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Abstract— Supervised approaches classify input data using a
set of representative samples for each class, known as training
samples. The collection of such samples is expensive and time
demanding. Hence, unsupervised feature learning, which has
a quick access to arbitrary amounts of unlabeled data, is
conceptually of high interest. In this paper, we propose a
novel network architecture, fully Conv–Deconv network, for
unsupervised spectral–spatial feature learning of hyperspectral
images, which is able to be trained in an end-to-end manner.
Specifically, our network is based on the so-called encoder–
decoder paradigm, i.e., the input 3-D hyperspectral patch is
first transformed into a typically lower dimensional space via
a convolutional subnetwork (encoder), and then expanded to
reproduce the initial data by a deconvolutional subnetwork
(decoder). However, during the experiment, we found that such
a network is not easy to be optimized. To address this problem,
we refine the proposed network architecture by incorporating:
1) residual learning and 2) a new unpooling operation that can
use memorized max-pooling indexes. Moreover, to understand
the “black box,” we make an in-depth study of the learned feature
maps in the experimental analysis. A very interesting discovery
is that some specific “neurons” in the first residual block of
the proposed network own good description power for semantic
visual patterns in the object level, which provide an opportunity
to achieve “free” object detection. This paper, for the first
time in the remote sensing community, proposes an end-to-end
fully Conv–Deconv network for unsupervised spectral–spatial
feature learning. Moreover, this paper also introduces an
in-depth investigation of learned features. Experimental results
on two widely used hyperspectral data, Indian Pines and Pavia
University, demonstrate competitive performance obtained by the
proposed methodology compared with other studied approaches.

Index Terms— Convolutional network, deconvolutional net-
work, hyperspectral image classification, residual learning,
unsupervised spectral–spatial feature learning.
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I. INTRODUCTION

ALONG with the development of different earth observa-
tion missions, hyperspectral imagery has been accessible

at a reasonable cost over the last decade. Since hyperspectral
images are characterized in hundreds of continuous
observation bands, throughout the electromagnetic spectrum
with high spectral resolution, such data have attracted
considerable attention in the remote sensing community [1].
On the other hand, the analysis of hyperspectral images is of
high importance in many practical applications, such as urban
development [2]–[5], monitoring of land changes [6]–[9],
and resource management [10], [11]. To benefit from these
types of data, supervised hyperspectral image classification
is among the most active research areas in hyperspectral
analysis.

There is a vast literature on supervised classification models
such as decision trees [12], random forests [13], [14], and sup-
port vector machines (SVMs) [15], [16]. A random forest [14]
is an ensemble learning approach that operates by constructing
several decision trees in the training course and outputting
the classes of the input hyperspectral pixels via integration of
predictions of the individual trees. In contrast, as a significant
branch of the supervised machine learning algorithm, SVMs
have achieved a great success in various applications due to
the fact that they can handle high-dimensional data with a
limited number of training samples. SVM works by map-
ping data to a kernel-included high-dimensional feature space
seeking an optimal decision hyperplane that can best separate
data samples, when data points are not linearly separable.
SVM, therefore, has been considered to be an effective and
stable algorithm for hyperspectral image classification task.
In addition, some extensions of the SVM model [17], [18]
have been proposed for hyperspectral data analysis to improve
discrimination capability of the classifier. However, random
forests and SVMs are attributed as “shallow” models, which
means that their ability to deal with nonlinear data, e.g.,
hyperspectral data demonstrate dense nonlinearity, is limited
compared with the “deep” ones.

With the investigation of hyperspectral image classifica-
tion, a major finding is that various atmospheric scattering
conditions, complicated light scattering mechanisms, inter-
class similarity, and intraclass variability result in hyper-
spectral imaging procedure being inherently nonlinear [19].
It is believed that, compared with the “shallow” models,
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deep learning architectures are able to extract high-level,
hierarchical, and abstract features, which are generally more
robust to the nonlinear input data. So far, some studies in
the community have focused on making use of deep learning
models for hyperspectral image classification. For instance,
Chen et al. [20] employed a stacked auto-encoder to extract
hierarchical features from the spectral domain of hyperspectral
images for the purpose of classification. In [21], a restricted
Boltzmann machine (RBM) and its extension, deep belief net-
work (DBN), were introduced for the classification of hyper-
spectral data by learning spectral-based features. Tao et al. [22]
presented a multiscale sparse stacked auto-encoder to learn
an effective feature representation from unlabeled data, and
then the learned features were fed into a linear SVM for
hyperspectral data classification. Very recently, Mou et al. [23]
proposed a novel recurrent neural network with a new activa-
tion function and a modified gated recurrent unit for hyper-
spectral image classification, which can effectively analyze
hyperspectral pixels as sequential data and then determine
information categories via network reasoning.

Most of the aforementioned networks, e.g., auto-encoder,
RBM, and DBN, are both early and fairly simple 1-D deep
learning architectures totally equipped with fully connected
layers. Consequently, there are a lot of trainable parameters
that need to be estimated, which is an undesirable case given
that available labeled training samples for remote sensing
image classification are often limited [24]. Moreover, it should
be noted that the processing mechanism of the 1-D networks
and the vector-based feature alignment can lead to the loss of
structure information for hyperspectral imagery, as it has an
intrinsic 2-D data structure in the spatial domain.

Convolutional neural network (CNN), an important branch
of the deep learning family, has been attracting attention, due
to the fact that they are capable of automatically discovering
relevant contextual 2-D spatial features in image categorization
tasks. In addition, a CNN makes use of local connections
to deal with spatial dependencies via sharing weights, and
thus can significantly reduce the number of parameters of
the network in comparison with the conventional 1-D fully
connected neural networks. CNNs have already outperformed
other methodologies in various domains of machine learning
and computer vision such as large-scale natural image recogni-
tion [25]–[28], object detection [29], [30], and scene interpre-
tation [31]–[35]. Very recently, a few supervised CNN-based
models have been proposed for spectral–spatial classification
of hyperspectral remote sensing images. Chen et al. [36]
introduced a supervised �2 regularized 3-D CNN-based feature
extraction model to extract efficient spectral–spatial features
for the purpose of classification. Ghamisi et al. [19] proposed
a self-improving CNN (SICNN) model, which combined a
CNN with a fractional order Darwinian particle swarm opti-
mization (FODPSO) algorithm to iteratively select the most
informative bands suitable for training the designed CNN.
Makantasis et al. [37] exploited a CNN to encode spectral
and spatial information of input hyperspectral data followed
by a multilayer perceptron to conduct the hyperspectral image
classification task. Zhao and Du [38] proposed a spectral–
spatial feature-based classification framework, which jointly

makes use of a local discriminant embedding-based dimension
reduction algorithm and a CNN for the purpose of land cover
classification. Aptoula et al. [39] fed attribute profile features
instead of original hyperspectral data into a CNN, which led
to a performance improvement.

Those CNNs trained in a supervised manner via backpropa-
gation, which improved the state-of-the-art performance on the
hyperspectral image classification task. Despite the big success
of the supervised CNNs, they have at least one potential
drawback detailed as follows: there is a need for a good
supply of labeled training samples to be used for supervised
training. However, these are difficult to collect, and there are
diminishing returns of making the labeled data set larger and
larger. In other words, the supervised CNNs generally suffer
from either small number of training samples or imbalanced
data sets.

Hence, unsupervised spectral–spatial feature learning, which
has a quick access to arbitrary amounts of unlabeled data, is
conceptually of high interest. In general, the main purpose
of unsupervised feature learning is to extract useful features
from unlabeled data, to detect and remove input redundancies,
and to preserve only essential aspects of the data in robust and
discriminative representations. In a pioneer work moving from
the supervised CNN to unsupervised CNN, Romero et al. [40]
proposed an unsupervised convolutional network for learning
spectral–spatial features using sparse learning to estimate the
weights of the network. However, this model was trained in a
greedy layer-wise fashion, i.e., it is not an end-to-end network.
In this paper, we aim to propose an end-to-end network,
fully Conv–Deconv network, for unsupervised spectral–spatial
feature learning of hyperspectral imagery. Basically, our net-
work architecture is based on the so-called encoder–decoder
paradigm. Specifically, the input is first transformed into a
typically lower dimensional space via a convolutional subnet-
work (encoder), and then expanded to reproduce the initial
data by a deconvolutional subnetwork (decoder). Moreover, the
trained unsupervised Conv–Deconv network can be adapted
to the classification of hyperspectral data by cutting off the
deconvolutional subnetwork, replacing the loss function, and
fine-tuning it to the new task, i.e., adjusting the weights using
backpropagation. With this approach, typically much smaller
training sets are sufficient. In detail, our work contributes to
the literature in three major aspects.

1) We propose an end-to-end deep Conv–Deconv neural
network, which is composed of a convolutional
subnetwork and a deconvolutional subnetwork with a
specially designed unpooling layer. Learning such a
2-D encoder–decoder-based network for unsupervised
spectral–spatial feature learning of hyperspectral data
has not been investigated yet to the best of our
knowledge.

2) Since our network is fairly deep, it might easily
converge to an inappropriate solution if small learning
rates are used. On the other hand, simply boosting
convergence with high learning rates leads to exploding
the gradient problem. In this paper, we resolve this issue
by introducing residual learning in our Conv–Deconv
network. To the best of our knowledge, this is the first
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use of residual learning to train networks for remote
sensing data analysis.

3) Our unsupervised network is able to preserve the
neighborhood relations and spatial locality of
3-D hyperspectral cubes in its latent high-level
feature representations, while the conventional 1-D
fully connected unsupervised network architectures
such as auto-encoder, RBM, and DBN do not scale
well to realistic-sized high-dimensional hyperspectral
data in terms of computational complexity.

4) To understand the “black box” of the proposed network,
we make an in-depth investigation. We found that some
specific “neurons” in the first residual block of the
network are capable of precisely capturing semantic
visual patterns in object level, which makes it possible
to achieve a high-quality unsupervised object detection
capability for hyperspectral images.

The rest of this paper is organized as follows. An introduc-
tion to the traditional unsupervised network architectures is
briefly given in Section II. The details of the proposed fully
Conv–Deconv network with residual learning for unsupervised
spectral–spatial feature extraction of hyperspectral data are
described in Section III. The network setup, network analysis,
experimental results, and a comparison with state-of-the-art
approaches are provided in Section IV. Finally, Section V
concludes this paper.

II. PRELIMINARIES

Several types of traditional 1-D unsupervised network
architectures have been leveraged for feature learning of hyper-
spectral data. In this section, we recall the basic principles of
such models.

A. Auto-Encoder

An auto-encoder [41] takes an input x ∈ R
D and first maps

it to a latent representation h ∈ R
M via a nonlinear mapping

h = f (�x + β) (1)

where � is a weight matrix to be estimated during the training
course, β is a bias vector, and f stands for a nonlinear function
such as the logistic sigmoid function and hyperbolic tangent
function. The encoded feature representation h is then used to
reconstruct the input x by a reverse mapping

y = f (�′h + β ′) (2)

where �′ is usually constrained to be the form of �′ = �T ,
using the same weight for encoding the input and decoding
the latent representation. The reconstruction error is defined
as the Euclidian distance between x and y that is constrained
to approximate the input data x, i.e., making ‖x − y‖2

2 → 0.
The parameters of the auto-encoder are generally optimized
by stochastic gradient descent (SGD) [42]. Fig. 1 illustrates
the structure of the auto-encoder.

B. Sparse Auto-Encoder

The conventional auto-encoder relies on the dimension of
the latent representation h being smaller than that of input x,

Fig. 1. Two classical unsupervised network architectures. (Left) Auto-
encoder. (Right) RBM.

i.e., M < D, which means it tends to learn a low-dimensional
compressed representation. However, when M > D, one
can still discover an interesting structure, by enforcing a
sparsity constraint on the hidden units. Formally, given a set of
unlabeled data X = {x1, x2, . . . , x N }, training a sparse auto-
encoder is to find the optimal parameters by minimizing the
following loss function:

E = 1

N

N∑
i=1

⎛
⎝J (x i , yi ; �,β) + λ

M∑
j=1

KL(ρ‖ρ̂ j )

⎞
⎠ (3)

where J (x i , yi ; �,β) is an average sum-of-squares error
term, which represents the reconstruction error between
the input x i and its reconstruction yi . KL(ρ‖ρ̂ j ) is the
Kullback-Leibler (KL) divergence between a Bernoulli random
variable with mean ρ and a Bernoulli random variable with
mean ρ̂ j . KL divergence is a standard function for measuring
how similar two distributions are, and it can be described as
follows:

KL(ρ‖ρ̂ j ) = ρ log
ρ

ρ̂ j
+ (1 − ρ) log

1 − ρ

1 − ρ̂ j
. (4)

In the sparse auto-encoder model, KL divergence is called
sparsity penalty term that provides the sparsity constraint, and
λ controls the weight of the sparsity penalty term. Similar to
the auto-encoder, the optimization of a sparse auto-encoder
can be achieved via the backpropagation and SGD [42].

C. RBM and DBN

Unlike the deterministic network architectures such as auto-
encoder or sparse auto-encoder, an RBM is a stochastic
undirected graphical model consisted of a visible layer and a
hidden layer, and it has symmetric connections between these
two layers, and no connecting exists within the hidden layer
or the input layer. The energy function of an RBM can be
defined as follows:

E(x, h) = 1

2
xT x − (hT W x + cT x + bT h) (5)

where W , c, and b are the weights of the RBM model. The
joint probability distribution of the RBM is defined as

p(x, h) = 1

Z
exp(−E(x, h)) (6)

where Z is a normalization constant. The form of the RBM
makes the conditional probability distribution computationally
feasible, when x or h is fixed. The structure of the RBM is
depicted in Fig. 1.
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Fig. 2. We propose a network architecture that learns to extract spectral–spatial features by reconstructing the initial input 3-D hyperspectral patches, being
trained end to end. There are no fully connected layers, and hence it is a fully Conv–Deconv network. The proposed network architecture is composed of
two parts, i.e., convolutional subnetwork and deconvolutional subnetwork. The former corresponds to an encoder that transforms the input 3-D hyperspectral
patches to abstract feature representations, whereas the latter plays the role of decoder that reproduces the initial input data from the encoded features. Each
layer in the convolutional subnetwork has a corresponding decoder layer in the deconvolutional subnetwork.

The feature representation ability of a single RBM is
limited. However, its real power emerges when a couple of
RBMs are stacked, forming a DBN [43]. Hinton et al. [43]
proposed a greedy approach that trains RBM in each layer to
efficiently train a DBN.

III. METHODOLOGY

CNNs have shown to be very successful on a range of
visual recognition tasks [25]–[27], [29]–[33]. Such tasks,
in common, can be posed as discriminative supervised learning
problems, and hence, can be resolved by CNNs, which are
well known to be effective at learning input–output relations
given an adequate number of labeled data sets. Normally,
a task solved by making use of CNNs involves learning
mappings from concrete raw images to some sort of condensed
abstract outputs, such as category. Here, we are interested in
training an end-to-end neural network to extract features in
an unsupervised fashion, which means we need to leverage a
network to solve a concrete-to-concrete problem instead of the
traditional concrete-to-abstract one. This brings up a question
in mind: what is a good network architecture for our purpose?

A. Initial Conv–Deconv Network Architecture

1) Analysis and Modeling: Denote by (x, h, y) random
variables representing a 3-D hyperspectral patch, its encoded
feature representation, and the reconstructed output. The joint
probability distribution p(x, y) can be described as follows:

p(x, y) = p(x)p(y|x) (7)

where p(x) is the distribution of 3-D hyperspectral patches
and p(y|x) is the distribution of reconstructed outputs given
the hyperspectral patches. Thus, the conditional probability
distribution p(y|x) can be written as

p(y|x) = p(y, h|x) = p(y|h)p(h|x) (8)

where p(h|x) indicates the distribution of the encoded feature
representations given the input hyperspectral patches. As a
special case, y may be a deterministic function of x. Ideally,
we would like to find p(h|x) and p(y|h), but direct applica-
tion of Bayesian theory is not feasible. We, therefore, in this

paper resort to an estimate function f (x) that minimizes the
following mean squared error objective:

Ex‖x − f (x)‖2
2. (9)

The minimizer of this loss is the conditional expectation

f̂ (x0) = Ey[ y|h] + Eh[h|x = x0] (10)

that is the expected reconstructed output given a hyperspectral
patch.

Given a set of unlabeled 3-D hyperspectral patches {xi},
we learn the weights � of a network f (x; �) to minimize a
Monte Carlo estimate of the loss (9)

�̂ = arg min
�

∑
i

‖xi − f (xi; �)‖2
2. (11)

This means that we train the network to reproduce the
input results in learning high-level abstract features in an
unsupervised manner.

In this paper, we propose a fully Conv–Deconv network
(see Fig. 2) in which the desired output is the input data
itself. The proposed network architecture is composed of two
parts, i.e., the convolutional subnetwork and deconvolutional
subnetwork. The former corresponds to an encoder that trans-
forms the input 3-D hyperspectral patch xi to abstract feature
representation hi , whereas the latter plays the role of a decoder
that reproduces the initial input data from the encoded feature.
Each layer in the convolutional subnetwork has a correspond-
ing decoder layer in the deconvolutional subnetwork.

2) Convolutional Subnetwork: The design of the architec-
ture of the convolutional subnetwork is mainly inspired by the
philosophy of the VGG Nets [26]. The input hyperspectral
patch is fed into a stack of convolutional layers, where we
leverage convolutional filters with a very small receptive field
of 3 × 3, rather than making use of larger ones, such as
5 × 5 or 7 × 7. The reason is that 3 × 3 convolutional
filters are the smallest kernels to seize patterns in different
directions, such as center, up/down, and left/right, but still
have an advantage: the usage of small convolutional filters
will increase the nonlinearities inside the network and thus
make the network more discriminative.
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In addition, the convolutional stride in the convolutional
subnetwork is fixed to 1 pixel; the spatial padding of con-
volutional layer input is such that the spatial resolution of
feature maps is preserved after convolution, in other words,
the padding is 1 pixel for the used 3 × 3 convolutional
layers. Spatial pooling is achieved by carrying out several
max-pooling layers, which follow some of the convolutional
layers. In particular, max pooling is performed over 3 × 3 pixel
windows with stride 3.

In a nutshell, the convolutional layers in the convolutional
subnetwork consist of 3 × 3 filters and follow the following
two rules: 1) the convolutional layers in each convolutional
block are with the same feature map size and have the same
number of filters and 2) the number of channels of the feature
maps increases in the deeper convolutional blocks, roughly
doubling after each max-pooling layer, which is meant to
preserve the time complexity per layer as far as possible. All
layers in the convolutional subnetwork are equipped with a
rectified linear unit (ReLU) [25] as activation function. ReLU
is one of several keys to the recent success of deep neural
networks and can be defined as f (x) = max(0, x). Compared
with the conventional activation functions, such as sigmoid
and hyperbolic tangent function, the usage of ReLU can
expedite convergence of the training course and result in better
solutions.

3) Deconvolutional Subnetwork: The convolutional subnet-
work is in charge of extracting high-level abstract spectral–
spatial feature representation of the input 3-D hyperspectral
patch, by interleaving convolutional layers and max-pooling
layers, i.e., spatially shrinking the feature maps layer by layer.
Pooling is necessary to allow agglomerating information over
large areas of feature maps and, more fundamentally, to make
the network computationally feasible. However, pooling leads
to reduced resolution of the feature maps; hence, in order to
reconstruct the initial input data, we need to find a way to
refine this coarse pooled representation.

Our approach to this refinement is to construct a deconvo-
lutional subnetwork. The main ingredient is deconvolutional
operation, which performs reverse operation of the convo-
lutional subnetwork and reconstructs the original input data
from the abstract feature representation. The deconvolutional
operation consists of unpooling and convolution. In order to
map the encoded feature to a high-dimensional hyperspectral
cube, we need unpooling to unpool the feature maps, i.e., to
increase their spatial span, as opposed to the pooling (spatially
shrinking the feature maps) implemented by the convolutional
subnetwork. More specifically, the unpooling [44], [45] is
performed by simply replacing each entry of a feature map
by an s × s block with the entry value in the top-left corner
and zeros elsewhere (see Fig. 3). With this operation, the
height and the width of the feature maps are increased s
times. In this network, we made use of s = 3, as the
size of the receptive field in the max-pooling layers of the
convolutional subnetwork is 3 × 3. When a convolutional
block is preceded by an unpooling layer, we can thus think
of the combination of unpooling and convolutional block
as the inverse operation of “convolutional block + pooling”
performed in the convolutional subnetwork.

Fig. 3. Illustration of (Left) max pooling and (Right) unpooling as used in
the fully Conv–Deconv network described in Section III-A.

Fig. 4. Learning curves for the initial fully Conv–Deconv network on
the Indian Pines data set and the Pavia University data set. Although the
network starts greatly reducing errors on both the training and validation
samples during the first few epochs, it rapidly converges to a fairly high
value, which means the learning of the network is significantly slowed down
and eventually gets stuck into a local minimum. This indicates that such a
network architecture is not easy to optimize.

The configuration of convolutional blocks in the decon-
volutional subnetwork is the same with the convolutional
subnetwork, namely, 3 × 3 receptive field, 1 pixel padding,
and ReLU as activation function.

B. Refined Network Architecture

1) Difficulty of Training Conv–Deconv Network: In
Section III-A, we have systematically built a reasonable net-
work architecture for our task, but a problem will arise when
we attempt to train the network. As can be seen in Fig. 4,
although the network starts greatly reducing errors on both
the training and validation samples during the first few epochs,
it rapidly converges to a fairly high value, which means the
learning of the network is significantly slowed down and
eventually gets stuck into a local minimum. This indicates that
such network architecture is not easy to optimize. We think
the obstacles to train the proposed fully Conv–Deconv network
are as follows.

1) In the Conv–Deconv network, the exact copy of the input
high-dimensional 3-D hyperspectral patch has to go
through all layers until it reaches the output layer. With
many weight layers, this becomes an end-to-end relation
requiring very long-term memory. For this reason, the
notorious vanishing gradient problem [46], [47] can
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Fig. 5. We refine the proposed fully Conv–Deconv network architecture by incorporating residual learning and a more appropriate unpooling operation,
which can use memorized max-pooling indices from the corresponding encoded feature maps and enables reconstruction to be more accurate.

be critical, which handicaps the learning process of the
network.

2) The unpooling operation [44], [45] in the deconvolu-
tional subnetwork increases the spatial resolution of
feature maps by simply adding zeros, which ignores the
location of the maximum value in the receptive field
of pooling layer, leading to loss of edge information
during the decoding procedure. Without this detailed
information, it is difficult for the optimizer to lead the
network to better solutions.

To address the aforementioned problems, in this section,
we refine the proposed fully Conv–Deconv network architec-
ture by incorporating residual learning and a new unpooling
operation that can use memorized max-pooling indices from
the corresponding encoded feature maps and enables recon-
struction to be more accurate. The new network architecture
is shown in Fig. 5.

2) Conv–Deconv Network With Residual Learning: Resid-
ual learning has recently shown appealing performance in
the concrete-to-abstract deep network architectures on many
challenging visual tasks, such as image classification [27], [48]
and object detection [27]. One main merit offered using the
residual learning is that it helps in handling the vanishing
gradient problem and degradation problem [27]. In this paper,
we are interested in introducing the residual learning to the
proposed concrete-to-concrete Conv–Deconv network in order
to resolve the network training problem.

The proposed Conv–Deconv network with residual learning
is a modularized network architecture that stacks residual
blocks. Similar to the convolutional blocks, a residual block
consists of several convolutional layers that are with the same
feature map size and have the same number of filters. However,
it performs the following calculation:

ϕl = g(φl) + F(φl; �l) (12)

φl+1 = f (ϕl). (13)

Here, φl indicates the feature maps that are fed into the
lth residual block and satisfies φ0 = x where x is the input
3-D hyperspectral patch. �l = {�l,k |1 ≤ k ≤ K } represents a
collection of weights associated with the lth residual block,
and K denotes that there are K convolutional layers in a
residual block. Moreover, F is the residual function and
is generally achieved by few stacked convolutional layers,

e.g., a convolutional block described in Section III-A. The
function f indicates the activation function such as a linear
activation function or ReLU, and f works after element-wise
addition. The function g is fixed to an identity mapping:
g(φl) = φl .

If f adopts a linear activation function and also acts as an
identity mapping, i.e., φl+1 = ϕl , we can obtain the output of
the lth residual block by putting (12) into (13)

φl+1 = φl + F(φl; �l) . (14)

In contrast, a convolutional block only performs the
following computation:

φl+1 = H(φl; �l). (15)

Recursively, like

φl+2 = φl+1 + F(φl+1; �l+1)

= φl + F(φl; �l) + F(φl+1; �l+1) (16)

we will get the following recurrence formula:

φL = φl +
L−1∑
i=l

F(φi ; �i) (17)

for any shallower block l and any deeper block L.
As exhibited in (17), the network with residual learning has

some interesting and nice properties.
1) The feature maps φL of any deeper residual block L can

be considered to be adding the feature maps φl of any
shallower block l and a residual function in a form of∑L−1

i=1 F , representing that the network is in a residual
fashion and is capable of learning some new features
between any blocks l and L.

2) With both the g and f being identity mappings, i.e.,
g(φl) = φl and f (ϕl) = ϕl , a network with residual
learning creates a direct path for propagating information
through the entire network, which can effectively avoid
the vanishing gradient problem.

These two respects are in contrast to the Conv–Deconv
network equipped with common convolutional blocks
(see Section III-A) in which the feature maps φL are a set
of matrix products, namely,

∏L−1
i=0 �iφ0.

The content discussed above illustrates the forward propa-
gation procedure of the Conv–Deconv network with residual
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Fig. 6. Comparison between the convolutional block and the residual block.
Here, φl denotes the input and φl+1 is any desired output. The convolutional
block hopes that two convolutional layers are able to fit φl+1 by directly
learning a mapping H. In contrast, the two convolutional layers are expected
to learn a residual function F to let φl+1 = F(φl )+φl in the residual block.

learning. However, how the residual learning can help us
to effectively train the proposed deep network? To answer
this question, we need to dive into the backward propagation
process. Denoted by E indicating the loss function, according
to the chain rule of backpropagation, we can obtain

∂E

∂φl
= ∂E

∂φL

∂φL

∂φl
= ∂E

∂φL

(
1 + ∂

∂φl

L−1∑
i=l

F(φi ; �i )

)
. (18)

Equation (18) implies that the gradient (∂E/∂φl) can be
decomposed into two additive terms: a term of (∂E/∂φL) that
directly propagates information without concerning any weight
layers and another term of (∂E/∂φL)((∂/∂φl )

∑L−1
i=l F) that

propagates through the weight layers. The former term ensures
that the information can be propagated back to any shallower
residual block l directly. In addition, since (∂/∂φl )

∑L−1
i=l F

basically cannot always be −1 for all training data in a batch,
it is almost impossible that (18) is canceled out for a mini-
batch. This implies that the gradient information of a layer in
the network does not vanish even while the trainable weights
are arbitrarily small, which is the key to make the deep
network feasible for the purpose of training and to answer the
question mentioned above. Given the activation function of the
last layer is sigmoid, on the contrary, the initial Conv–Deconv
network easily suffers from the vanishing gradient problem,
which leads the learning procedure is slowed down or even
stopped. Fig. 6 shows a comparison between the convolutional
block [Fig. 6 (left)] and the residual block [Fig. 6 (right)].

3) More Accurate Unpooling: To acquire more appropri-
ate unpooled feature maps and more precise reconstruction
output, the max-pooling indices computed in the max-pooling
layers of the corresponding encoder can be used to perform
nonlinear upsampling of the feature maps. And, reusing the
max-pooling indices in the deconvolutional subnetwork has
several practical merits, including that it is able to improve
boundary delineation and eliminates the need for learning to
upsample. The unpooled feature maps produced by this form
of unpooling are sparse. Then, the unpooled feature maps are
convolved with trainable filters to generate dense feature maps.

Goroshin et al. [49] recently presented a soft version of max
and arg max operations that can take not only the maximum
value in the receptive field of a max-pooling layer but also

Fig. 7. Illustration of the unpooling operation in the refined Conv–Deconv
network (see Section III-B), using max-pooling indices that are capable of
recording the location of the maximum value in each local pooling region
during pooling in the convolutional subnetwork.

the corresponding index of that value. In particular, these two
operations can be computed as follows:

μ =
∑
V

z(i, j)
exp(αz(i, j))∑
V exp(αz(i, j))

≈ max
V

z(i, j) (19)

ν =
∑
V

[i, j ]T exp(αz(i, j))∑
V exp(αz(i, j))

≈ arg max
V

z(i, j) (20)

where (i, j) stands for the spatial location index in the
receptive field of a max-pooling layer and takes normalized
values from −1 to 1, and z(i, j) presents the value of the
given location on a feature map. V is the receptive field. Note
that α is a hyperparameter that controls soft pooling such that
the lager the α, the closer the soft pooling approaches max
pooling. With the max and arg max operations, the max-poling
indices can be obtained in every pooling layer.

Then we make use of interpolation in the unpooling layers
of the deconvolutional subnetwork by handling the values
conveyed by the max-pooling indices (see Fig. 7). The use of
max-pooling indices enables location information to be more
accurately represented and thus enables the feature maps to
capture fine details about the input 3-D hyperspectral patch.

C. Usage of Learned Features for Classification by
Fine-Tuning the Network

Once the Conv–Deconv network is trained, the convolu-
tional subnetwork, i.e., the encoder, can be regarded as an
effective feature extractor. The key idea, here, is that the
internal layers of the convolutional subnetwork can act as
a generic extractor of spectral–spatial representation, which,
first, can be trained by learning an identity mapping in the
encoder–decoder architecture and then reused on other target
tasks like classification. With this fine-tuning, we do not have
to use a large number of labeled data to train a valid network
for the purpose of supervised classification. In contrast, taking
into consideration the fact that the total number of trainable
parameters of a deep 2-D convolutional network is huge, a
direct learning of so many parameters from the limited number
of training samples is problematic. For fine-tuning, we cut
off the deconvolutional subnetwork, introduce a new fully
connected layer with softmax as a classifier, and fine-tune this
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Fig. 8. Illustration of fine-tuning.

TABLE I

NUMBER OF TRAINING AND TEST SAMPLES USED

IN THE INDIAN PINES DATA SET

new layer with limited labeled training samples, making the
network significantly easier to be trained for the classification
task. Fig. 8 illustrates this process.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Description

1) Indian Pines: This data set was acquired over the
Indian Pines agricultural site in northwestern Indiana. It was
collected with an airborne visible/infrared imaging spec-
trometer (AVIRIS) sensor in June 1992. The AVIRIS sensor
comprises 220 spectral channels ranging from 400 to 2500 nm.
In this data set, 20 bands affected by atmosphere absorption
have been removed, and the remaining 200 spectral bands
are investigated in this paper. The data set consists of
145 × 145 pixels, and the spatial resolution is 20 m/pixel.
The available training samples of this data set cover 16 classes
of interests. Table I provides information about different
classes and their corresponding training and test samples.

2) Pavia University: The second data set was captured by
reflective optics system imaging spectrometer (ROSIS) cov-
ering the Engineering School at the University of Pavia, and
presents nine classes, mostly related to land covers. The image
is of 610 × 340 pixels with a spatial resolution of 1.3 m/pixel
and was collected under the HySens project managed by the
German Aerospace Center. The hyperspectral imagery consists
of 115 spectral channels ranging from 430 to 860 nm. In this

TABLE II

NUMBER OF TRAINING AND TEST SAMPLES USED
IN THE PAVIA UNIVERSITY DATA SET

paper, we made use of 103 spectral channels, after removing
12 noisy bands. Table II provides information about all nine
classes of this data set with their corresponding training and
test samples.

B. General Information

To evaluate the performance of different approaches for
hyperspectral image classification, the following evaluation
criteria are used.

1) Overall Accuracy (OA): This measure represents the
number of samples that are classified correctly, divided
by the number of test samples.

2) Average Accuracy (AA): This index shows the average
value of the classification accuracies of all categories.

3) Kappa Coefficient: This metric is a statistical measure-
ment that provides information regarding the amount
of agreement between the ground truth map and the
final classification map. It is the percentage agreement
corrected by the level of agreement, which could be
expected due to the chance alone. In general, it is
considered to be a more robust index than a simple
percent agreement calculation, since k takes into account
the agreement occurring by chance [1].

In addition, in order to evaluate the significance of the
classification accuracies obtained by different approaches, a
statistical test is conducted. Since the samples that were used
for two different classification approaches are not independent,
we evaluate the significance of two classification results with
McNemar’s test, which is given by [50]

z12 = f12 − f21√
f12 + f21

where fi j is the number of correctly classified samples in clas-
sification i and incorrectly in classification j . McNemar’s test
is based on the standardized normal test statistic and therefore,
the null hypothesis, which is “no significant difference,” is
rejected at the widely used p = 0.05 (|z| > 1.96) level of
significance.

To validate the effectiveness of the proposed network archi-
tecture for the purpose of hyperspectral image classification,
the novel classification method is compared with the most
widely used supervised models, random forest [13], [14] and
SVMs [15], [16]. In addition, in this paper, the experiments
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making use of other supervised deep learning methods such
as 1-D CNN and 2-D CNN are also carried out to verify the
validity of the proposed network. The approaches included in
the comparison are summarized as follows.

1) RF-200: Random forest with 200 trees.
2) SVM-RBF: SVMs with an RBF kernel are implemented

using the libsvm package.1 Furthermore, fivefold cross-
validation is taken into account to tune the hyperplane
parameters.

3) 1-D CNN: The network architecture of the 1-D CNN is
designed as in [51] and includes an input layer, convo-
lutional layer, max-pooling layer, fully connected layer,
and output layer. The number of the convolutional filters
is 20 for all data sets. The length of each convolutional
filter and the pooling size are 11 and 3, respectively.
Moreover, 100 hidden units are contained in the fully
connected layer.

4) 2-D CNN: We follow the architecture of the 2-D CNN as
used in [36]. It contains three convolutional layers that
are equipped with 4 × 4, 5 × 5, and 4 × 4 convolutional
filters, respectively. The convolutional layers—apart
from the last one—are followed by the max-pooling
layers. In addition, the numbers of the convolutional
filters for the convolutional layers are 32, 64, and 128,
respectively.

5) SICNN: An SICNN model solves the curse of dimen-
sionality and the lack of available training samples by
iteratively selecting the most informative bands suitable
for the designed network via FODPSO [19].

6) Initial Conv–Deconv Network: The fully Conv–Deconv
network with the plain convolutional blocks and the
unpooling operation implemented in [44] and [45]
(see Section III-A).

7) Residual Conv–Deconv Network: Our final network
architecture makes use of the residual blocks and a more
accurate unpooling operation. Section III-B shows the
details.

Note that, to make the proposed approach fully comparable
with other supervised classifiers in the literature, we used the
standard sets of training and test samples for the data sets.

The fully Conv–Deconv network was trained using the
Adam algorithm [52], and all the suggested default parameters
were used for all the following experiments. The number
of convolutional filters increases toward deeper layers of the
convolutional subnetworks: 64 for the first residual block,
128 for the following block, and 256 for the last one. This
rule is turned over for the deconvolutional subnetwork. All
the convolutional layers are with ReLU as nonlinear activation
function except the last layer that uses sigmoid activation.
All weight matrices in the network and bias vectors are
initialized with a uniform distribution, and the values of
these weight matrices and bias vectors are initialized in the
range [−0.1, 0.1]. The number of unlabeled data samples used
for training the Conv–Deconv network on both Indian Pines
and Pavia University is 10 000. These unlabeled samples are
randomly selected from the whole images. Prior to training the

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/

Conv–Deconv network, we normalize the hyperspectral data in
the range of 0–1. Then, all the weights can be updated during
the training procedure. Once the training of Conv–Deconv
network is complete, we can start to fine-tune the network
for hyperspectral data classification. We made use of SGD
with a fairly low learning rate of 0.0001 in order to fine-
tune the network. For fine-tuning, in both hyperspectral data
sets, we randomly chose 10% of the training samples as the
validation set. That is, during fine-tuning, we used 90% of the
training samples to learn the parameters and the remaining
10% of the training samples as validation to tune the super-
parameters, such as the numbers of convolutional filters in
the convolutional layers. All test samples are used to evaluate
the final performance of the learned spectral–spatial feature
representations and the fine-tuned network for classification.

The experiments are organized into three parts. The first
part aims primarily at evaluating the learning procedures of the
initial Conv–Deconv network and the residual Conv–Deconv
network. Moreover, the learned feature maps are also shown
and discussed in this part. In the second part, the effectiveness
of the proposed network is compared with other state-of-
the-art models such as random forest, SVM, 1-D CNN, and
2-D CNN. In the last part, we comment on the processing
time.

C. Analysis of the Conv–Deconv Networks

1) Learning Curves: We first investigate the behavior of the
initial Conv–Deconv network and the residual Conv–Deconv
network during the training process, before we present the
performance of the networks for the classification task. The
qualities of the trained networks can be reflected by learning
curves. As shown in Fig. 9, the initial Conv–Deconv network
starts reducing error earlier on both the training samples
and the validation samples but finally reduces the loss to a
relatively high value, which means the learning of the network
is apparently slowed down and the network converges to a
local minimum in the end. In contrast, with residual learning,
the residual Conv–Deconv network shows strong convergence
ability. In particular, the residual Conv–Deconv network can
obtain the training error value of 0.000276 on the Indian
Pines data set after 30 epochs, while the initial Conv–Deconv
network can achieve only 0.0767. For the Pavia University data
set, the residual Conv–Deconv network can quickly converge
to the error of 0.000238 after 30 iterations. In the same con-
dition, the initial Conv–Deconv network can yield only 0.120.
Furthermore, since we do not observe the overfitting problem
in Fig. 9, the trained residual Conv–Deconv network can be
thought as a good model for the follow-up fine-tuning stage.

2) Feature Visualization and Analysis: In order to under-
stand the “black box” of the Conv–Deconv network, we show
and analyze the learned feature maps. Specifically, we use the
Pavia University data set to perform an in-depth study of the
learned feature representation. Note that we do not have any
fully connected layer in the residual Conv–Deconv network,
which allows the trained network to take hyperspectral images
of arbitrary size as input. Fig. 10 shows feature visualizations
from the first residual block of the residual Conv–Deconv
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Fig. 9. Learning curves for the initial Conv–Deconv network and the residual Conv–Deconv network on the training samples and the validation samples
of (a) Indian Pines data set and (b) Pavia University data set. With residual learning and the new unpooling operation, we can lead the network to a better
solution. Here, we use the Adam optimizer with a default learning rate of 0.001.

Fig. 10. Feature visualizations from the first residual block of the residual Conv–Deconv network once training is complete on the Pavia University data
set. Each group contains two feature maps, including (Left) residual feature F(φl ; �l ) and (Right) output feature map φl+1. We randomly demonstrate
20 out of 64 learned feature map groups, revealing different structures that are activated by various convolutional filters.

network once training is complete. Each group in Fig. 10
contains two feature maps, i.e., the residual feature F(φl; �l)
[Fig. 10 (left)] and the output feature φl+1 [Fig. 10 (right)] of

the residual block. We randomly show 20 out of 64 learned
feature map groups, revealing the different structures that
are activated by various convolutional filters. For instance,
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Fig. 11. (a) Eight out of 128 output feature maps of the second residual
block. (b) Twelve out of 256 output feature maps of the third residual block.

in group #47, the visualization of output feature map reveals
that this particular feature focuses on the spectrum of metal
sheets in the scene, while the output feature map in group #52
inhibits the expression of the same class. And, as shown
in group #37, the residual feature tends to activate the
shadow areas in the feature map. Since these feature maps
are produced by the corresponding convolutional filters, it is
believed that the convolutional filters learned by our residual
Conv–Deconv network are capable of extracting some specific
spectral–spatial patterns from different perspectives. We also
show the output feature maps of the second and the third
residual blocks in Fig. 11. It can be seen that the deeper the
residual block is, the more abstract the learned feature maps
will be naturally.

3) Object Detection: A very interesting thing arises when
we analyze the learned feature maps. Although our residual
Conv–Deconv network has not been explicitly designed for the
task of object detection, we have observed strong evidence
of object detection for the hyperspectral image provided by
the network at the test stage. In particular, we found that
target objects can be localized by the activated or suppressed
pixels in some specific learned feature maps of the first
residual block. For example, we can determine the objects
consisted of metal sheets in the Pavia University data set
through finding the hyperspectral pixels that are suppressed by
the convolutional filter #52. Similarly, the vegetation covers,
including meadows and trees, are able to be identified in

Fig. 12. Object detection maps of selective convolutional filters from the
first residual block of the proposed residual Conv–Deconv network, in which
some “neurons” own good description power for semantic visual patterns in
the object level. For example, the feature maps activated by the convolutional
filters #52 and #03 in the first residual block can be used to precisely
capture (a) metal sheets and (b) vegetative covers, respectively. Specifically,
we achieve detection by simply setting a global threshold, which is computed
by minimizing the intraclass variance of the black and white pixels in the
considered feature map [53].

the scene by searching the nonactivated pixels in the output
feature map #03. To qualitatively assess the object detection
results acquired by the proposed approach, examples of such
object detection maps are given in Fig. 12. This visualization
clearly demonstrates that some “neurons” in the first residual
block of the proposed residual Conv–Deconv network know
the locations of the target objects within the hyperspectral
image and own good description power for semantic visual
patterns in the object level. Addressing the detection task
seems within reach. Moreover, it is worth noting that compared
with the conventional supervised object detectors that need a
number of labeled ground truth data, object detection achieved
by this method is free and totally unsupervised. Also, as
shown in Fig. 12, the quality of such object detection maps
is quite good. These maps are with very good edge details,
and even very small objects (e.g., cars on the road in the
Pavia University scene) can be detected. In a nutshell, our
study has shown that the convolutional filters in the proposed
residual Conv–Deconv network for the task of unsupervised
spectral–spatial feature learning possess strong selectiveness
on patterns corresponding to object categories. Particularly,
the feature maps obtained by some specific “neurons” at the
first residual block of the network record the spectral–spatial
representation of visual pattern of a specific object.

D. Fine-Tuned Network for Hyperspectral
Image Classification

To further investigate the spectral-spatial features learned
by the residual Conv–Deconv network, we evaluated the
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Fig. 13. Classification results obtained by different methods for the Indian Pines scene. (a) True-color composite (bands R: 26, G: 14, B: 8). (b) Training
samples. (c) Test samples. (d) RF-200. (e) SVM-RBF. (f) 1-D CNN. (g) 2-D CNN. (h) SICNN. (i) Fine-tuned residual Conv–Deconv network.

performance of the fine-tuned network for the hyperspectral
data classification task and provided a comparison with the
state-of-the-art approaches.

The classification maps of the Indian Pines data set obtained
by the widely used classifiers (e.g., random forest and SVM),
supervised CNNs, and our method are shown in Fig. 13, and
the corresponding accuracy indexes are presented in Table III.
Analysis of the classification accuracy indexes indicates that
the SVM with RBF kernel (SVM-RBF) outperforms the
random forest classifier, mainly because the kernel SVM
generally deals with nonlinear inputs more effectively than
the random forest model. The proposed fine-tuned residual
Conv–Deconv network achieves better scores for OA and
kappa coefficient compared with all other methods. In compar-
ison with SVM-RBF, 1-D CNN, and 2-D CNN, the proposed
network increases the OA by 12.98%, 13.36%, and 15.97%,
respectively. In addition, the numbers of test samples for

different classes of Indian Pines are considerably imbalanced.
Hence, the consideration of the OA alone cannot precisely
evaluate the usefulness of the classifier, since small classes
are commonly ignored. In this case, AA and kappa coefficient
can be used to evaluate the performance of different classi-
fication models more accurately. Strong difference between
the OA and AA or kappa coefficient may means that some
classes are incorrectly classified with a high proportion. With
respect to these two measures, compared with SVM-RBF,
1-D CNN, and 2-D CNN, the improvements in AA achieved
by the proposed network are 9.89%, 12.20%, and 7.58%,
respectively, and the increments of kappa coefficient obtained
by the fine-tuned residual Conv–Deconv Net are 0.1454,
0.1533, and 0.1406, respectively. Note that the OA and kappa
coefficient of 2-D CNN are significantly lower than those of
other approaches, as directly training such 2-D network gen-
erally suffers from a small and imbalanced data set, while the
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TABLE III

ACCURACY COMPARISON FOR THE INDIAN PINES DATA SET. THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD

TABLE IV

CLASSIFICATION ACCURACIES OF DIFFERENT TECHNIQUES IN PERCENTAGE FOR PAVIA UNIVERSITY.
THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD

proposed strategy, to a large extent, is capable of overcoming
this shortcoming. Moreover, SICNN also performs well on the
Indian Pines data set, since the specially designed mechanism
can effectively solve the curse of dimensionality and the lack
of available training samples. But, it is worth noting that our
method for feature learning is unsupervised, while 1-D CNN,
2-DCNN, and SICNN are supervised networks. Taking this
into account, the performance of our approach is competitive
and satisfactory. The proposed approach achieves the best
accuracies on most of classes of the Indian Pines data set. For
instance, the accuracy of the grass-pasture category obtained
by fine-tuned residual Conv–Deconv network reaches 96.56%,
and the proposed network can achieve 100% on the corn-min
class.

Fig. 14 shows the classification maps using the Pavia
University data set; the comparison of accuracies between
the random forest, SVM-RBF, supervised CNNs, and our
approach can be found in Table IV. It can be seen that
the proposed fine-tuned residual Conv–Deconv network
outperforms the others in terms of OA and kappa coefficient.
Misclassification in this data set lies in similar objects, such as
Meadow-Trees. The proposed network achieves the best AA
of 96.46% on Meadow-Trees. Similarly, the misclassification

problem in the Indian pines data set is also improved. For
example, the AA of Corn-notill, Corn-min, and Corn obtained
by the fine-tuned residual Conv–Deconv network is 96.79%,
which is higher than that of SVM-RBF (82.69%), 1-D CNN
(75.14%), 2-D CNN (89.49%), and SICNN (95.07%).
Furthermore, in Figs. 13 and 14, it is obvious that the spectral
classification methods (random forest, SVM, and 1-D CNN)
always result in noisy scatter points in the classification
maps, while the spectral–spatial approaches (2-D CNN,
SICNN, and fine-tuned residual Conv–Deconv network)
address this problem by eliminating noisy scattered points of
misclassification.

In addition to comparing the proposed approach with the
traditional classifiers (random forest and SVM) and other deep
networks, some mathematical morphology-based methods
like the morphological profile (MP) [54] are also considered
in comparison due to their capacity to extract spatial
features. Fauvel et al. [55] summarized some frequently
used spectral–spatial features. Benediktsson et al. [56]
proposed an extended MP (EMP) using principal component
analysis (PCA) for hyperspectral image classification. The
EMP-PCA [56] is able to achieve the OA of 77.7%, AA of
82.5%, and kappa coefficient of 0.71 on the Pavia University
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Fig. 14. Classification results obtained by different methods for the Pavia
University scene. (a) Composite image of hyperspectral data. (b) Training
data. (c) Ground truth reference. (d) RF-200. (e) SVM-RBF. (f) 1-D CNN.
(g) 2-D CNN. (h) SICNN. (i) Fine-tuned residual Conv–Deconv network.

data set. Fauvel et al. [57] attempted to make use of kernel
PCA to produce EMP, in which state-of-the-art performance
on the Pavia University scene can be obtained with the OA
of 96.3%, AA of 95.7%, and kappa coefficient of 0.95. For
more mathematical morphology-based approaches, please
refer to [55].

Table V gives information about the results of McNemar’s
test to evaluate the significance of the difference between
the classification accuracies of the proposed network and the
other investigated approaches. With reference to Table V, the
improvements of OAs achieved by the proposed methods are
statistically significant in comparison with the other studied
methods. It is worth noting that the SICNN performs simi-
larly to the proposed approach on the Indian Pines data set

TABLE V

ASSESSMENT OF THE SIGNIFICANCE OF THE CLASSIFICATION
ACCURACIES OF THE PROPOSED METHOD COMPARED WITH

THE OTHER INVESTIGATED APPROACHES FOR BOTH THE

INDIAN PINES AND PAVIA UNIVERSITY DATA SETS

TABLE VI

STATISTICS OF TRAINING TIME (MINUTES)

(the value is 1.747), as the SICNN exploits band selection
before feeding the data into the CNN, which greatly reduces
the total number of parameters of the network and thus
improves the accuracy.

E. Processing Time

For both training and testing steps of the residual
Conv–Deconv network and the fine-tuned network, we have
used an NVIDIA GTX Titan GPU. The other approaches,
i.e., random forest, SVM-RBF, and 1-D CNN, are computed
on a CPU with a personal computer equipped with an Intel
Core I5 with 2.20 GHz. The training times of the residual
Conv–Deconv network and the fine-tuned network are shown
in Table VI. With the help of GPU, the training times of the
proposed networks are acceptable.

V. CONCLUSION

In this paper, we proposed a novel end-to-end fully
Conv–Deconv network architecture for unsupervised spectral–
spatial feature extraction of hyperspectral images. In particular,
the proposed network is composed of two parts, namely, the
convolutional subnetwork and deconvolutional subnetwork.
They are responsible for transforming an input 3-D hyperspec-
tral patch to abstract feature representation and reproducing
the initial input data from the encoded feature, respectively.
Furthermore, residual learning and a new unpooling operation
that can make use of max-pooling indexes are introduced to
our network architecture in order to overcome the training
problem caused by vanishing gradient. A very interesting
observation can be found when we analyze the learned feature
maps. Although the proposed network has not been explicitly
designed for the task of object detection, we have observed that
target object can be localized by the activated or suppressed
pixels in some specific learned feature maps of the first resid-
ual block, which makes it possible to achieve the unsupervised
object detection in hyperspectral images. Experimental results
also demonstrate that the features learned by the proposed
unsupervised network can be used for the hyperspectral image
classification task, and the obtained classification results are
competitive compared with the other supervised approaches.

In the future, further experiments and studies will be con-
ducted to fully understand the “block box” of the proposed
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fully Conv–Deconv network with residual learning, providing
more accurate analysis for remote sensing applications such as
unsupervised object detection with the help of learned feature
maps. In addition, the input to the proposed Conv–Deconv
network is the raw hyperspectral data, and a possible future
work is to explore the capability of the proposed approach
using APs and extinction profiles that extract spatial informa-
tion in a robust and adaptive way.
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