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A Systematic Solution to Multi-Instrument
Coregistration of High-Resolution Planetary
Images to an Orthorectified Baseline

Panagiotis Sidiropoulos

Abstract— We address the problem of automatically coregister-
ing planetary images to a common baseline, introducing a novel
generic technique that achieves an unprecedented robustness to
different image inputs, thus making batch-mode coregistration
achievable without requiring the usual parameter tweaking.
We introduce a novel image matching technique, which boosts
matching performance even under the most strenuous -cir-
cumstances, and experimentally demonstrate validation through
an extensive experimental multi-instrument setup that includes
images from eight high-resolution data sets of the Mars and
the Moon. The technique is further tested in a batch-mode
processing, in which approximately 1.6% of all high-resolution
Martian imagery is coregistered to a common baseline.

Index Terms— High-resolution imaging, image matching,
image registration, multi-instrument coregistration, planetary
images, remote sensing.

I. INTRODUCTION

INCE Luna 3 reached the far side of the Moon in 1959,

acquiring the first orbital images of a planetary body,
a large number of missions from several space agencies have
retrieved millions of orbital images from the rocky planetary
bodies of our solar system, from the Moon [2], [1] and
Mars [3] up to the dwarf planets of Pluto and Charon [4].
This data volume has significantly increased our knowledge
about planetary geomorphology [5], [6], while a number
of previously unknown dynamic surface features have been
identified and thoroughly examined [7]-[9], demonstrating that
Earth is far from being the only active planet of the solar
system.

It is commonly understood that both geomorphological
analysis and change detection tasks would greatly benefit from
the integration of all data into a common geospatial frame-
work. However, even though most space missions append
temporal and spatial metadata to their images (typically
following the Spacecraft Planet Instrument C-matrix Events
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standard [10]) that allow an approximate position estima-
tion, small errors in the instrument position and orientation
can cause spatial inconsistencies that may reach the order
of kilometers for high-resolution images (note that in this
paper we are using the high-resolution planetary image def-
inition of [3], i.e., planetary images with resolution finer
than 100 m/pixel). As a matter of fact, these inconsistencies are
present not only on images acquired by different instruments
but also in single-instrument images, thus resulting in each
image being actually projected onto its own coordinate system.

Coregistration of planetary images, i.e., the projection
of images onto a single coordinate system, is traditionally
conducted independently for each input image, using man-
ual or semiautomatic pipelines based on software such as
ENVI! and DaVinci® [11]. Such approaches determine the
input parameters manually and individually for each image,
thus making it impossible to automate the (batch-mode)
processing of a large set of images with a single set of
processing parameters to be applied irrespective of the image
source or the image location. Moreover, typical planetary
image coregistration pipelines generally have high computa-
tional cost and require a good knowledge of complex and
elaborate software with a steep learning curve, a feature that
becomes more irritating as this software is often used by
people who are not computer experts.

As a result, most planetary image data sets remain uncoreg-
istered, even decades after the end of the corresponding space
mission. For example, the 95966 high-resolution images that
Mars Orbiter Camera—Narrow Angle (MOC-NA) acquired of
the surface of Mars between 1997 and 2006 [12] are still
not coregistered to a common baseline, Lunar Reconnaissance
Orbital Camera (LROC) [2] has acquired hundreds of terabytes
of high-resolution images that are still not coregistered, while
the Mercury Dual Imaging System—Narrow Angle Camera
(MDIS-NAC) team coregistered 88746 narrow angle images
to create a global Mercury mosaic [13], ignoring the rest of the
277928 high-resolution images that MDIS-NAC has acquired.

Multi-instrument coregistration, i.e., the coregistration of
images from several different orbiter instruments to a single
baseline, is a much more challenging task, since the images
acquired by different instruments have generally different

1 http://www.harrisgeospatial.com/docs/Registrationlmage Tolmage.html
2http://davinci.asu.edu
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resolution ranges, distinct point spread functions, different
spectral filters, different sensor techniques, and unique cam-
era setups. The fact that they are generally separated in
time (i.e., images were acquired over different time periods)
causes additional problems both due to technological advances
that limit multi-instrument compatibility and due to surface
changes that may have happened in the meantime.

By focusing on Mars high-resolution cameras, the instru-
ment diversity becomes apparent: Viking Orbiter (VO)
acquired images between 1976 and 1980 in a resolution
range from 8 to 1000 m/pixel with a frame camera that
was using vidicon technology [14]; MOC-NA was a push-
broom camera that was active between 1997 and 2006 had
a resolution of 1.5-12 m/pixel and was using charge-coupled
device (CCD) technology [12]; the Thermal Emission Imag-
ing System—Visible (THEMIS-VIS) is a thermal imaging
system that acquires framelets of 17.5-75 m/pixel resolu-
tion [15]; High-Resolution Stereo Camera (HRSC) is a stereo
pushbroom CCD camera that is mapping Mars since 2004
with a resolution 12.5-100 m [16]; Context Camera (CTX)
builds upon MOC-NA legacy acquiring 6 m/pixel images from
large areas of Mars [17]; and finally, High-Resolution Imaging
Science Experiment (HiRISE) uses a specialized time delay
and integration setup of 14 pushbroom cameras that acquire
since 2006 images of 0.25-0.5 m/pixel resolution [18]. Such
complexities have prevented the development of systematic
multi-instrument planetary image coregistration algorithms.
As far as we know, systematic multi-instrument coregistration
is not supported by any of the current coregistration pipelines
and algorithms.

The main obstacle that a coregistration algorithm has
to overcome is the automatic estimation of a sufficient
number of tie-points in the target (or input) and the baseline
(or reference) image. Efficient, reliable, and fast tie-point
estimation is difficult even in single-instrument coregistration.
This challenge is further amplified when dealing with multi-
instrument images, as has been extensively reported both in
earth observation (see [19]) and planetary science literature
(see [20]). However, if tie-point estimation is achieved, then
several powerful techniques exist in the literature, which could
convert the estimated tie-points to rigid, nonrigid, or hybrid
camera models to produce coregistration results of
high accuracy.

Accordingly, we have focused our attention on developing
a novel point matching approach that uses a priori position
estimations and standard geometric properties of planetary
image acquisition setup to significantly increase the matching
potential of local image descriptors. The a priori position
estimations are the georeference information of both the
reference and the target image, which are assumed to generate
approximately correct position estimations, in order to auto-
matically determine the reference image that will be used as a
baseline. Moreover, in this paper, scale invariant feature trans-
form (SIFT) [21] features are employed as image descriptors.
SIFT features are extracted using the original algorithm and
parameters introduced in [21]. The new algorithm is fast, does
not require parameter tuning, and is robust to non-affine defor-
mations that are common in planetary images. Hence, it is the

ideal basis for developing and implementing multi-instrument
planetary image pipelines capable of performing batch-mode
coregistration in a single pass and within a realistic time
(with the main exclusion of surfaces with large slopes, which
are quite rare on most planetary surfaces). As far as we are
aware, this is the first systematic approach on multi-instrument
coregistration of high-resolution planetary images.

This paper is organized as follows. Some basic princi-
ples of remote sensing image coregistration are revisited in
Section II, before focusing on planetary image coregistration
in Section III. The ring matching algorithm, which is the major
novelty of this paper, is introduced in Section IV and further
discussed in Section V, before being experimentally validated
in several data sets coming from the Mars and the Moon in
Section VI. Finally, Section VII concludes this paper.

II. REMOTE SENSING IMAGE COREGISTRATION

Over the last several years, remote sensing coregistration
has achieved some progress by addressing several of its
initial shortcomings. The relevant research spans from the
theoretic analysis of the lower boundary of registration accu-
racy [22], [23] to ad hoc techniques that are tailored to
specific types of imagery (e.g., optical to synthetic aperture
radar images [24]). Despite this multitude, there are still a
number of unresolved issues and a lack of consensus about
the best strategies for coregistration applications.

In this section, we classify remote sensing coregistration
techniques according to: 1) the user involvement; 2) the
abstraction level of the image features used for coregistration;
and 3) the inputs each could process, respectively. For a
more thorough presentation of state-of-the-art remote sensing
coregistration techniques, please refer to some of the literature
reviews such as [25] and [26].

A. User Involvement

Despite the significant effort that has been put into the
automation of remote sensing image coregistration, there are
still many applications where the coregistration process is
done manually, i.e., through some specialized software [27]
that allows the user full control of the coregistration pipeline.
However, manual coregistration is a tedious task that requires
human resources, cannot be employed for batch-mode process-
ing to coregister large volumes of input data, and, last but not
least, it may lead to inaccurate tie-points when coregistering
multisource images [28], [29].

As a consequence, a number of techniques have emerged,
which employ a limited user input on the initial stages
of the coregistration pipeline, before this proceeds auto-
matically until the completion of the task. For example,
in [30], semiautomatic image segmentation is used as a
preprocessing step to geometrically constrain image matching,
while in [29], manual crater detection generates geometrical
constraints for planetary image coregistration. Additionally,
a number of coregistration techniques in which parameter
estimation is performed through least squares estimation
(see [31]-[33]) require the approximate input image position
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TABLE I

NNDR OPTIMAL VALUES THAT ARE REPORTED
IN THE RECENT LITERATURE

Method | [27] | [44]
NNDR | 0.8 | 0.9

[40] [62] | [4]
0.6-0.7 | 0.9 | 0.75

[45]
0.85

[16]
0.7-0.8

to be known (i.e., the images being originally approximately
aligned) or provided by the user [28].

Nevertheless, the bulk of recent remote sensing image
coregistration techniques are fully automatic, meaning
that they do not require any user involvement apart
from determining the input and the processing parameter
values [34]-[37]. However, parameter sensitivity often limits
the potential of an automatic method, since in the worst case
scenario, parameter tuning should take place independently for
each input image. An example of a sensitive coregistration
parameter is the nearest neighbor distance ratio (NNDR)
threshold, which determines if a point match is declared [38].
Table I is a (far from being exhaustive) list of the NNDR values
suggested in the recent remote sensing coregistration literature,
demonstrating the large range of the optimal NNDR value.
It is clear that coregistration techniques with a performance
sensitive to NNDR imply an extensive offline human inter-
action. Such techniques are not suitable for applications on
which batch-mode image coregistration is required, i.e., auto-
matic coregistration of large volumes of input imagery with
minimum user involvement.

In order to emphasize the importance of remote sens-
ing image coregistration techniques to perform batch-mode
coregistration, we introduce another class of coregistration
techniques, named systematic. Systematic techniques, apart
from being robust to parameter tuning, are computationally
efficient, do not require extensive computer resources, and are
robust to the input image characteristics (i.e., resolution, data
quality, and bit depth). Despite the progress in automatic image
coregistration, currently there are hardly any systematic image
coregistration techniques for remote sensing data. This point
is further confirmed by the small-size data sets that are used in
the relevant literature. To the best of our knowledge, [41] uses
one of the largest experimental validation data sets in earth
observation coregistration, consisted of 30 satellite images.
Regarding planetary image coregistration, the state-of-the-
art literature lacks any systematic techniques, with the few
automatic techniques [42], [35] depending on the presence of
surface features (such as craters) that are not universally found
on all planetary surfaces.

B. Abstraction Level Used for Image Matching

The most common criterion that is used for the grouping
of remote sensing image coregistration techniques is the
primitive features employed in image matching. The resulting
groups are labeled ‘“area-based” and “feature-based” [25],
“pixel-based” and “ground control points (GCPs)-based” [28],
“intensity-based” and “feature-based” [34], and so on. In this
paper, we introduce a new three-class (instead of the typical
two-class) grouping of the coregistration techniques, according
to the information content of the primitive features used

for matching. This grouping is more complete, encompassing
methods that would be in the borderline of the previously
employed coregistration classes.

More specifically, the related literature can be classified into

the following.
o Low-level image matching techniques use noninformative

(i.e., raw) data, often the original pixel values of the
images. Matching is performed through cross correla-
tion [31], mutual information [43], optimization [44], and
so on. While such techniques have been extensively used
over the last decades, they suffer from high computational
complexity and are not suitable for large images, which
are common in remote sensing in general and planetary
science in particular. An alternative is to conduct match-
ing in a transformation space, employing techniques such
as shearlet transform [28], wavelet transform [45], and
radon transform [46]. However, in this case, the gain in
computational efficiency is attenuated by the inability to
model complex geometric deformations, which are gener-
ally present in remote sensing images. Brigot et al. [47]
model original misplacement as motion and proceed to
coregister the images using a novel optical flow variation.
This algorithm achieves fast and reliable coregistration
of earth observation images; however, the mean residual
magnitude is 4.2 pixels, an accuracy that is not deemed
satisfactory for planetary image applications.

« Medium-level image matching techniques initially detect
simple local features, before using them to achieve image
matching. The employed features include well-known
detectors/descriptors such as SIFT [21] and speeded up
robust features (SURF) [48], as well as their recent varia-
tions that are tailored to remote sensing images [34], [39].
Medium-level techniques are the most common in the
literature, since they combine accuracy and computational
efficiency, even though they are still computationally
demanding when dealing with large-size images [20].
Fast variations [49], [50] typically reduce the number of
matched points, which may have a detrimental effect on
accuracy, especially when the input images are acquired
by different instruments [24], [20].

« High-level image matching techniques, in which the algo-
rithm input is a set of semantically meaningful features
such as roads in earth observation images [51], and craters
and rocks in planetary images [35]. Such techniques are
expected to be robust to noise and different acquisition
characteristics, such as the resolution, the instrument
point spread function, and the viewing angle. Unfortu-
nately, not only is the construction of a set of universally
present high-level features far from trivial, but also the
density and distribution of high-level features depend on
qualitative parameters that cannot be generally modeled
(e.g., crater distribution on planetary images depends on
the surface geological context).

C. Multisource and Unisource Methods

The majority of remote sensing image coregistration tech-
niques are unisource, i.e., can process images only coming
from the same instrument, due to algorithm properties that are
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TABLE II

S1ZE AND TIMES IN RECENT (EARTH OBSERVATION) COREGISTRATION
LITERATURE. THE REPORTED SIZES ARE THE ONES OF THE LARGEST
IMAGE PAIRS TESTED IN EACH PUBLICATION

Method [40] | [55] | [39] | [16] | [24]
Largest Image Size (Mpixels) 4 5.8 4 0.25 | 0.25
Time (Minutes) 8 53.3 8 1.7 | 0.03

not consistent with multisource coregistration. For example,
it has been extensively reported in the literature that the
image matching method that was originally proposed in [21]
fails in remote sensing image pairs from multiple instru-
ments or/and image pairs from different bands of the same
instrument [37], [52], [24], [20], [19]; therefore, a coregistra-
tion pipeline that adopts this method is limited to unisource
input. Other factors that can adversely affect the multisource
coregistration performance of a technique are the sensitivity
to low-level image characteristics such as the point spread
function, the bit depth, and the resolution, and the use of
simple transformation models that fail to express the generally
nonaffine deformations between multisource images.

On the other hand, there is a growing literature of multi-
source coregistration techniques [41], [35], [45], even though
their experimental validation is often conducted in small data
sets that hinder the extraction of safe conclusions about their
performance and usability. As a matter of fact, multisource
coregistration has a number of unique characteristics and
requirements that further complicate a task that is already very
challenging; hence, its evaluation needs to be as thorough
as possible, including multiple setups and a rich set of test
images. In this paper, we conduct such an experimental analy-
sis of our novel multisource systematic approach, which will
be introduced after some theoretic issues of high-resolution
planetary image coregistration are presented and discussed.

III. PLANETARY IMAGE COREGISTRATION

Coregistration of high-resolution planetary images has
evolved to a domain that is rather distinct from the original
remote sensing image coregistration, since planetary images
(even though strictly speaking belonging to the general class
of remote sensing data) share certain features that distinguish
them from data collected by Earth Observation satellites.
In this section, we present some of the most important
planetary image features that should be taken into account
by image coregistration algorithms. Additional complications
arise from the fact that multi-instrument planetary images typ-
ically have different resolutions, SNRs, bit depths, and spectral
ranges [16].

A. Size

The size and the computational time of some recent earth
observation coregistration methods, presented in Table II, pro-
vide evidence that these techniques are developed to process
images of size that is no more than 10 Mpixels, i.e., several
orders of magnitude lower than high-resolution planetary
images, which is typically larger than 30 Mpixels and may

(@) (b)

Fig. 1.
features. The area is from Mars and has coordinates (182.81°E, 48.14°N).
(b) Examples of a planetary surface with patterned terrain. The area is from
Mars and has coordinates (178.27°E, —1.62°N).

(a) Example of a planetary surface with lack of informative

reach up to 10 Gpixels [20]. Additionally, most of them report
results in image pairs of various sizes, which show an approx-
imate linear computational complexity in relation to the total
number of pixels. By linearly extrapolating the computational
times of Table II to planetary image sizes, it becomes apparent
that many earth observation coregistration algorithms, if used
in planetary image coregistration applications, would fail to be
executed in realistic time periods. Therefore, planetary image
coregistration algorithms need to be meticulous about their
associated computational complexity.

B. Lack of Informative Surface Features

Earth satellite images are often abundant with local surface
(texture) features, such as buildings and roads, which enhance
their information content. As a result, a number of powerful
coregistration techniques have emerged that benefit from these
features [53], [28], [S1] to achieve high-accuracy performance.
Similar to the most featureless earth regions (e.g., Arabian
Desert), most planetary surfaces lack any informative surface
features [Fig. 1(a)], thus making techniques based on informa-
tive features not suitable for planetary image coregistration.

C. Patterned Terrain

On earth, “patterned’ terrain (i.e., with a local texture that
is repeated for a large area) is quite rare, due to the large
diversity of its geomorphology. On the contrary, patterned ter-
rain is quite common on planetary surfaces [Fig. 1(b)]. Since
most local image detectors/descriptors, such as SIFT [21]
and SURF [48], model the local texture, techniques that
perform point matching are expected to present a higher rate
of false negatives (errors of omission) and false positives
(errors of commission) rates in comparison with those of
many earth observation applications (especially those related
to urban landscapes), thus further complicating the accurate
coregistration of planetary images.

D. Limited Knowledge of Planetary Processes

Planetary coregistration input consists of a pair of images
that are generally acquired at different seasons, under different
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Fig. 2. Example of two ARPs, ARP(Py, d,6) and ARP(P,, d, 6). Both the
matching points Q1 and Q5 lie in the same ring (k = 5).

weather conditions and with a time distance on the order
of years or even decades. Furthermore, any active surface—
atmospheric interaction processes on planetary bodies, which
affect the image content, are not as well understood as
the corresponding processes on earth. As a result, planetary
images that map the same area at different times may be
exposed to geometric and photometric differences that cannot
be necessarily modeled. A systematic planetary coregistration
algorithm should therefore take into account the presence of
this “spatial noise,” thus avoiding rigid geometric models,
such as those based upon rotation-scaling-translation and affine
transformations (see [37], [54], [46]).

IV. RING MATCHING FOR PLANETARY
IMAGE COREGISTRATION

A fact that is typically adopted by the community, even
with a lack of theoretic confirmation, is that the translation
error is the error with the largest magnitude in remote sensing
mis-registration. Based on this, in this section, a ring matching
algorithm is proposed, which is based on the assumption that
the total mis-registration error E(x, y) in a pixel P(x, y) is the
sum of a global translation error C and a local mis-registration
error Ej(x, y), of smallest magnitude

Ex,y)=C+Ex,y), [E(xIICl. (1)

It is assumed that both the reference and the target image are
georeferenced (before coregistration) and the point P;(x, y)
in the target image has the same coordinates with the point
P.(x,y) in the reference image. A number of M concen-
tric circles with their center on P.(x,y) and radius k9,
k = 1,2,... M partition the reference image into M rings,
each bounded by a larger circle of radius k6 and a smaller cir-
cle of radius (k—1)J (Fig. 2). We call this partition an adaptive
ring partition ARP(P,d, M). Note that the ARP is distinct
for each pixel of the target image, i.e., ARP(P,d, M) =
ARP(P’,d, M) if-f P = P’. The coregistration potential of
ARP is based on the following proposition.

Proposition 1: If a point P(x,y) of the target image
matches to a point Q(x’, y’) in the reference image that lies
in the kth ring of ARP(P, §, M), then a point P’(x, y) of the
target image matches to a point in the reference image that
also lies in the k-th ring (or in the k — 1-th and k + 1-th ring).

Proposition 1 derives from (1), if J is selected sufficiently
large so that 6 > || E;(x, y)||. In this case, since Q(x’, y’) lies

in the kth ring of ARP(P,0, M), (k —1)0 < Ep(x,y) < kJ,
from which it follows that ((k—1)0—||E;(x, y)||) < C < (ko+
[|E;(x, ¥)||) and finally that (k —2)d < Ep/(x,y) < (k+1)0
Y P'(x,y).

Proposition 1 implies that image matching can be performed
independently in each ring of the ARP, generating in total M
sets of matched points (one for each ring). All correct matches
(along with outliers) are contained in [ sets (1 < [ < 3),
corresponding to [ adjacent rings. The rest (M — [) sets of
matched points are composed exclusively of outliers. The rings
containing all true positive matches can be detected from the
fact that for all other rings the outlier rate would be 100%.

More specifically, if two points P; and P, in the target
image are, respectively, matched with two points Q1 and Q»
in the reference image, then ||Q2 — Q1| = ||P> — P1]l.
The distance ||Q> — Q1]] can be straightforwardly estimated,
since the reference image is orthorectified; hence, the ratio
between || P, — P1|| and the pixel distance between P; and P>
would determine the average resolution, s, in the profile
connecting P; and P,. s, is expected to be approximately
equal to the nominal image resolution s,, estimated from
the ephemeris data of the target image, i.e., s,/s, = | L€,
where € is the tolerance. On the other hand, if at least one
of the matches is incorrect, then s, is random, taking values
in a much larger range. Consequently, the set of correct
matches can be identified by initially estimating s, for all
pairs of matched points in the target image and subsequently
identifying points for which the equation s, /s, = 1 =€ stands
for a large point subset.

This approach is implemented in Algorithms 1 and 2. In the
first stage (Algorithm 1), SIFT points in the target image are
matched one at a time and using an ARP with SIFT points
in the reference image until a ring with sufficient number
of correct matches is identified. At that time, the identified
ring along with the set of preliminary tie-points constitutes
the input to the second stage of the algorithm, in which the
set of tie-points is augmented.

Algorithm 1 First Stage of the Ring Matching Algorithm

Input: Two sets of (SIFT) features P and Q in the target
and reference image; prior georeferencing information of the
reference and the target image, including the target image
nominal resolution s,; parameter values J, M, €, and X.

1: Select a point P; in the target image feature set

2: Estimate the ARP(P;,d, M) partition of the reference
image and assign each point of Q to a single ring

3: Perform independently feature matching in each ring. For
each ring k, identify the point Q;; that matches to P;.

4: For each pair of (Qjx, Qjk),i # j estimate the implied
average resolution sy;; of the line segment P; P;.

5: If there is a ring k and a point i for which (1 — ¢€) <
(sxij /sn) < (1 4 €) for more than X values of j, then the
matching is over; the output is a set W consisted of pair
(P;, Qix) as well as all pairs (P;, Q jx) for which (1 —¢) <
(8kij /sn) < (14€). Otherwise, the algorithm continues from
step 1.
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Algorithm 2 Second Stage of the Ring Matching Algorithm

Input: Two sets of (SIFT) features P and Q in the target
and reference image; prior georeferencing information of the
reference and the target image, including the target image
nominal resolution s,; parameter value ¢; identified ring k;
and a set of matches W from Algorithm 1.

1: For each point in P, P;, declare the
in the reference image that is bounded by
(k — 1)th and the (k + 1)th ring as the “valid area” A;.

2: Identify the point Q;, from the subset of Q that lie in A;,
that match with P;.

3: Estimate the average resolution s;; where P; is selected
from the set of preliminary tie-points W and check whether
(I —€) < (sij/sn) < (1 +¢) for all P; in W, in which case
store the pair (P;, Q;) to a new set of matches W'.

4: After the process is terminated, concatenate matches
W and W',

area
the

More specifically, in the second stage (Algorithm 2),
the points in the target image are matched to the points in the
reference image that lie in the area that is bounded by the
(k — I)th and (k + 1)th rings, according to Proposition 1.
After declaring a match, the average resolutions of all profiles
with one endpoint to the new match and the other endpoint to
a tie-point estimated by Algorithm 1 are compared with the
nominal resolution and the match is discarded or accepted,
accordingly. Finally, the sets of preliminary matches and new
matches are concatenated, thus containing the set of tie-points
used in the subsequent coregistration steps.

Ring matching algorithm generates a set of tie-points that
are further processed, depending on the application setup
and the data availability. For example, if a digital terrain
model (DTM) is available along with the orthorectified base-
line (as is the case in HRSC level-4 data [16]), then the
3-D georeferencing information can be used to generate a
rigorous pushbroom camera model [55], a rational polyno-
mial model [56], etc., while if not, coregistration can be
performed through the estimation of transformation parameters
(e.g., rotation, translation, scaling, etc.) using least squares.
As a matter of fact, there are several coregistration tech-
niques that can achieve subpixel coregistration performance
if supplied with large and accurate tie-point sets. However,
the analysis of such models is beyond the scope of this paper,
as is the comparison of SIFT with recently introduced local
detectors/descriptors, such as the MUR-SIFT [34] and the
adaptive binning SIFT [39]. Ring matching algorithm does not
depend on the employed local feature, and thus we consider
this research orthogonal to ours.

V. TECHNIQUE PROPERTIES
A. Parameter Sensitivity

The parameters that ring matching insert to the automatic
coregistration process are the ARP size M, the ring range J, the
tolerance €, and the correct match threshold, required for the
algorithm to pass from the first to the second stage, X. In this
section, we examine all of them in relation to their sensitivity,

since parameter sensitivity prohibits the systematic coregis-
tration of large volumes of multi-instrument images without
using human resources, even when the employed algorithm is
fully automatic.

The ARP size M is used to reduce the coregistration compu-
tational cost, since the accuracy of the position and orientation
ephemeris data limits the magnitude of the mis-registration
error. As a matter of fact, the largest mis-registration that we
have experimentally found (in the coregistration of a VO high-
resolution image to HRSC baseline) was 14.6 km. In order
to nullify the impact of even double mis-registration errors,
M has been selected so as the outer ring radius to be 30 km,
a hard-coded value suggested for the systematic coregistration
of planetary images, even of low position and orientation
accuracy.

The ring range J is more difficult to optimize, since it should
compromise between high outlier ratio (for large o values)
and detection of points in a very limited mis-registration
range, which may lead to severe terrain distortions (for small
o0 values). Optimizing J is easier in single-instrument coreg-
istration applications, since in this case, the outlier ratios are
expected to be rather low. Even in multi-instrument coregis-
tration applications, the experimental section will demonstrate
that the algorithm achieves a near-optimality for large ranges
of d, even though there is no universal optimal value for J.

The tolerance € also affects the outlier ratio, as well as
the uniformity of the tie-point data set. More specifically,
the average resolution ratio criterion is more strict in neigh-
boring Q;x and Q jx than in distant ones. A side effect of this
approach is that a small é combined with a high tolerance €
could lead to the acceptance of outliers as correct matches
in cases where k is small and points Q;x and Qi distant.
On the other hand, a much too rigorous tolerance ¢ would
increase the false rejection rate, especially in cases where
significant geometric distortions are expected (e.g., if an image
was acquired with high emission angle).

This issue can be resolved by selecting a high value of
the threshold X, thus minimizing both the false acceptance
and false rejection ratio and relaxing the tuning of J and e.
The forfeit in this case is the increase in computational cost.
However, as will become apparent in the subsequent analysis,
the introduced algorithm is not computationally demanding,
and hence, a mild increase in the computational cost is not
expected to be of significant importance in most planetary
image coregistration applications.

It should be noted that most of the parameter sensitivity
discussion is conducted for theoretic reasons, since one of the
key advantages of the introduced technique is its parameter
robustness. As a matter of fact, it has been experimentally
found that a single parameter set (M = 30, 6 =2, ¢ = 0.02,
and X = 15) could be used to successfully coregister more
than 60% of each data set used in this work (apart from VO,
for which the success rate is higher than 50%). In practice,
the parameter selection stage of the processing is reduced to
a brute-force search in a low-dimensional discrete parameter
space, using a small-sized validation set. More specifically,
in all the experiments included in this paper, M = 30 and
the other three parameters are selected between 27 parameter
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combinations (three for each parameter), using a set of five
images. This causes an overload of 135 coregistrations, which
is minimal in comparison with the typical planetary image
data set size (e.g., it is 0.07% of THEMIS-VIS volume,
0.14% of MOC-NA volume, etc.). As it will become appar-
ent in Section VI, this simple parameter selection strategy
is enough to accurately coregister large volumes of multi-
instrument data to a common baseline.

B. Computational Complexity

Sidiropoulos and Muller [20] have demonstrated that the
computational complexity of matching feature points from
large images may become prohibitive (exceeding several days
per image pair) if it is conducted as originally suggested
in [21]. The introduced technique ameliorates the image
matching computational complexity through the following
features.

1) The finite maximum radius size of ARP (equal to MJ)
employs the prior georeferencing information to impose
distance constraints on the points that can constitute
a valid match, thus reducing the number of candidate
matches (i.e., points that need to be checked).

2) The first (and more computationally demanding) stage of
the ring matching algorithm is performed at one-match-
at-a-time basis, until the number of correct matches
implies the valid ring k and a preliminary set of tie-
points W is established. Subsequently, the matching
becomes even faster by ignoring most rings from further
processing.

3) The outlier detection step (Algorithm 1, step 5), even
though it is quadratic in relation to the number of
preliminary matches, is very fast because it involves only
simple computations (e.g., subtractions and multiplica-
tions). As a matter of fact, it can be shown that the
estimation of si;; requires 15 elementary computations,
i.e., approximately 5.8% of the computations needed to

estimate the distance of two 128-D SIFT points.
Although a formal computational complexity analysis

depends on ad hoc image characteristics, such as the number
of estimated feature points, the image sizes, and the outlier
ratio, an example using typical values could help clarify the
computational gain that is achieved through ring matching.
In this example, it is postulated that a CTX high-resolution
image with 5103 SIFT points is matched to a HRSC baseline
with 210° SIFT points. Moreover, it is postulated that for each
CTX SIFT point, 10% of the HRSC points are within a 30-km
radius. A simple image matching as suggested in [21] would
include 10'? comparisons of 128-D SIFT points. An ARP
with M = 30 km, 6 = 500 m, X = 20, and 20% of the
target points being matched in the first stage of ring matching
with an outlier rate of 90% would require 210% SIFT-point
comparisons and 3107 sy; ;j estimations (which correspond to
approximately 210® SIFT-point comparisons). In the second
stage of ring matching, all CTX points are compared on aver-
age with 10* HRSC points, leading to 210° SIFT-point com-
parisons. In total, the 2.202 billion SIFT-point comparisons are
approximately 450 times less than the 1 trillion comparisons
required if image matching is conducted according to [21].

Further experimental results about the coregistration compu-
tational time are given in Section VI.

C. Robustness

A prerequisite for a systematic coregistration technique is
to be robust against common input-image deficiencies, such
as mediocre georeferencing accuracy and low visible image
quality. It is noted that georeferencing sensitivity is scarcely
addressed in the remote sensing coregistration literature, even
though its performance often depends on a rather accurate
prior position estimation [28]. On the other hand, the only
georeferencing hard constraint of ring matching is the initial
positioning error not being larger than tens of kilometers.
Other than that, ring matching performance in poorly geo-
referenced images is affected by the fact that the area of the
outer rings is larger than the one of the inner rings; therefore,
the outlier rate is typically a more important issue. However,
as will be demonstrated in the experimental section, the overall
performance is usually only slightly deteriorated. Additionally,
a simple adjustment that may resolve this issue, when extra
diligence is required, is to define J as a decreasing function
of the ring index k.

An increase in the outlier rate, caused by the decline
of true positive matches, is the main ramification of
low-quality data, regardless if the quality degradation origins
are external (e.g., atmospheric dust) or internal (e.g., instru-
ment malfunction). While the performance deterioration when
coregistering low-quality data is unavoidable, ring matching
seems nevertheless exceptionably robust to low-quality data,
due to the fact that the average resolution comparison crite-
rion can produce correct results even when the outlier rate
is much higher than 90%. Actually, the outlier rate may
prompt the coregistration failure either by decisively raising
the (quadratic in relation to the point matches) computational
time of the outlier detection step of the first stage of the
algorithm, or by not establishing enough true positives in
the full set of target-image feature points. Empirical evidence
has shown that the new coregistration technique can regularly
overcome both obstacles for outlier rates up to 98%, while the
failure probability exceeds 50% for outlier rate approximately
around 99%. This extreme outlier robustness plays central role
in the algorithm’s potential to systematically coregister large
volumes of multifarious data, as will be demonstrated in the
next section.

Finally, the Achilles heel of the new technique is its
sensitivity to the target image nominal resolution s,. It is
understood from the algorithmic description that the successful
coregistration of a planetary image requires rather accurate
prior knowledge of its resolution. This condition may inhibit
the transfer of this method to close-range coregistration appli-
cations (e.g., the coregistration of aerial images). However,
is almost always satisfied in planetary images, since it mainly
depends on the spacecraft trajectory, which in general is very
precisely known.

VI. EXPERIMENTAL VALIDATION

Before passing to the actual experimental validation, some
basic properties of the experimental setup need to be clarified.
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DATA SETS USED FOR ALGORITHM VERIFICATION
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First, it should be noted that the systematic coregistration
of planetary images necessitates considering the employed
parameter set as hard-coded for all images of a single data
set (but not for different data sets). As a result, parameter
tuning is not conducted at the image level but rather at the
data set level. Second, the computational time allocated to the
coregistration algorithm execution is finite, instead of allowing
the coregistration to continue uninterrupted. This property
is fundamental for the batch-mode processing of planetary
images, in which the overall processing time is an important
aspect of the application. Additionally, planetary image coreg-
istration, unlike earth observation image coregistration, suffers
from a lack of GCPs for which the coordinates are precisely
known. Therefore, coregistration accuracy is estimated by
randomly dividing the set of estimated tie-points (after outlier
detection) into two equal parts: the first part is used for
coregistration and the second for assessing its accuracy.

Finally, in all of our experiments, we have employed three

measures of performance:

1) the failure rate, i.e., the percentage of images that the
algorithm failed to coregister within a specific process-
ing time and using a predetermined offline parameter
set;

2) the mean accuracy in both X and Y directions, measured
in meters;

3) the overall computational time, including preprocess-
ing, feature (SIFT) point extraction, ring matching, and
coregistration.

A. Algorithm Verification

This section deals with the experimental validation of
the presented algorithm. Three key issues are examined:
1) the coregistration accuracy, including an assessment of the
assumption that global translation is the most severe mis-
registration error; 2) the number of tie-points that are esti-
mated by ring matching, which is fundamental for the further
processing of a coregistration algorithm; and 3) the computa-
tional cost of the algorithm. This series of experiments was
conducted on a multifarious set of 500 images, selected from
eight high-resolution planetary image scenarios (Table III).
VO images with resolution coarser than 100 m/pixel are
ignored, since for them, the resolution difference with the
HRSC baseline (with resolution 12.5 m/pixel) makes their
coregistration impractical.

Additionally, in order to be consistent, coregistration does
not involve either DTM information or laser altimeter height

Id Camera Resolution (m) Years Baseline Base Resolution (m) || Target | No. Images
1 CTX 6 2006-2016 HRSC ORI 12.5 Mars 100
2 CTX 6 2006-2016 || HRSC Mosaic 12.5 Mars 50
3 | THEMIS-VIS 17.5-75 2002-2016 HRSC ORI 12.5 Mars 75
4 THEMIS-IR 100 2002-2016 || THEMIS-VIS 17.5-35 Mars 75
5 MOC-NA 1.5-12 1997-2006 HRSC ORI 12.5 Mars 50
6 MOC-NA 1.5-12 1997-2006 || HRSC Mosaic 12.5 Mars 50
7 | Viking Orbiter 8-100 1976-1980 || HRSC Mosaic 12.5 Mars 50
8 LROC-NAC 0.5-1 2009-2016 LROC-NAC 0.5-1 Moon 50
TABLE IV

RANK STATISTICS OF THE ORIGINAL AVERAGE TIE-POINTS’
MIS-ALIGNMENTS (IN METERS) FOR THE EIGHT COREGISTRATION
SCENARIOS OF TABLE III. THREE RANK STATISTICS
ARE REPORTED: THE 25% PERCENTILE, THE 50%
PERCENTILE (I.E., THE MEDIAN VALUE), AND
THE 75% PERCENTILE. THE OUTLIERS
WERE IDENTIFIED AND DISCARDED
BEFORE MIS-ALIGNMENT
WAS ESTIMATED

Id Camera 25% Perc. | 50% Perc. | 75% Perc.
1 CTX 207.26 242.89 376.11
2 CTX 201.09 261.14 383.25
3 THEMIS-VIS 569.29 617.83 681.44
4 THEMIS-IR 189.01 258.95 406.47
5 MOC-NA 158.53 184.44 920.63
6 MOC-NA 125.35 231.25 902.26
7 | Viking Orbiter 1233.26 1928.57 2571.29
8 LROC-NAC 30.63 34.59 48.26

measurements, since neither of these are available in all data
sets. The reported experimental results refer to image-to-image
coregistration, in which a polynomial function is used to
transform the coordinates of the target image to the coordinate
system of the reference image.

1) Accuracy: Table IV summarizes the original mis-
alignment between the reference and the target image in
the eight included coregistration scenarios. The reported rank
statistics for each data set are the first and third quartile error
values, as well as the median error, which were estimated
from the average geometric distance of the reference and
target image matched points (tie-points), after discarding the
outliers.

A first conclusion that can be drawn from Table IV is that,
regardless of the application setup, planetary image coreg-
istration is far from being considered of trivial importance.
As a matter of fact, spacecraft housekeeping progress has
reduced the mis-alignment for approximately one order of
magnitude over the last three to four decades (from VO up
to the latest orbiters). However, the current mis-registration
error is expected to be much larger than 10 pixels for
images acquired by different instruments (e.g., 40.1 pixels
for CTX/HRSC) and significant even for images acquired
by the same instrument (e.g., 2.6 pixels for THEMIS-IR/
THEMIS-VIS); hence, the housekeeping data are still far from
making image coregistration obsolete (while the planetary data
volume signifies that coregistration needs to be resolved from
the development of systematic coregistration algorithms).
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Fig. 3. Example of a large mis-alignment between two CTX images
before their coregistration to an HRSC baseline. (Top) CTX images
P0O1_001559_1889 superimposed on the CTX image P03_002047_1889 with
50% transparency. The fact that features are repeated twice (e.g., the dark-
sand leaf-type feature in the center of the image is repeated near the left edge)
demonstrates the clear misalignment. (Bottom) Same images are superimposed
with 50% transparency after coregistration, showing the actual appearance of
the site. Note that the diagonal line in the left edge of the top panel (center
of the bottom panel) designates the boundary of the two images.

Additionally, the comparison of the median with the first and
third quartile indicates that the error distribution is positively
skewed. The right tail of the error distribution can be mainly
attributed, first, to the sporadic release of poor position and
orientation estimates from instrument teams [Fig. 3 (top)]
and, second, to the oblique images that some instruments
acquire to allow stereo processing. While the poor quality of
the housekeeping data cannot be counterbalanced, the mis-
alignment of a stereo target image to an orthorectified baseline
can be roughly modeled out from the viewing angle and the
spacecraft trajectory, which are both typically known with an
acceptable accuracy. This minor adjustment to the original ring
matching algorithm has been applied to 14%, 12%, 8%, and
8% of data sets 1, 2, 5, and 6, respectively.

Regardless of the preprocessing, ring matching was applied
to examine the validity of (1). Table V reports three median
errors per data set; the original median mis-alignment, i.e., the
50% percentile value of Table I'V; the median mis-alignment
if only global translation is used for coregistration; and the
median residuals after full ring matching-based coregistration
is performed [Figs. 4 and 3 (bottom)]. It becomes apparent
from Table IV that in all eight data sets, the global trans-

TABLE V

MEDIAN MIS-ALIGNMENT ERRORS (IN METERS) FOR THE EIGHT
COREGISTRATION SCENARIOS OF TABLE III. “ORIGINAL”
COLUMN REFERS TO TABLE IV, “TRANSLATION” TO THE

Mis-ALIGNMENT ERROR WHEN ONLY GLOBAL
TRANSLATION IS APPLIED TO THE TARGET
IMAGE, AND “COREGISTRATION” TO THE
RING MATCHING RESIDUALS

1d Camera Original | Translation | Co-Registration
1 CTX 242.89 38.56 8.2

2 CTX 261.14 29.61 7.73

3 | THEMIS-VIS | 617.83 37.04 12.47

4 THEMIS-IR 258.95 83.23 58.1

5 MOC-NA 184.44 35.71 6.89

6 MOC-NA 231.25 33.13 6.58

7 | Viking Orbiter | 1928.57 99.75 81.17

8 LROC-NAC 34.59 1.87 0.64

lation term dominates the mis-alignment error, as expected
from the analysis of Section IV. However, the accuracy of a
technique that would ignore all other types of mis-alignments
would usually be larger than 1 baseline pixel. For example,
given that HRSC (which is the baseline in five coregistration
cases) has a resolution of 12.5 m/pixel, the global translation
reduces the residuals to 2-3 (HRSC) pixels for more than
half of the images, but subpixel accuracy is typically achieved
only through a more elaborate approach that would take
into account additional mis-alignments terms, such as the
introduced ring matching algorithm. It should be noted that
subpixel accuracy is reached despite the poor a priori position
estimation, thus demonstrating ring matching robustness to
initial positioning error.

2) Number of Tie-Points: It is widely accepted that a larger
number of tie-points is associated with a higher coregistration
quality, mainly because coregistration robustness to outliers
is increased with tie-point quantity [28] but also because
averaging attenuates spatial noise. The number of identified
tie-points clearly depends on the image size; therefore, it is
sensible not to compare absolute numbers but the “tie-points
per megapixel” rate, instead. Additionally, following the ratio-
nale of the previous section, rank statistics are used to analyses
the tie-point abundance for each data set.

The number of tie-points for each data set can be found
in Table VI. Considering the lack of informative surface
features of planetary images (in comparison with earth obser-
vation images), as well as the state-of-the-art tie-point rate
of earth observation coregistration (e.g., 15—108 tie-points per
megapixel for MUR-SIFT [34]), it can be concluded that ring
matching coregistration generates an abundant set of tie-points
for the great majority of planetary images.

An exception is the case of 12, out of 75, THEMIS-IR
images (coregistered to THEMIS-VIS baseline), for which
the number of tie-points is less than 10. While a definitive
conclusion would require an analysis that is not within the
scope of this paper, it seems that this failure mainly originates
from the low quality of a part of the THEMIS products as well
as the distinctly different surface reflectance values in infrared
and visible spectra.

Additionally, Table VI shows an improvement in tie-point
quantity when an HRSC mosaic is used (data sets 2 and 6),
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Fig. 4. 1700 x 1200 m detail of two LROC-NAC Moon surface images,
after ring matching coregistration. (a) M129941166LE. (b) M118548416LE.

TABLE VI

RANK STATISTICS OF THE NUMBER OF TIE-POINTS PER MILLION PIXELS
IDENTIFIED THROUGH RING MATCHING, FOR THE EIGHT
COREGISTRATION SCENARIOS OF TABLE III. THREE
RANK STATISTICS ARE REPORTED: THE 25%

PERCENTILE, THE 50% PERCENTILE
(I.E., THE MEDIAN VALUE), AND
THE 75% PERCENTILE

1d Camera 25% Perc. | 50% Perc. | 75% Perc.
1 CTX 413.05 1311.76 2308
2 CTX 458.64 1562.31 2696.73
3 THEMIS-VIS 264.08 447.51 584.12
4 THEMIS-IR 13.18 45.06 56.33
5 MOC-NA 61.2 102.97 130.54
6 MOC-NA 160.48 204.62 592.66
7 | Viking Orbiter 55.81 135.12 202.48
8 LROC-NAC 1068.42 1607.9 2518.19

instead of single HRSC strips (data sets 1 and 5, respectively),
which implies a dependence from the baseline image quality,
since the HRSC single strips include both good and poor
quality images, while the released HRSC mosaic of Mars
Chart 11—East (MC11-E) [57] generally exhibits excellent
quality. The induced coregistration accuracy improvement is
approximately 5% (Table V).

Apart from the number of tie-points, the coregistra-
tion performance depends on the (uniform) distribution of
the tie-points on the image. An algorithm that generates
tie-point sets that are confined to a small part of the target

TABLE VII

COMPARISON OF TIE-POINT DISTRIBUTION USING
FULL MATCHING AND RING MATCHING

Id Camera @ p (full matching) | @Qp (ring matching)
3 | THEMIS-VIS 0.13 0.29
5 MOC-NA 0.07 0.42
6 MOC-NA 0.08 0.36
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image may cause large mis-registration errors on other parts
of the image, especially those far from the tie-point location.
The distribution uniformity of N tie-points may be modeled by
the average pairwise distance between tie-points, d;, in com-
parison with the average pairwise distance of N points that are
uniformly selected in the image, d,. The latter is not trivial
to be generically estimated, since the swath orientation and
size as well as the spacecraft trajectory usually impose an
image plane that is similar to a rotated rectangle, with at
least three degrees of freedom. In order to overcome this,
we follow a Monte Carlo approach; several instances of N
random points are selected and the average d, is returned as
the d,, value. Finally, the ratio Do = d;/d, is used to measure
the uniformity of the tie-point distribution.

Using the aforementioned evaluation scheme, the presented
algorithm was compared with the tie-point distribution of an
algorithm that performs full-image matching, i.e., it uses the
(full image) point matching approach of [21] instead of ring
matching. Due to the extended computational time of full-
image matching, only data sets 3—7 are considered. Moreover,
as thoroughly described in [20], full-image matching fails to
produce any tie-points in most multi-instrument pairs. These
are ignored from the evaluation, including all image pairs of
data sets 4 and 7. The mean ratio Q p for the rest of the images,
demonstrated in Table VII, confirms that ring matching not
only increases the number of tie-points but also produces
tie-points that are more evenly distributed on the image plane.

3) Computational Complexity: The computational time
required for image coregistration generally depends on the
input image size (usually through a linear relationship between
the total pixel number and the computational time) as well
as the machine that the processing is conducted. In order
to nullify the effect of the latter, the computational time
unit that we employ is the “mean computational time for an
image of size 1 megapixel” T7. All the reported computational
times T thence are actually rates T = T/ T, where Ty is the
coregistration computational time, counted in seconds.

Additionally, in the computational complexity analysis, all
eight datasets have been jointly analyzed, since the processing
time of ring matching has been experimentally found to
be much more affected by the image sizes than any other
image properties (such as the bit depth, the point spread
function, the illumination angle, etc.). Finally, because ring
matching computational time is additionally related to the
correct matches threshold X, the processing has been repeated
several times with an increasing X. The stored computational
time 7 was the one associated with the run that employed the
smallest X value that achieved subpixel accuracy.

Based on the above, the computational times were binned
according to the image size, to 1 Mpixel bins, and the
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Fig. 5. Computational complexity of ring matching coregistration as a

function of pixel size.

average value of each bin is plotted in Fig. 5. The linear
regression estimate of the computational time 7' as a function
of image size N (counted in Mpixels) is 7 = 0.08 N + 0.38.
This equation shows that ring matching computational time
increases mildly with image size, thus making it suitable for
most planetary image sizes. For example, the coregistration
of an image of 20 Mpixels (typical MOC-NA image size)
takes double the time of 77, while the computational time of
an image of 250 Mpixels (typical CTX image size) requires
approximately 2077 time. Considering that 77 is on the order
of minutes even for common workstations, the ring matching
algorithm can be concluded as completing in a realistic time
for the vast majority of high-resolution planetary images.

B. (Batch-Mode) Systematic Coregistration

As already said, the introduced ring matching technique is
a systematic coregistration technique, since it is capable of
automatically processing large volumes of multifarious data
without requiring an offline parameter tuning stage for each
image. This property, which makes ring matching coregis-
tration unique among the available planetary coregistration
techniques, was established through a realistic coregistration
scenario, involving a large region of Mars, where 7056 images
have been acquired.

More specifically, we have coregistered all images acquired
from CTX, THEMIS-VIS, MOC-NA, and VO in Martian
MCI11-E half-quadrangle. MC11-E is the east half of the
Oxia Palus quadrangle, extending between 0°-30° north
and 0°-22.5° west (or 337.5°-360° east), and contains a num-
ber of the most geologically interesting regions of Mars, such
as Chryse Planitia, Xanthe Terra, Mawrth Vallis, and Meridiani
Planum. Lately, the HRSC team released a mosaic of MC11-E,
with a panchromatic resolution of 12.5 m/pixel, while the
corresponding DTM has a resolution of 50 m/pixel [57].
This mosaic used 89 single-strip high-resolution HRSC nadir
images [57] and tie-points generated from individual strips
as an input, which were subsequently passed by an elaborate
processing chain, including bundle block adjustment [58] and
radiometric correction [59].

Apart from the recently released HRSC mosaic, the MC11-E
quadrangle has been extensively imaged by all the NASA high-
resolution visible cameras. The statistics of MC11-E image

TABLE VIII

HIGH-RESOLUTION (RES < 100 M/PIXEL) ORBITAL IMAGES
OVER MC11-E HALF-QUADRANGLE OF MARS

[ Camera
| MCI1-E Images | 1,365 |

[ CTX | MOC-NA | THEMIS-VIS | VO |
1,558 | 3,620 | 504 |

coverage with images of resolution finer than 100 m/pixel are
shown in Table VIII, excluding HiRISE images, for which the
resolution difference from the HRSC baseline is too large for
the coregistration to take place.

The 7056 high-resolution orbital images coregistered to the
HRSC base mosaic constitute approximately 1.6% of all high-
resolution images of Mars. This percentage is further increased
to 3.3% if we ignore the regions of Mars for which there
is currently no HRSC 3-D-model, i.e., there is no basemap
available. This imagery was coregistered using ring matching
with a single set of parameters for each data set that was
selected by optimizing the coregistration performance in a
subset of 10 images per dataset. Additionally, since the realis-
tic computational time is central to the systematic processing
of large volumes of data, both stages of the ring matching
algorithm were limited to 1 h each. If the 1-h computation time
expired in the first stage of ring matching, then the processing
was aborted and the image coregistration is flagged “failed,”
while if it expired in the second stage, the processing continues
with the set of tie-points that were already identified.

In this application, the tie-point set estimated through ring
matching is the input in a processing pipeline that makes
use of the HRSC areo-reference information, as well as the
corresponding DTM to optimize the coregistration accuracy.
More specifically, the HRSC coordinates of the tie-points
(which are originally in pixel coordinates both for the target
image and for the HRSC baseline image) are transformed to
3-D world coordinates using the areo-reference information
and the corresponding HRSC DTM. Thus, a number of
correspondences between the target image pixels and their
position in 3-D world coordinates are established. These are
used to estimate a camera model for the target image, which
subsequently determines the projection of the target image
onto the common coordinate system. The employed camera
model is a combination of a rigorous camera model [55] and a
polynomial model. The estimated camera model is the one that
is finally used to produce the output of the processing chain,
i.e., the coregistered version of the target image. It should be
noted that, by comparing the accuracy of this method with the
accuracy of an image-only polynomial coregistration scheme
in data sets 2 and 6 of the previous section, we have found an
improvement of 20% in the achieved accuracy.

The average accuracy (ErrX and ErrY) and the failure
rate are demonstrated in Table IX. In total, 5356 out of
7056 images were successfully coregistered to a common
baseline with an average subpixel accuracy, using a single
parameter set and requiring a limited amount of computa-
tional time. This performance confirms that ring matching
can be used for the systematic processing of large vol-
umes of high-resolution planetary images, combining high
accuracy, limited computational time, and minimum use of
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Fig. 6.

Detail of Becquerel crater on Mars (22.1° N, 352.0°E), as imaged from four different (fully automatically) coregistered images. (a) CTX image

P01_001546_2016. (b) CTX image B19_017211_2015. (c¢) CTX image G19_025637_2021. (d) HRSC MCI11-E mosaic [57].

TABLE IX

STATISTICS OF THE SYSTEMATIC COREGISTRATION OF HIGH-
RESOLUTION IMAGES TO THE HRSC MC11-E MOSAIC

Camera CTX | MOC-NA | THEMIS-VIS VO
ErrX (m) 6.487 5.334 7.012 12.211
ErrY (m) 6.081 4.859 6.849 11.71

Fail. Rate (%) | 7.25 34.51 19.84 43.06

human resources. An example of three CTX coregistra-
tion results and the corresponding HRSC baseline is shown
in Fig. 6. All coregistered images can be accessed through
i-Mars WebGIS.? i-Mars WebGIS hosts also a 6 m/pixel
mosaic of MCI11-E that was produced by photometrically
correcting the set of coregistered CTX images, without altering
their geometry [60] (Fig. 7). This product (which will be thor-
oughly discussed in a future publication) further validates the
accuracy of ring matching coregistration, while demonstrating
its potential to significantly reduce the effort that is required
for the release of high-resolution planetary image mosaics.
The failure rate in MCI11-E data set, which is processed
without requiring an offline parameter tuning step, is in line
with the potential of the presented algorithm to be used for
the systematic processing of high-resolution planetary images.
In order to provide more evidence, the failed images were
reprocessed using the coregistered CTX imagery as a baseline,
without changing any of the algorithm parameters. Note that

3 http://www.i-mars.eu/web-gis

typical CTX imagery is of higher quality than HRSC, having
a higher SNR and bit depth. This processing reduced the
failure rate from 7.25% to 1.31% for CTX images, from
19.84% to 2.88% for THEMIS-VIS images, from 34.51% to
4.55% for MOC-NA images, and from 43.06% to 23.17% for
VO images. Therefore, it can be deduced that the algorithm
failure is mostly determined by the quality of the baseline,
while being robust to parameter selection. Since a single set
of parameters is sufficient to coregister a large-volume data
set, the algorithm parameters can be hard-coded within the
implementation, thus removing the need for parameter tweak-
ing and significantly reducing the human resources required
for large-scale planetary image coregistration.

C. Limitations

While ring matching is a very powerful coregistration tech-
nique, it may suffer from low performance when dealing with
images of low visible quality, since it depends on the potential
of local image detectors/descriptors to express the visual
content that is matched. Evidence supporting this claim can
be found in the failure rate of THEMIS-VIS MC11-E data set,
since THEMIS is the only high-resolution orbital camera that
incorporates an image rating, with a range of values from one
(worse quality) up to seven (best quality). By comparing the
failure rate of THEMIS-VIS MCI11-E images with rating < 4
with the corresponding value of images with rating > 5, it is
found that the low-quality image failure rate was 32.19% while
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Fig. 7.

Detail of the CTX mosaic of MC11-E half-quadrangle, which was produced using as input images the CTX images coregistered to the HRSC

MCI11-E mosaic [57]. Note that mosaicing included only photometric correction, while the geometry was directly acquired by the coregistered products.
(a) Detail of the CTX MC11-E mosaic, in 100-m/pixel resolution. (b) Same detail in the HRSC MC11-E mosaic [57]. (c) Close-up of the CTX MC11-E
mosaic, in 6-m/pixel resolution. (d) Same area in the HRSC MCI11-E mosaic, in 6-m/pixel resolution. In (d), visible quality is low because the nominal
resolution of the HRSC MC11-E mosaic (12.5 m/pixel) is coarser than the one used for the display.

the high-quality image failure rate was only 10.68%. This
divergence implies a strong connection between the image
quality and the ring matching performance, even though the
introduced algorithm still achieves a subpixel coregistration
for two-thirds of the low-quality THEMIS-VIS images.

Another limitation of the algorithm is related to the resolu-
tion difference between the reference and the target image.
The reported results imply that the achieved coregistration
accuracy is subpixel in relation to the reference image pixel
size; hence, in cases of large resolution difference between the
reference and the target image, this accuracy may correspond
to residuals of several (target image) pixels. For example, if a
HiRISE image (of resolution 0.25 m/pixel) is coregistered to
HRSC (of resolution 12.5 m/pixel) and the achieved accuracy
is 6 m, then the coregistration residuals would be 24 HiRISE
pixels. It is clear that such an accuracy is not adequate and
the coregistration needs to be repeated using a baseline with
a resolution nearer to the target image, such as CTX or color
and stereo surface imaging system [61].

VII. CONCLUSION
In this paper, we have presented a novel fully automatic
planetary image coregistration technique, called ring matching,
that has been shown to be fast, accurate, and robust to
parameter tuning. We have shown how ring matching can be

used to systematically coregister large volumes of input data,
making their geometry consistent, thus allowing their fusion
as well as their straightforward comparison. Experimental
validation is given by testing the method in a challenging
experimental setup that included thousands of high-resolution
planetary images, acquired from six orbital instruments.

We are currently employing this method to coregister as
much of Martian high-resolution imagery as possible, using
HRSC as a baseline, the results being released through the
i-Mars WebGIS. Moreover, in the near future, a similar
approach is planned for the Moon, in order to geometri-
cally align the vast volume of data that LROC has acquired
since 2009, and for Mercury, in order to geometrically align
MDIS high-resolution imagery.

On the other hand, we have already started to examine
the use of ring matching to coregister further types of data
(apart from visible spectrum images). As a matter of fact,
in this paper, experimental results regarding the coregistration
of infrared images (more specifically, THEMIS-IR) were pre-
sented, with promising results. In the future, we plan to study
the coregistration of infrared to visible planetary data, in order
to establish a similar processing paradigm. Finally, we are
expanding the systematic coregistration to imaging spectrome-
ter data, mainly focusing on Compact Reconnaissance Imaging
Spectrometer for Mars data acquired of the Martian surface.
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