wingham and Wallis [32].
In this paper, we have not made use of these expressions
because having necessarily to compute (16) numerically in the
SAR case; it is then simple (and introduces least possibility
of error) to set D0 = d ≡ 1 and ξk = 0 and recompute the
result.

D. Power and Echo Cross-Product

To determine the echo cross-product or power, the synthetic
beams, the compressed pulse shape, and the surface roughness
density function need a definite form. We describe these in this
section. The SARIN-mode CryoSat-2 data that are available
to us use a Hamming weighting when forming its synthetic
beams, and in consequence, the synthetic beam pattern is

D0d(φ) =
�

Na−1�
n=0

�
0.54 − 0.46cos

�
2πn

Na − 1
− π

��

× e
2ik0vs�tφ

(
n− Na −1

2

)�2

. (17)

On the other hand, the SAR mode data uses a rectangular
weighting, in which case

D0d(φ) = sin2(Naπk0vs�tφ)

sin2(πk0vs�tφ)
. (18)

In (17) and (18), φ denotes an angle measured from the
maximum gain line of the beam. The compressed pulse of
the SIRAL radar is accurately described by the function

pt(τ ) = p0sinc2(πBcτ ) (19)

where Bc is the received bandwidth. While the specific form
of the compressed pulse may differ from (19) for individual
instruments, we adopt (19) as a general form of the altimeter
compressed pulse shape and simply note that for specific
instruments (19) may need to be modified, or an a posteriori
correction applied to avoid potentially biasing ocean parameter
retrievals.

We use a Gaussian surface elevation density function given
by

pz(τ ) = 1√
2πσ

e− 1
2 (τ/

√
2σ)2 (20)

where σ = 2σ s/c and the “significant wave height” (SWH) is
equal to 4σs . Equation (20) is an approximation to the actual
distribution of the ocean-surface elevations; it is possible,
for example, to extend (20) by a term that accounts for the
skewness of the height distribution in the manner of [33].
In fact, we have investigated doing so but we found that while
the addition of a skewness term improved the least-squares

error of the fit, it significantly degraded the precision of the
range measurement, and in most cases, it was obvious even to
the eye that the term was better fitting noise rather than better
characterizing the ocean surface. Therefore, we have dropped
this term in this paper.

With the convolutions of (1) performed, one obtains in the
SARIN case, for example,

�r (τ, B) ∼ λ2G2
0 D0cσ 0

32π2h3η
e−ik0 Bθ

·
�

G1(τ ; θ, σs)+ μ

γ 2
1

G2(τ ; θ, σs)

+μ2
�

8

γ 4
1

G3(τ ; θ, σs)− 2

γ 2
1

G1(τ ; θ, σs)

��
(21)

where the definition of the functions G follows in the obvious
way from (1) and (12). Similar forms are obtained for the SAR
and pulse-limited cases.

E. Effect of Variations in Satellite Altitude and Velocity

Equation (21) and its analogous forms provide a description
of the echo cross-product and power subject to small variations
in the satellite pitch and, in the SAR and pulse-limited cases,
roll. In this section, we describe how variations in the satellite
altitude and velocity are accounted for.

The altitude of CryoSat-2 varies by some 50 km about
730 km, and the power and cross-product have the first-order
dependence on the altitude. While we have suppressed the
dependence, the functions that appear in (21) are themselves
functions of the altitude. The obvious approach to accounting
for the variation is to return to (4), write h = h0 + δ and
seek an expansion of the integral in powers of the variation
of altitude δ about the fixed altitude h0. This can be done
in the pulse-limited case, but in the SARIN and SAR cases,
the integrand is singular as h0 + δ → −cτ/(ηξ2

k) as a result
of (8), and its expansion does not converge there. However,
this difficulty does not arise once the convolutions of (1)
have been performed. Thus, we obtain the leading order term
in δ by determining the numerical derivative of, for
example, (21), with respect to δ. In fact, it is only the derivative
of G1 that is needed; the higher order terms are small enough
to be negligible. One then has

�r (τ, B)

∼ λ2G2
0 D0cσ 0

32π2h3η
e−ik0 Bθ

·
⎛
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G1(τ ; θ, σs)+ δG4(τ ; θ, σs)+ μ

γ 2
1

G2(τ ; θ, σs)

+μ2
�

8

γ 4
1

G3(τ ; θ, σs)− 2

γ 2
1

G1(τ ; θ, σs)

�
⎞
⎟⎠
(22)

in place of (21), for example.
There are also small variations in the look angle sampling

interval (6) and the number of looks (7) that occur through
their dependence on the satellite altitude and velocity. In fact,
(6) and (7) give time-averaged values; Equation (7), for
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example, does not generally provide an integer value for the
number of looks N in SARIN and SAR modes. In detail,
the number of looks is an integer that varies by ±1 along
the track in such a way as to provide the average value given
by (7). However, the effect of the variations of these quantities
on the echo impulse response is less than 0.25%, which is
undetectably small, and we, therefore, ignore it.

There is also a separate effect that arises when the direction
of the satellite velocity is not tangential to the surface at
the nadir point. The look angles of the synthetic beams are
formed relative to the normal to the satellite velocity, and in
the presence of an altitude rate, this results in an asymmetric
distribution of beam look angles relative to the nadir direction,
and in this case, the summation of (3) is no longer symmetric
about k = 0. However, the effect only becomes significant
for high altitude rates, which were not observed in the data
acquisitions used for this paper. For completeness, we give a
more detailed description in Appendix C.

III. ECHO FLUCTUATIONS

The echoes observed by the altimeter are subjected to
radar speckle, and the purpose of the multilooking is to
reduce the fluctuations due to speckle. Even after multilooking,
the echoes suffer a residual fluctuation, and this fluctuation is
the main source of noise on the measurements of the ocean-
surface parameters. A full description of the statistics of their
residual fluctuation would require a fairly extensive Monte
Carlo approach, and we have not attempted this. However,
in all cases, the number of looks is fairly high, so the
statistics of the multilooked echoes are close to Gaussian.
In consequence, the statistics are reasonably described once
the variance of the multilooked echoes is known. This section
is concerned with the calculation of the variance and related
quantities, and it is concluded with a comparison of the
predicted echo fluctuation against those observed in practice.

A. Effective Number of Looks

Individual echoes ψ have real and imaginary parts that
are Gaussian distributed. Using x∗ to denote the conjugate
of x , their power p = ψψ∗ is exponentially distributed [34].
The exponential distribution has the property that its variance
equals the square of its mean. If N independent echo powers
are averaged to form a multilooked echo q , its variance
is p̄2/N , where we use x̄ to denote the mean of x , or,
alternatively, N = p̄2/σ 2

q where we use σ 2
x to denote the

variance of x . In the present case, however, the echoes we
deal with are, in general, correlated and in addition, the mean
echo varies from look to look. In consequence, the residual
fluctuation is larger than one might suppose from simple
considerations based on the number of looks N . We, therefore,
follow [29] by introducing the effective number of looks Ne,
which is the number of looks that would give rise to the actual
residual fluctuation had the multilooked power been formed
from independent echoes whose mean equals to that of the
multilooked power.

In general, let us denote the covariance function between
two random variables a and b as Cab and associate with it

a correlation coefficient Rab = Cab/σaσb . Let ψ denote an
individual echo and let p = ψψ∗ denote the echo power.
All the echoes we deal with are incoherent, i.e., their mean
ψ̄ = 0. In consequence, their variance σ 2

ψ = ψψ∗ − ψ̄ ψ∗ =
ψψ∗ = p̄, i.e., their variance equals the mean power. Let
t = ψ1ψ

∗
2 be the cross-product between two incoherent echoes

ψ1 and ψ2 with equal mean powers p̄. The covariance between
the two echoes is then Cψ1ψ2 = ψ1ψ

∗
2 − ψ1 ψ

∗
2 = ψ1ψ

∗
2 = t̄ ,

and

Rψ1ψ2 = t̄/ p̄. (23)

In this context, the correlation coefficient is usually termed
the coherence of the two echoes. t has the probability density
function [25]

pψ1ψ2(z)dz = 2

π p̄2
�
1 − R2

ψ1ψ2

	K0

�
2|z|

p̄
�
1 − R2

ψ1ψ2

	
�

× exp

�
2Rψ1ψ2R(z)

p̄
�
1 − R2

ψ1ψ2

	
�
. (24)

Here, R(z) describes the real part of z. From this density
function, one may obtain the result t t∗ = p̄2(1 + R2

ψ1ψ2
). One

thus has σ 2
t = t t∗ − t t∗ = p̄2, i.e., the variance of the cross-

product is simply the square of the mean power. However,
since t t∗ = ψ1ψ

∗
2ψ2ψ

∗
1 = ψ1ψ

∗
1ψ2ψ

∗
2 = p1 p2, one also has

Cp1 p2 = p1 p2 − p̄2 = p̄2 R2
ψ1ψ2

= C2
ψ1ψ2

. (25)

This is an extremely useful result, in that it permits us
to determine the covariance of the power in terms of the
covariance of the field. (This result is not original; it appears,
for example, in a rather more general setting in [35].)
In the event that ψ1= ψ2, t = p, Rψ1ψ2 = 1, (24) reverts
to the familiar exponential distribution for the power of an
incoherent echo, and (25) simply expresses the familiar result
that the variance of the power equals the mean power squared.
(It is interesting to note that as we do following (24), that this
result holds in the more general case of a partially coherent
cross-product.)

Let the multilooked cross-product or power be the sum of
N individual looks q = (1/N)

�N−1
n=0 tn , where tn denotes an

individual look. We define the effective number of looks to be
Ne = q̄q∗/σ 2

q . Then

σ 2
q = (q − q̄)2 = 1

N2

N−1�
n=0

N−1�
m=0

(tn − tn)(tm − tm)

= 1

N2

N−1�
n=0

N−1�
m=0

pn pm Rtntm (26)

and thus, in general

Ne =
����N−1

n=0 tn
���2�N−1

n=0
�N−1

m=0 pn pm Rtntm

. (27)

In the event that we are concerned with multilooked powers,
rather than the cross-product, one has tn t∗m = pn pm in the
denominator on the right-hand side of (27). From (27), one
has in general that Ne ≤ N .
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In Sections III-B–III-E, the statistics of the echoes in the
SAR, SARIN, and pulse-limited cases is considered separately
to arrive at simpler representations in each of these cases.

B. Independence of the Looks in SAR Mode

In the SAR case, we are dealing only with powers, and
the mean powers pn that then appear in the denominator and
numerator of (27) are those obtained by applying (1) to the
individual impulse responses of (4). The correlation coefficient
in (27) is then the correlation that occurs between different
look angles. In the level-1b (L1b) processor, each look comes
from a different burst, and the principle mechanism that gives
rise to decorrelation is the spatial fading that arises from
the displacement of the antenna between looks. At least for
neighboring looks, the change in angle between looks is very
small and has little effect on the echo power, and the look
angle is adjusted so that each look illuminates the same
area of surface. The decorrelation can then be examined by
considering the covariance between the echo at a given look
angle and that which would be observed when the antenna
is displaced along-track by a small horizontal distance x , i.e.,
we consider the covariance function Ck(τ, x), where k denotes
the look angle through (6).

In this case, the covariance can be obtained by following
a similar path as [29] (see also [36]). Ck(τ, x) is given by a
similar triple convolution to (1), namely,

Ck(τ, x) = pt (τ ) ∗ pz(τ ) ∗�k(τ, x) (28)

where, in this case, the covariance impulse response is given
by

�k(τ, ξk , x) ∼ λ2G2
0 D0cσ 0

32π2h3η
H

�
τ + ηhξ2

k

c

�

·
� 2π

0
dϑd(ρkcosϑ − ξk)e

2ik0 xcosϑ

· exp

�
−2ρ2

k

�
cos2ϑ

γ 2
1

+ sin2ϑ

γ 2
2

��
. (29)

It may be noted that the expression for �k is essentially
the same as that of Xk , save that the phase difference in (4)
that arises between the two antennas displaced across-track
is replaced in (29) with the phase difference that occurs
between the same antenna at two different locations along
the track, and a factor of 2 appears because, unlike the inter-
ferometer, path differences occur on transmission and recep-
tion. In (29), we have also assumed nadir antenna pointing,
ignoring the small effect of pitch and roll on the covariance
function.

With the covariance obtained from (28) and (29), and the
power of an individual look obtained from (1) using (4) with
B = 0, the correlation function may be computed. In Fig. 2,
we show the power correlation coefficient for various look
angles at τ = ηhξ2

k /c as a function of the along-track
separation x . (The numerical values we have used in this
and future calculations are given in Table II.) The top panel
of Fig. 2 shows the correlation functions at zero SWH; the
bottom panel of Fig. 2 shows the correlation functions with

Fig. 2. Power correlation coefficient for a sequence of look angles as a
function of the along-track separation of the looks at (Top) zero SWH and
(Bottom) 4-m SWH. Also shown is the along-track separation of the bursts
in SAR mode of 84 m. In SARIN mode, the burst separation is 336 m.

an SWH of 4 m. At low wave heights and small look angles,
the power decorrelates over some 20 m. This is the expected
result for a beam-limited system, in that the decorrelation
distance is approximately equal to the synthetic aperture
length, which in this case is 26 m. At higher look angles,
however, the beams become pulse-limited along-track, and the
decorrelation length correspondingly increases.

Marked on Fig. 2 is the spatial separation of the bursts in
SAR mode, 84 m. It can be seen that at this separation, most of
the beams at zero wave height will have decorrelated, although
some correlation remains at high look angles. With appreciable
SWH, however, all of the beams decorrelate, exhibiting a
beam-limited behavior. This occurs because the effect of the
wave height is to extend the pulse-limited area to the extent
that the synthetic beams become beam, and not pulse, limited
in the along-track direction. However, even when SWH is low,
the beams that remain correlated have very little weight in
the multilooking, because they are heavily weighted by the
antenna pattern. Thus, in practice, it is a good approximation
to assume that the looks are independent in SAR mode. One,
therefore, has Rtntm = δm,n and (27) simplifies to

N (S)
e =

����NS−1
m=0 pm

���2�NS−1
m=0 pm

2
(30)

in SAR mode.

C. Correlation Between the Powers at the Interferometer
Antennas and the Coherence of the Echo Cross-Product

In SARIN mode, the burst separation is larger than that
in the SAR mode, some 336 m, and the conclusion that the
echoes in each beam are uncorrelated one from another carries
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over from the SAR mode. In the case of the echo cross-
product, one then has

N (SIc)
e =

����NSI−1
m=0 pm RLR(m)

���2�NSI−1
m=0 pm

2
(31)

where we have made use of (23), and we denote by RLR(m)
the correlation, or coherence, between the cross-product of the
echoes at the left and right antennas (see Fig. 1).

If, on the other hand, we consider the echo power in the
SARIN mode, determined by summing the power over the
beams, as is the case for SAR mode, at each antenna, and
then summing the result for each antenna

N (SI p)
e =

2
����NSI−1

m=0 pm

���2�NSI−1
m=0 p̄2

m

�
1 + R2

LR(m)
	 (32)

where we have made use of (25) to express the correlation
between the echo powers at the two antennas in terms of
the coherence of their fields. The number of looks, 2NSI,
is doubled when using the SARIN echo power because the
measurements at both antennas are incoherently summed.
Thus, the same correlation function appears in both the expres-
sions for the multilooked cross-product and the multilooked
power, but with opposite effect: a high correlation results in
a high number of effectively independent looks in the case of
the cross-product, but has the effect of reducing the number
of effectively independent looks in the case of the multilooked
power.

In this case, the covariance function impulse response is
that of the echoes arriving at the right and left antennas.
The corresponding covariance impulse response is simply that
of (4), and the power impulse response also given by (4) with
B = 0. Fig. 3 shows the power correlation function of the
echoes at the two antennas at two look angles as a function of
echo delay time τ+ηhξ2

k /c. The top panel of Fig. 3 shows the
coherence for zero SWH; the bottom panel of Fig. 3 shows
the coherence at 4-m SWH. It can be seen that at zero echo
delay, the correlation remains high in all cases. Even at high
wave heights, the correlation exceeds 0.7, while for small wave
heights and beam look angles, the correlation is close to 1.
Since the height precision is most sensitive to the echo in the
vicinity of zero delay time, it is apparent that summing the
echo powers from the two antennas will not provide much
improvement in the height precision over that obtained from
an echo from a single antenna.

Except for negative delays, the correlation is only weakly
dependent on the look angle, and at negative delays, the differ-
ences are those occurring at very low signal powers, where,
in practice, noise and other small instrumental disturbances
occur. (The oscillatory character of the 0° look angle plot in
the zero wave-height case in the top panel of Fig. 3 is the result
of the single point-target impulse response in (19). For other
values of look angle or wave height, these are smoothed out
either by the spreading in delay time of the echo, or the
wave-height distribution.) Thus, one can make the reasonable
approximation to the effective number of looks of (32) that

Fig. 3. Power correlation coefficient between the echoes at the two antennas
of the interferometer for two look angles at (Top) zero SWH and (Bottom)
4-m SWH. Note that the power correlation coefficient is the square of the
modulus of the coherence. The oscillatory character of the 0° incidence
beam at zero SWH is the result of the single point-target response; at higher
SWH or look angles, this oscillation is washed out by the convolution of (1).

for the SARIN mode multilooked power

N (SI p)
e =

2
����NSI−1

m=0 pm

���2�
1 + R2

LR(0)
	�NSI−1

m=0 p2
m

. (33)

The correlation functions in Fig. 3 also have a separate
relevance in that they are the square of the coherence of the
beam cross-product, and in this case, a high coherence results
in a large effective number of looks. From Fig. 3, one can see
that the effective number of looks will be high in the vicinity
of zero delay time, but will fall as the delay time increases.
We shall find this reduction in the effective number of looks
apparent in the measured cross-product phase noise.

D. Correlation Between the Powers of the
Pulse-Limited Looks

In contrast to the SARIN mode and SAR mode cases,
the multilooking of the pulse-limited echoes sums over echoes
drawn from the same mean, so that pn = pm in (27), which
in consequence simplifies to

N (PL)
e = N2

P�NP −1
n=0

�NP −1
m=0 Rpn pm

. (34)

In this case, N (PL)
e < NP if the individual looks are correlated

with one another.
In the pulse-limited case, the corresponding covariance

function is again that resulting between two echoes observed
with a small along-track displacement x . As is the case
for the pulse-limited power, one may obtain this covariance
function by setting D0 = d ≡ 1 and ξk = 0 in (29) to
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Fig. 4. Power correlation coefficient of the pulse-limited echoes at zero
delay time for wave heights of 0, 2, and 4 m, as functions of the along-
track separation of the echoes. Increasing wave height corresponds to more
rapid decorrelation. When pulse-limited echoes are formed from SAR mode
operation, the separation of the echoes is 0.41 m.

obtain
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0cσ 0

32π2h3η
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� 2π

0
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for the covariance impulse response. For small ellipticity,
following the method of [32], this integral can be given the
approximate form:

�(τ, x) ∼ λ2G2
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0
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16πh3η
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· J0

�
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�
(36)

where J0(z) denotes a Bessel function of the first kind, and
2/γ̄ 2 = 1/γ 2

1 + 1/γ 2
2 . If one ignores the ellipticity, (36) is the

result of [36]. If one sets x = 0 in (36), one obtains the pulse-
limited power impulse response. Equation (36) represents the
expression for the impulse response of [19], allowing for
the curvature of the earth and the small ellipticity of the
antennas [32]. (While we have used a numerical integration
of (35) to obtain the results in this section, we have used (36)
to verify the numerical integrations.)

Fig. 4 shows the power correlation coefficient for the pulse-
limited echoes at zero delay time and for three different
wave heights. In a burst, the echoes are separated along-track
by 0.41 m. It can be seen that at all wave heights, successive
echoes in the burst are highly correlated, and even at high
wave heights, only every fifth echo is completely decorrelated
at zero echo delay. The rates of decorrelation in Fig. 4 are
in qualitative agreement with those suggested previously by a
more approximate argument [37], [38].

E. Comparison of the Predicted and Measured
Effective Number of Looks

We close this section with a comparison of the calculated
effective number of looks Ne for the SARIN mode cross-
product, the SAR mode power, and the pulse-limited power.
(The results of the SARIN-mode power are essentially the
same as those of the SAR mode.) A description of what
determines the number of looks in each mode and how the
multilooking is performed in practice in the three cases is
given in Appendix A. In the following, we make comparisons

Fig. 5. Comparison of the calculated (solid line) and observed (dots)
effective number of looks for SARIN-mode echo cross-products at 20 Hz.
The calculated curve is for a wave height of 2 m. The actual number of looks
at 20 Hz is 61.

of echoes at the 20-Hz rate, which is the highest rate at which
echoes are available in all three data sets.

Fig. 5 shows a comparison between the effective number
of looks N (SIc)

e of the SARIN echo cross-product calculated
from (31) with the observed value at the 20-Hz rate. It can
be seen immediately that the effective number of looks N (SIc)

e

is considerably smaller than the actual number of looks NSI:
for positive delay times, both the calculated and the observed
effective number of looks are less than half the actual number
of looks, which is 63 in this case. This is the result of forming
multilooked echoes drawn from populations with different
means. Because some echoes have a higher power than others,
so too do their speckle fluctuations, and in consequence, they
have greater weight in the summation than would be the case
if all the echoes were of equal power [29].

The behavior of the effective number of looks as a function
of delay time, however, is dominated by the variation of the
correlation function, as a comparison of Fig. 5 with Fig. 3
demonstrates. While the maximum effective number of looks
occurs around zero delay time, it falls rapidly toward zero at
around 60 ns. The speckle suppression of the multilooking is
poor at larger delay times. This is apparent in the noticeable
increase in phase noise that is visible in the observations,
as illustrated in Fig. 9, where the phase noise visibly increases
at larger delay times.

There is a less agreement between prediction and observa-
tion at zero delay times, and at larger negative delays, although
the causes of these are different. First, the theory in this section
supposes that speckle noise is the only source of fluctuation.
If there is a source of variation in the observations in addition
to that due to speckle, the observed effective number of looks
will be less than predicted. In particular, the echoes are very
sensitive to the SWH in the vicinity of zero delay time.
We formed the observed values of the effective number of
looks by examining the along-track variances (the details are
provided in Appendix B), and in consequence, the observations
include whatever variations result from changes in the rough-
ness along the track, whereas the theory has been evaluated at a
fixed roughness. There is additional variability in the data that
is not presented in the theory, and some differences between
the two in the vicinity of zero delay are to be expected.
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Fig. 6. Comparison of the calculated (solid line) and observed (dots) effective
number of looks for SAR mode echoes at 20 Hz. The calculated curve is for
a wave height of 2 m. The actual number of looks at 20 Hz is 240.

Fig. 7. Comparison of the calculated (solid line) and observed (dots) effective
number of looks at 20 Hz of pulse-limited echoes observed in SAR mode.
The calculated curve is for a wave height of 2 m. The actual number of looks
at 20 Hz is 256.

At larger negative delay times, the observations show greater
variability than is predicted theoretically. We have not been
able to identify precisely the source of this behavior, but for
these values of delay time, the echo power is very small, and
the estimate of the effective number of looks is the ratio of two
very small numbers (the mean echo squared and the variance
of the echo). Small errors in the theory arising from approxi-
mations used to obtain (4), for example, or small departures of
the actual instrument from its theoretical description will result
in significant differences in the comparison of theory with
observations. However, because the echo powers are small,
this behavior has little effect on the measurement precision of
the parameters.

Fig. 6 shows the corresponding comparison for the SAR
mode echo power, where the calculated values use (30).
As argued in Section III-B, the echoes that contribute to the
multilooked echo are independent; the difference between the
actual and effective number of looks is, in theory, entirely
the result of forming the looks from different statistical pop-
ulations. Because all the looks are independent, there is a
somewhat higher ratio of effective to actual looks, or around
180:240 in this case. In practice, the effective number of
looks is somewhat smaller, around 140 looks, and as with
the SARIN cross-products, the echoes in the vicinity of
zero delay time have greater variability than the theory
acknowledges.

Fig. 7 shows the comparison of the effective number of
looks for the pulse-limited echoes, where the theoretical values
are calculated from (34). In contrast to the SAR echoes,

the pulse-limited echoes are drawn from the same statistical
population, and the disparity between the actual and effective
number of looks is entirely the result of correlations between
the looks. Fig. 4 illustrates that at zero delay time, approx-
imately only every fifth look can be considered independent
for pulse-limited echoes at high wave-heights; this is apparent
too from the ratio between the actual and effective number
of looks illustrated in Fig. 7, in which the ratio is closer
to 1:6. The effective number of looks improves at higher delay
times, due to the greater spatial distances between the area
illuminated at a given delay time.

Overall, however, the comparison between the actual and
effective number of looks is reasonably close. Even in the
case of the SAR mode echo powers, the ratio between the the-
oretical and measured number of looks is approximately 5:4.
Thus, one may conclude that during its operation, the
CryoSat-2 SIRAL radar is operating close to its theoretical
limit in achieving speckle suppression.

IV. CONCLUSION

In this paper, we have developed a model of the synthetic
aperture, interferometric radar altimeter echo power and echo
cross-product, and made the necessary simplifications, based
on the smallness of the pitch and roll angles and the limited
range of the satellite altitude to make the model applicable
to large ocean data sets. We have shown that by simple
modifications, the pulse-limited echo can be recovered as
a simplification of the SAR mode echo power, demonstrat-
ing the equivalence of the SAR and pulse-limited cases.
We determine the theoretical effective number of looks—a
measure of the effectiveness of the multilooking in suppressing
speckle fluctuations—in the SARIN and SAR modes, and have
compared this with that provided by pulse-limited operation.
We expect that the echo model will be of interest to the ocean
operational altimetry community, especially during the tran-
sition from predominantly pulse-limited instruments to SAR
instruments, when this model can be applied to both operating
modes, especially the Sentinel-6 mission which is capable of
forming SAR and pulse-limited echoes simultaneously via so-
called “interleaved” operation [30], [41]–[43].

APPENDIX A
CRYOSAT-2 DATA

In this paper, two sets of acquisitions of CryoSat-2 data
have been used. The results that depend on the measurements
of the echo cross-product (Section III-E) were obtained from
acquisitions of SIRAL SARIN mode data observed between
July 27, 2010 and July 28, 2010 from the Pacific and Indian
Oceans. The satellite tracks from which these are taken are a
subset of those shown in [31, Fig. 2]. For this paper, the data
acquisitions falling on orbit numbers 1595, 1599, 1601, and
1607 were used. These data were processed using version
Vk 1.0 of the L1b processor (used by ESA for the distribution
of CryoSat data products from February 2012 to April, 2013),
and the data we used were the SARIN mode L1b data
product [39].

For the results that concern the SAR mode and pulse-limited
echoes, the data we used were SIRAL SAR mode acquisitions
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Fig. 8. Location and altitudes of the SAR mode acquisition used in this
paper. The gray area on the right of the plot are the Iberian Peninsula and the
northwest Africa.

observed from a region off the coast of Portugal in the North
Atlantic between January 4, 2011 and January 29, 2011. This
region was chosen by ESA mission management as providing
for a wide range of ocean sea states while falling within the
operational constraints of data storage and downlink capability.
The location of the satellite tracks during these acquisitions
is given in Fig. 8. These data were also processed using
version Vk 1.0 of the L1b processor, from which SAR mode
L1b data were obtained [39].

In addition to the SAR L1b data, we also obtained from
the same acquisitions of the set of so-called “CFBR” data.
These data have the same format as the ESA full bit rate
data [39] save that, in addition, they have had applied the full
set of internal range, amplitude, phase, and phase difference
corrections that are generated from the on-board internal
calibration measurements. It is from the CFBR data that we
obtained the “pulse-limited” data that is described in the main
text.

In SAR mode, SIRAL uses a so-called “closed-burst”
operation in which bursts of pulses are transmitted at inter-
vals long enough that the echoes from earlier bursts can
be received. A single burst consists of 64 phase coherent
pulses with an individual PRF set at 18.182 kHz, which
are received at the antenna at a burst-repetition frequency
of 84.796 Hz. (Each burst is of 3.52-ms duration, with
an interval of 11.7 ms between the transmission of suc-
cessive bursts.) It is these data, with internal calibrations
applied and orbit and data information added, which form the
CFBR data.

In the processing of SAR mode L1b data, the echoes
received from each burst are processed by performing a
“range fast Fourier transform (FFT)” (completing the pulse
compression of the altimeter) and performing the so-called
“azimuthal” FFT. The azimuthal FFT has the effect of focusing
the echoes into 63 “beams” directed at consecutive strips on
the surface. (While the FFT generates 64 “beams,” one of these
is at the Nyquist–Doppler frequency and cannot be unambigu-
ously associated with either a forward- or backward-looking

beam.) Echoes from successive bursts directed at the same strip
on the surface are grouped, or “stacked,” corrected for their
slant range (sometimes termed “delay compensated”), incoher-
ently detected, and then summed or “multilooked” to reduce
the speckle noise. The number of nonzero beams or “number
of looks” in each stack is approximately 240. (In detail,
the number depends weakly on the altitude.) Each multilooked,
“L1b” echo is present in the L1b data for each strip along-
track. These are separated at approximately 300 m along the
track, and at a satellite, ground velocity of 6700 m · s−1

(i.e., the speed with which the nadir point moves over earth’s
surface) occurs at a rate of approximately 21.4 Hz. (A more
detailed description of the processing applied to the data can
be found in [23].) In SARIN mode, the burst rate is reduced
by a factor of 4 compared with that of the SAR mode and
there are 61 looks in the multilooked echo cross-product
at 20 Hz. The SARIN echo power, however, sums incoherently
the power received on each antenna, and thus in this case, there
are 122 looks.

If, however, the processing is interrupted following the
range FFT, the burst consists of 64 echoes that have arisen
from a conventional, pulse-limited geometry. These echoes
can be incoherently detected, and summed, to provide a
multilooked, pulse-limited echo at a rate of 85.5 Hz. In our
processing, we determine a “retracking” correction, using
an “offset center of gravity” (OCOG) retracker [40], at
an 85.5-Hz rate. These corrections are smoothed with a
Gaussian filter whose bandwidth is equivalent to 1 Hz, and
its outcome is used to align the 85.5-Hz echoes, which are
then further summed to generate multilooked, pulse-limited
echoes at a rate of 21.4 Hz. Each 21.4-Hz echo is then the
result of 256 looks. This data set then comprises the “pulse-
limited” echoes referred to in the main text. There is not a
one-to-one correspondence between the “L1b” SAR mode
echoes and the pulse-limited echoes, because the rate of the
former is determined by the distance along-track that separates
the strips, whereas the latter is determined by the burst timing.
They are, however, surveying the same track over the ocean at
the same time, and at a similar rate. For simplicity, we refer
to both sets of echoes as occurring at 20 Hz.

The theory of Section II assumes that either the pitch or the
pitch and roll are small, and that the relative variations of
the satellite altitude and velocity are small. Table I provides
the range of these parameters for the two data acquisitions that
we use. With regard to the pitch and roll angles reported in
the L1b data products, these are known to be affected by static
biases. We have applied a correction of −0.1062° to the roll
angles [28] and of −0.055° to the pitch angles [31] to account
for these biases.

APPENDIX B
MODEL FITTING AND POSTPROCESSING

OF CRYOSAT-2 DATA

The calculation of the models of (21) and its SAR and
pulse-limited equivalents were performed using the compu-
tational package Mathematica. The numerical integrations
of (1), (10), and (13) were performed using the routine
NIntegrate. Intermediate results [such as the functions J
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TABLE I

VARIATIONS IN ALTITUDE, ALTITUDE RATE,
SATELLITE SPEED, PITCH, AND ROLL

TABLE II

VALUES OF THE SYSTEM PARAMETERS USED IN THE MODEL

OF THE ECHO CROSS-PRODUCT AND ECHO POWER

in (13)] and the final numerical functions [the functions G
of (21)] were formed by applying the routine interpolation
to the tabular outcome of the previous numerical integration.
We established by trial and error that the sampling of the
tabular outcome of each integration step was sufficient that the
outcome of the succeeding integration differed less than 0.25%
when the sampling was further densified. In general, we found
that 0.1-ns sampling was sufficient.

The functions �r (τ − τ0) and pr(τ − τ0) were fit to the
echo cross-product and echo powers, respectively. The free
parameters in the fit were the set {τ0, σs , σ

0, θ} in the case
of the echo cross-product, and {τ0, σs , σ

0} in the case of the
SAR and pulse-limited powers. The values of other parameters

that were used in the models are given in Table II. To fit the
echoes, we first nondimensionalized the echoes using the echo
duration and echo amplitude as scale parameters in order that
the nondimensionalized echoes were O (1) in range and ampli-
tude. The nondimensionalized parameters were chosen so as
to minimize the weighted least-squares difference between the
model and the echo, using as weights the reciprocal of the
variances whose determination is described below. In the case
of the powers, we used the routine NonLinearModelFit to
perform the fit (using the Levenberg Marquardt algorithm);
in the case of the cross-product, we formed the square of
the amplitude of the (complex) difference between the cross-
product and the model and used the routine FindMinimum
to determine the parameters. (We did this because the Math-
ematica routine NonLinearModelFit does not accommodate
complex functions. We established by using this method to
fit an example of a (real) power echo that the two routines
returned the same answer for the fit parameters.) Fig. 9 shows
an example of a fit to a 20-Hz echo cross-product, presented
in an amplitude and phase representation.

The variances that we used to weight the fit are
those of (26). These variances are those of the cross-
product or power at fixed values of the echo delay τ . To esti-
mate them from the measurement echoes, the echoes need to
be aligned, so that averages are taken across constant values
of the echo delay. The shift in delay of the observed echoes
needed to achieve this is the value of that arises from the
fit, but in order to obtain this accurately, the weights, and
thus variances, must first be determined. Here again, we use
an iterative approach, in which we align the echoes using
an OCOG retracker [40] to obtain a retracking correction
at 20 Hz. The sequence of retracking corrections is then
smoothed with a Gaussian filter with a half width equal
to 1 s to generate a set of smoothed retracking corrections
at 20 Hz. These smoothed corrections are then applied to the
20-Hz data to align them to constant delay time reference.
(This smoothing is performed to reduce the noise on the
correction resulting from speckle.) Having done that, we then
formed estimates of the mean echo, and the variance about the
mean, as a function of delay time τ . The variances obtained
this way were used to provide weights for the fitting routines,
which generated a further sequence of precise retracking
corrections at 20 Hz from the values of τ̃0 obtained from
the fit.

This sequence was again smoothed over 1 Hz, and the
result reapplied to determine the final sequence of echoes from
which the effective number of looks plotted in Section III-E
was obtained. (In practice, we did not find that the additional
accuracy provided by using the sequence of values of τ̃0 made
a significant difference to the effective number of looks.)

We applied postprocessing editing on the along-track results
through “3-σ” editing of the results by passing them through
a 10-s smoothing filter and removing outliers whose residual
from the smoothed results exceeded three standard deviations
of the along-track residual distribution. We also removed
values for which the least-squares fitting failed to converge.
The success with which convergence was achieved was sen-
sitive to the initial values provided to the fit routine as a
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Fig. 9. Example of a fit to a 20 Hz, SARIN mode, echo cross-product. The fit
parameters are τ̃0 = 1.355 ns, σ̃s = 0.456 m, and θ̃ = 0.1638°. Note that the
cross-product phase at zero delay is approximately equal to k0 Bθ or 0.966 rad
(55.35°) in this case. The increase in phase noise at larger delay times—a
consequence of the behavior of the cross-product coherence—is visible in the
figure.

Fig. 10. Comparison of the SAR mode or SARIN mode mean echo
power that occurs with an altitude rate of zero and that with an altitude rate
of 40 m · s−1. When the altitude rate is nonzero, the outer beams are lost
from the summation in the multilooking, resulting in a lower power, and
some alteration of the echo shape. The maximum difference is some 4%. The
calculation is done for a wave height of 2 m.

starting point for its iteration, particularly those of τ̃0 and σ̃s .
We improved on the success rate by repeating the fits using the
smoothed values as a second set of initial values. Following
this pass, some 6% of the values we obtained were removed by
editing.

To obtain the 1-Hz values of precision described in the
text, we separated the sequence of fit values into 1-s blocks.
We fit a straight line through each 1-s set of 20-Hz values, and
took the standard deviation of the residuals as the measure-
ment precision. While there are alternatives to this piecewise
approach, this method is conventional (R. Scharroo, personal
communication) in reporting altimeter precisions.

Details of the method and external data sets used to perform
the calibration of the interferometer whose result is shown
in Fig. 9 are given in [28].

APPENDIX C
EFFECT OF ALTITUDE RATE ON SARIN

AND SAR MODE ECHO SHAPE

As noted in the main text, when the satellite velocity
vector is not tangential to the surface at the nadir point,
the distribution of beam look angles is not symmetric relative
to the nadir direction, but around the normal to the velocity
vector. Because the synthetic beam gain is modulated by
the antenna gain, beams that are formed at angles larger
than would otherwise be the case are strongly attenuated by
the antenna gain, and accounting for them by extending the
summation to include them has little effect on the summation
of (3). However, there is a corresponding loss of beams at
angles smaller than those included in the summation of (3),
and if the altitude rate of the satellite is sufficiently high,
the loss of power in the multilooked echo is sufficient to alter
the echo shape in a detectable way. Fig. 10 shows the effect
on the SAR mode echo shape of an altitude rate of 40 m · s−1.
With this altitude rate, the normal to the satellite velocity
makes an angle of 0.3° with the nadir direction, and some ten
beams are lost from the summation of (3). The effect increases
exponentially with altitude rate, because of the modulation of
the antenna pattern. For altitude rates smaller than 20 m · s−1,
the effect is negligible. In this paper, the maximum altitude
rate that occurred during the acquisitions was 21.2 m · s−1

(Table I) and this rate was rarely encountered, and we have
not accounted for this effect in the models used to fit the
data described in this paper. The expected effect on estimated
backscatter is small, as the backscatter estimate is dominated
by the AGC setting and not the fit waveform amplitude.
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