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Sparse Nonlinear Electromagnetic Imaging
Accelerated With Projected Steepest

Descent Algorithm
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Abstract— An efficient electromagnetic inversion scheme for
imaging sparse 3-D domains is proposed. The scheme achieves
its efficiency and accuracy by integrating two concepts.
First, the nonlinear optimization problem is constrained using
L0 or L1-norm of the solution as the penalty term to alleviate
the ill-posedness of the inverse problem. The resulting Tikhonov
minimization problem is solved using nonlinear Landweber iter-
ations (NLW). Second, the efficiency of the NLW is significantly
increased using a steepest descent algorithm. The algorithm
uses a projection operator to enforce the sparsity constraint by
thresholding the solution at every iteration. Thresholding level
and iteration step are selected carefully to increase the efficiency
without sacrificing the convergence of the algorithm. Numerical
results demonstrate the efficiency and accuracy of the proposed
imaging scheme in reconstructing sparse 3-D dielectric profiles.

Index Terms— Accelerated steepest descent, electromagnetic
imaging, electromagnetic inverse scattering, Landweber itera-
tions, nonlinear ill-posed problem, numerical methods, sparsity.

I. INTRODUCTION

NUMERICAL schemes capable of efficiently and accu-
rately solving the electromagnetic inverse scattering

problem [1]–[4] are indispensable in various fields of
engineering such as tomography [4], nondestructive test-
ing [5], through-wall imaging [6], [7], crack/mine detec-
tion [8], [9], and hydrocarbon reservoir exploration and
monitoring [10], [11]. In this context, the electromagnetic
inverse scattering problem is defined as finding material prop-
erties (such as permittivity and conductivity) in an unknown
investigation domain from scattered fields measured away
from the domain itself [1]–[4]. Developing efficient and accu-
rate numerical tools for solving this problem is a challenging
task. First, scattered fields are a nonlinear function of mate-
rial properties [1]–[4]. Second, inverse problem is ill-posed
because scattered field measurements are noisy and taken at a
finite set of points and the scattered field integral operator
has a smoothening effect [1]–[4]. It should also be noted
here that the difficulty of solving the electromagnetic inverse
scattering problem increases significantly as the dimension
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of investigation domain increases, i.e., many of the methods
developed for reconstruction of material properties in 2-D
domains do not work as efficiently and/or accurately for
reconstruction of material properties in 3-D domains [1], [2].

Electromagnetic inversion algorithms can be grouped into
two main categories: stochastic and deterministic schemes [1].
Stochastic schemes rely on (nonlinear) global optimization
techniques to solve the electromagnetic inverse scattering
problem and are known to be stable and convergent even
when they are applied to highly nonlinear problems [12]–[18].
Despite their advantages, stochastic schemes have become
popular only recently because of their high computational
requirements that can be met by modern parallel computers.
The inversion algorithm developed in this paper belongs to
the group of deterministic schemes; therefore, the reader
is referred to [1] and [12]–[18] and the references therein
for a more detailed discussion on accuracy, efficiency, and
applicability of stochastic schemes.

Deterministic electromagnetic inversion algorithms can be
classified based on the level of nonlinearity that they can accu-
rately account for [1]. The scattering operator’s nonlinearity
increases as the contrast of the domain increases. Here, con-
trast is defined as the difference between the relative permittiv-
ities of the investigation domain and the background medium.
For scatterers with low contrast, replacing the nonlinear scat-
tering operator with its first-order (linear) approximations
(e.g., first-order Born and Rytov approximations [19]) yields
results accurate enough for many practical examples. As the
level of nonlinearity increases, to maintain the stability and
the accuracy of the inversion, more accurate approximations
to the nonlinear scattering operator have to be used. These
approximations can be higher order, like in the extended-
Born or the second-order Born schemes [20], or can be
constructed iteratively like in the Born iterative method [21].
For scatterers with high contrast, “fully” nonlinear schemes
such as the distorted-Born method [22] and several other
methods, which make use of Newton iterations [23], nonlinear
conjugate gradient scheme [24], [25], and nonlinear steepest
descent algorithm [26], are more accurate and efficient.

The electromagnetic inverse scattering problem is con-
structed in such way that the data misfit between the (noisy)
measured fields and the scattered fields generated by the
mathematical model is minimized [1]–[4]. Typically, the solu-
tion of this optimization problem (reconstructed image) is
designed to be the investigation domain’s contrast profile.
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The ill-posedness of the inverse problem is alleviated by using
a regularization scheme that minimizes the weighted sum of
the data misfit and a penalty term. If the penalty term is
selected as the L2-norm of the solution, the (regularized)
optimization problem converges to a smooth solution [3].
Consequently, such regularization schemes may not produce
accurate results if the investigation domain includes sharp
variations/discontinuities and/or sparse content [27], [28].
Regularization schemes using L0/L1-norm of the solution as
the penalty term have also been developed [29]–[34]. These
schemes “promote” sharpness and sparseness in the solution
and produce more accurate reconstructions for domains with
sharp variations/discontinuities and/or sparse content. It should
be noted here that the electromagnetic inversion algorithms
developed in [29]–[34] assume sparseness in the actual inves-
tigation domain (i.e., spatial sparseness meaning that contrast
profile is nonzero only in a small portion of the investigation
domain). One also can carry out the reconstruction in a
different domain. For example, in [35], an electromagnetic
inversion algorithm, which makes use of a sparse optimization
scheme operating on the wavelets coefficients of the contrast
profile, has been proposed. Another example is the algorithm
proposed in [36], which reconstructs the derivative of the con-
trast profile. Other “sparsity-enhanced” inversion algorithms
include compressive sensing techniques that have been used
to exploit the fact that measurements can be sampled below the
Nyquist rate [37]. This reduces the computation cost without
sacrificing from the accuracy of the reconstruction [37].

In [33], a (spatial) sparseness-promoting regularization
scheme is used together with an inexact Newton method for
2-D nonlinear electromagnetic imaging. Similarly, in [34],
a scheme, which makes use of thresholded nonlinear Landwe-
ber iterations (NLW) to solve the sparse Tikhonov mini-
mization problem, has been developed for the same purpose.
The numerical results obtained using either one of these
schemes have demonstrated that many object features, which
cannot be detected by smoothness-promoting regularization
schemes, can be reconstructed under sparseness-promoting
regularization. The results have also shown that these inver-
sion algorithms are more robust to noise and maintain their
stability for investigation domains with higher contrast values
(i.e., stronger nonlinearity). Last but not least, their efficiency
increases as the investigation domain becomes sparser sug-
gesting that their benefits will be more pronounced when they
are used on 3-D domains that are oftentimes significantly
sparser than their 2-D counterparts. Despite the advantages
listed above, schemes proposed in [33] and [34] have not
been extended to 3-D electromagnetic imaging. This is simply
due to fact that convergence rate of these algorithms is not
high enough to image 3-D domains within a reasonable
computation time.

To overcome this bottleneck, in this paper, a new scheme
for solving the electromagnetic inverse scattering problem
on spatially sparse 3-D investigation domains is developed.
This scheme integrates two concepts to achieve accuracy
and efficiency. First, the nonlinear optimization problem is
constrained using the L0/L1-norm of the solution as the
penalty term. The resulting Tikhonov minimization problem

Fig. 1. Description of the 3-D electromagnetic inverse scattering problem.

is solved using the NLW. Second, the NLW is accelerated
using a steepest descent algorithm [38], [39]. The sparsity
constraint is enforced by thresholding the solution with a
projection operator that is applied at every iteration. The
resulting projected steepest descent algorithm ensures efficient
and convergent solution using carefully selected thresholding
level and iteration step. It should also be noted here that this
3-D electromagnetic inversion scheme shares the same benefits
as its 2-D counterparts (in comparison with schemes making
use of L2-norm regularization): It is more robust to noise and
can handle higher contrast levels without sacrificing from sta-
bility, and the reconstructed images are sharper and oftentimes
more accurate. Numerical experiments, which demonstrate the
accuracy, efficiency, and applicability of the proposed scheme
in reconstructing 3-D sparse profiles, are presented.

II. FORMULATION

A. Discretization of the Forward Model

Let V denote the volumetric support of a 3-D investigation
domain residing in an unbounded homogenous background
medium (Fig. 1). Permittivity and permeability of the inves-
tigation domain and the background medium are represented
with {εr (r)ε0− jσ (r)/ω,μ0} and {ε0, μ0}, respectively. Here,
σ(r) and εr (r) are the conductivity and relative permittivity
in V . It is assumed that the investigation domain is surrounded
by N R number of receivers, which are located at rR

m , m =
1, . . . , N R , and a single transmitter. The transmitter generates
the incident field Einc(r). Upon excitation, equivalent electric
current density J(r) is induced on V ; J(r) = jωε0τ (r)E(r),
where τ (r) = χ(r) − jσ(r)/(ωε0) and χ(r) = εr (r) − 1 are
the contrast and susceptibility in V , and E(r) is the total field.
In return, J(r) generates the scattered field Esca(r) [40]

Esca(r) = − jωμ0

∫
V

Ḡ(r, r′) · J(r′)dv ′

= k2
0

∫
V

Ḡ(r, r′) · E(r′)τ (r′)dv ′. (1)
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Here, Ḡ(r, r′) is the dyadic Green function of the background
medium and expressed as

Ḡ(r, r′) =
[

Ī + ∇∇
k2

0

]
g(r, r′)

where Ī is the identity dyad, g(r, r′) =
e− j k0|r−r′ |/(4π |r − r′|) is the scalar Green function,
and k0 = ω (ε0μ0)

1/2 is the wavenumber. Total, scattered,
and incident fields satisfy E(r) = Einc(r) + Esca(r), which
leads to [40]

Einc(r) = E(r) − k2
0

∫
V

Ḡ(r, r′) · E(r′)τ (r′)dv ′. (2)

Enforcing (2) on V , i.e., for r ∈ V , and evaluating (1) at
the receiver locations rR

m , m = 1, . . . , N R , provide a relation
between τ (r), r ∈ V , and E(rR

m), m = 1, . . . , N R , which is
termed as the forward model. Forward model is discretized as
described next.

First, V is divided into N number of equal cubic cells with
dimension �d . Total field components, Eu(r), u ∈ {x, y, z},
and the contrast τ (r) are approximated using

Eu(r) =
N∑

n=1

pn(r){Ēu}n

τ (r) =
N∑

n=1

pn(r){t̄}n . (3)

Here, Ēu and t̄ are N ×1 vectors with entries {Ēu}n = Eu(rn)
and {t̄}n = τ (rn), where rn , n = 1, . . . , N , are the centers of
the cells. In (3), pn(r) is the pulse basis function defined as

pn(r) =
{

1 r ∈ Vn

0 otherwise

where Vn is the volumetric support of the nth cell. Inserting (3)
into (2) and evaluating the resulting equation at rm , m =
1, . . . , N yield

Ē inc = ( Ī3N − F̄ D{P̄ t̄})Ē. (4)

Here, Ē = [Ēx , Ēy, Ēz]t and Ē inc = [Ē inc
x , Ē inc

y , Ē inc
z ]t are

3N × 1 vectors, where Ēu and Ē inc
u are N × 1 vectors

with entries {Ēu}n = Eu(rn) and {Ē inc
u }n = E inc

u (rn),
n = 1, . . . , N , respectively. P̄ = [ ĪN , ĪN , ĪN ]t is a 3N × N
matrix, Ī3N and ĪN are 3N ×3N and N × N identity matrices,
D{.} is an operator that converts the input vector into a
diagonal matrix with entries equal to those of the input vector,
and finally F̄ is a 3N × 3N matrix with N × N blocks
Ḡuv , {u, v} ∈ {x, y, z}

F̄ =
⎡
⎣ Ḡx x Ḡxy Ḡxz

Ḡ yx Ḡ yy Ḡ yz

Ḡzx Ḡzy Ḡzz

⎤
⎦ . (5)

In (5), the entries of Ḡuv are given by

{Ḡuv}mn =

⎧⎪⎪⎨
⎪⎪⎩

∫
Vn

k2
0 g(rm, r′) + ∂u∂v g(r, r′)

∣∣
r=rm

dv ′, u = v∫
Vn

∂u∂v g(r, r′)
∣∣
r=rm

dv ′, u �= v.

Inserting (3) into (1) and evaluating the resulting equation at
the receiver locations rR

m , m = 1, . . . , N R , yield

Ēsca = H̄ D{Ē}P̄ t̄ (6)

where Ēsca = [Ēsca
x , Ēsca

y , Ēsca
z ]t is a 3N R × 1 vector, where

Ēsca
u is an N × 1 vector with entries {Ēsca

u }m = Esca
u (rR

m),
n = 1, . . . , N R , and H̄ is a 3N R × 3N matrix with N R × N
blocks Ḡ R

uv , {u, v} ∈ {x, y, z}

H̄ =
⎡
⎣ Ḡ R

x x Ḡ R
xy Ḡ R

xz
Ḡ R

yx Ḡ R
yy Ḡ R

yz
Ḡ R

zx Ḡ R
zy Ḡ R

zz

⎤
⎦ . (7)

In (7), the entries of Ḡ R
uv are given by

{
Ḡ R

uv

}
mn =

⎧⎪⎪⎨
⎪⎪⎩

∫
Vn

k2
0g

(
rR

m, r′)+∂u∂v g(r, r′)
∣∣∣
r=rR

m

dv ′, u = v∫
Vn

∂u∂v g
(
rR

m, r′)∣∣
r=rm

dv ′, u �= v.

Inverting (4) for Ē and inserting the resulting expression
in (6) yield the discretized complete nonlinear electromagnetic
forward operator

f (t̄) = Ēsca = H̄ D{( Ī3N − F̄ D{P̄ t̄})−1 Ē inc}P̄ t̄ . (8)

Several observations about the discretized forward operator
f (·) are in order. First, it is clearly seen from (8) that f (t̄) is
a nonlinear function of the contrast t̄ . Second, forward operator
f (t̄) is constructed under the assumption of single transmitter
operated with a single polarization. However, usually mea-
surements are carried out with multiple transmitters (located
at different positions) operated with different polarizations. Let
vector Ē inc

t,s store the samples of the incident field generated by
the transmitter t , t = 1, 2, . . . , NT , where NT is the number
of transmitters, and with polarization s, s = 1, 2, . . . , NP,
where NP is the number of polarizations of a given trans-
mitter. For each incident field Ē inc

t,s , scattered field Ēsca
t,s is

generated and can be computed using (8). Consequently, for
multiple transmitters with multiple polarization configurations,
the operator f (t̄) should be constructed by cascading (8) for
every possible pair of Ē inc

t,s and Ēsca
t,s . Third, the inversion

operation in (8) is carried out using a biconjugate gradient
stabilized iterative solver [41]. The memory requirement and
computational cost of executing the matrix–vector product
required by this iterative solver both scale with O(N2). This
cost is significantly reduced using the fact that blocks of
the matrix F̄ , Ḡuv , {u, v} ∈ {x, y, z} are Toeplitz matrices.
Consequently, the matrix F̄ can be multiplied by a given
vector in O(N log N) operations using fast Fourier transform
as described in [42] and [43]. The memory requirement of
this operation scales with O(N). Finally, due to the smoothing
effect of the integral operator in (1), finding the contrast t̄ from
using a finite set of noisy measurements at the receiver loca-
tions is an ill-posed problem [1]–[4]. Effects of ill-posedness
is alleviated by casting the problem of finding t̄ from measured
scattered fields in the form of a sparse nonlinear optimization
problem as described in the next section.
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B. Sparse Nonlinear Optimization Problem

Solving the sparse nonlinear optimization problem

t̄ = min
t̄

1

2
‖ f (t̄) − Ēmeas‖2

2, ‖t̄‖0 ≤ l0 (9)

yields the samples of the contrast τ (r), which are stored in the
vector t̄ , from noisy scattered fields measured at the receiver
locations and stored in the vector Ēmeas. In (9), the nonlinear
least-square minimization the data misfit ‖ f (t̄) − Ēmeas‖2

2 is
constrained by the condition ‖t̄‖0 ≤ l0, where l0 is a positive
integer. Since ‖t̄‖0 = ∑N

n=1 |{t̄}n|0, ‖t̄‖0 counts the number
of the nonzero entries in t̄ . This means that enforcing the
constraint ‖t̄‖0 ≤ l0 promotes the sparseness in the solution
of (9) [27]. Consequently, l0 should be estimated using the
a priori knowledge of the sparseness level in the investigation
domain, i.e., the number of zero-valued contrast samples
to N . However, L0-norm function is nonconvex. Therefore,
solving the optimization problem (9) comes with a very high
computational cost [44]. Alternatively, one can use the L1-
norm instead of the L0-norm to constrain the minimization of
the data misfit leading to the optimization problem

t̄ = min
t̄

1

2
‖ f (t̄) − Ēmeas‖2

2, ‖t̄‖1 ≤ l1 (10)

where l1 is a positive real number. Since ‖t̄‖1 = ∑N
n=1 |{t̄}n |,

l1 should be estimated based on a priori knowledge of the
values of the contrast samples as well as the sparseness
level in the investigation domain. Clearly, unlike the L0-norm
constraint, L1-norm constraint also depends on the values of
the contrast samples. Optimization problem (10) is the best
convex norm approximation to the optimization problem (9)
and replacing (9) with (10) is termed as convex relaxation [28].
The effectiveness of the L1-norm constrained optimization in
recovering sparse solutions (with smaller computational cost)
has been well proven [27], [28].

Using the method of Lagrange multipliers [45], (9) and (10)
are converted into

t̄ = min
t̄

1

2
‖ f (t̄) − Ēmeas‖2

2 + λ‖t̄‖q (11)

where q ∈ {0, 1}, and λ is a regularization parameter that
specifies the tradeoff between minimizing the data misfit
and the penalty term. It should be noted here that (11) is
also known as the sparse nonlinear Tikhonov minimization
problem [45]. The next section describes a projected accel-
erated steepest descent (PASD) algorithm to solve (11) [or
equivalently (9) or (10)].

C. Projected Accelerated Steepest Descent Algorithm

Optimization problem (11) is iteratively solved using a
PASD algorithm [38]. PASD enforces the sparsity constraint
using a projection operator on the NLW iteration. The effi-
ciency is achieved without sacrificing the convergence by
using carefully selected thresholding level and step for the pro-
jection operator and iterations, respectively. A detailed math-
ematical study of the selection criteria and the convergence of
PASD is carried out in [38]. In this paper, this algorithm is

adopted to solve the sparse electromagnetic inverse scattering
problem. The resulting PASD reads

Step 1: initialize lq , α, γ, t̄(0), υ < 1

Step 2: r = max{2α, 2γ
√

�{t̄(0)}}
Step 3.0 : for p = 0, 1, 2, . . . .

Step 3.1: β(p) = max

{
α

γ
√

�{t̄(p)}
,

√
�{t̄(0)}
�{t̄(p)}

}

Step 3.2 : t̄(p+1) = Pq
(
t̄(p) + β(p)

r
∂t̄(p)

f ∗(Ēmeas − f (t̄(p)))
)

Step 3.3 : does β(p) satisfy condition (13b) ?

yes, continue

no, β(p) = υβ(p) and back to Step 3.2

Step 3.4 : end.

At Step 1, several parameters of the algorithm are initial-
ized. Here, lq , q ∈ {0, 1} represents the estimated sparsity
threshold [see (9), (10), or (11)], α ≥ supt̄∈Bq

‖∂t̄ f (t̄)‖2, γ ≥
2 sup{t̄,h̄}∈Bq

‖∂2
t̄ f (t̄, h̄)‖2/‖h̄‖2

2, Bq = {‖t̄‖q ≤ lq} is a ball of

radius lq , and ∂t̄ f (t̄) and ∂2
t̄ f (t̄, h̄) are the first- and second-

order Frechet derivatives that are computed using

∂t̄ f (t̄) = H̄ K̄ D{T̄ Ē inc} (12)

∂2
t̄ f (t̄, h̄) = −H̄ K̄ (D{h̄}F̄ K̄ D{T̄ Ē inc}+D{T̄ F̄ D{h̄}T̄ Ē inc})

where K̄ = ( Ī3N − D{P̄ t̄}F̄)−1 and T̄ = ( Ī3N − F̄ D{P̄ t̄})−1.
In addition, at Step 1, t̄(0) is an initial guess of the solution
and υ < 1 is a shrinking factor.

At Step 2, r is specified using the estimated parameters
α and γ and the data misfit of the initial guess given by �(t̄0).
Here, data misfit function is defined as �(t̄) = 0.5‖ f (t̄) −
Ēmeas‖2

2.
Step 3 and its substeps describe the iterations. At Step 3.1,

β(p) is selected. Step 3.2 is the projected steepest descent
iteration (also known as the projected NLW iteration). Here,
β(p)/r is the iteration step, Pq (·) is the projection operator,
and ∂t̄(p)

f ∗(·) is the complex adjoint of ∂t̄(p)
f (·). Parameters

β(p) and r should satisfy the conditions

sup{β(p),∀p} < ∞ and inf{β(p), ∀p} ≥ 1 (13a)

β(p)‖ f (t̄(p+1)) − f (t̄(p))‖2
2 ≤ r

2
‖t̄(p+1) − t̄(p)‖2

2 (13b)

β(p)γ
√

�(t̄(p)) ≤ r

2
(13c)

to ensure the convergence of the algorithm [38]. Specific selec-
tions of r and β(p) at Steps 2 and 3.1 ensure that the conditions
in (13a) and (13c) are satisfied at any given iteration [38].
However, r and β(p) should be explicitly checked against
condition (13b). This is done at Step 3.3 of the algorithm.
If the condition (13b) is satisfied, PASD proceeds to the next
iteration. If not, β(p) (and consequently the iteration step)
is reduced by multiplying it with υ, υ < 1, and t̄(p+1) is
recomputed by repeating Step 3.2. This operation is iterated
until β(p) satisfies condition (13b).

At Step 3.2, the operator Pq (·) projects the result of each
steepest descent iteration into the ball Bq to enforce the
sparsity constraint. Different projection operators are used for
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q = 0 and q = 1 as described next. For q = 0, P0(·) is
computed using [38], [39]

Step 1) x̄ = sort(|z̄|)
Step 2) μ={x̄}(l0+1)

Step 3) P0(z̄) = Thrμ0 (z̄).

At Step 1, vector x̄ stores the absolute values of entries of
the input vector z̄, which are sorted from the largest to the
smallest. At Step 2, threshold level μ is determined. At Step 3,
the complex hard-thresholding function with threshold level
μ [32]–[34]

{
Thrμ0 (z̄)

}
n =

{
0 |{z̄}n | < μ

{z̄}n else

is used as P0(z̄). This projection operation sets the entries
of z̄, which satisfy |{z̄}k | < |{z̄}|(l0+1), to zero. If it is known
a priori that l0 number of entries in t̄ (among a total of N
number of entries) are zero, then there are N !/(l0!(N − l0)!)
possible sparse solutions [27]. The projection operator P0(·)
described above selects l0 entries of the vector z̄, starting
with the one with largest absolute value. The chances of these
entries to be in the actual solution are higher [27]. However,
to achieve the best sparse solution, one still needs to compute
the data misfit [first term in (11)] for all possible sparse solu-
tions. This makes the L0-norm sparse optimization problem
computationally expensive and inefficient [27]. It should also
be noted here, even though P0(·) selects a set of entries, which
is more likely to be in the actual solution, it fails to pro-
vide efficient sparse reconstruction for investigation domains
with high levels of permittivity and/or involving geometri-
cally complicated scatterers [32]–[34]. For such investigation
domains, some entries of the solution cannot “grow” enough
to overcome the threshold level of P0(·), especially during the
first few iterations. Consequently, these entries are eventually
eliminated from the solution. One way of tackling this problem
is to use a large value for l0, say lmax

0 , during the first few
iterations of PASD. As the iterations evolve, the value for l0
is reduced until it reaches a desired level of sparseness, say
lmin
0 . This approach ensures that some entries of the solution

are not prematurely eliminated at the earlier iterations since
the threshold level is gradually increased. Indeed, as shown
by the numerical results in Section III, it leads to a more
efficient sparse recovery by allowing the entries of the solution
to grow enough to surpass the projection operation at the later
iterations.

For q = 1, P1(·) is computed using [38], [39]

Step 1) x̄ = sort(|z̄|)
Step 2) Find k such that∥∥Thr

{x̄}(k)

1 (x̄)
∥∥

1 ≤ l1 ≤ ∥∥Thr
{x̄}(k+1)

1 (x̄)
∥∥

1

Step 3) μ={x̄}(k) − (
l1 − ∥∥Thr

{x̄}(k)

1 (x̄)
∥∥

1

)
/k

Step 4) P1(z̄) = Thrμ1 (z̄).

Step 1 in the computation of P1(·) is the same as that in the
computation of P0(·). At Step 2, a search is preformed to find
index k such that ‖Thr

{x̄}(k)

1 (x̄)‖1 ≤ l1 ≤ ‖Thr
{x̄}(k+1)

1 (x̄)‖1 is

satisfied. Step 3 computes the threshold μ for the projection
operation. Finally, at Step 4, P1(z̄) is computed using Thrμ1 (z̄).
Here, Thrμ1 (z̄) is the complex soft-thresholding function given
by [32]–[34]

{
Thrμ1 (z̄)

}
n = {z̄}n

max{|{z̄}n − μ|, 0}
max{|{z̄}n − μ|, 0} + μ

.

In summary, the projection operation and the conditions
in (13) ensure that PASD confines the iterative search of the
solution inside the ball Bq while using the largest possible
iteration step that does not sacrifice the convergence of the
algorithm. One can think of PASD as a different version of
the nonlinear iterative shrinkage thresholding (NIST) algo-
rithm (i.e., thresholded NLW), where each iteration is in the
form

t̄(p+1) = Thrλq
(
t̄(p) + (

1/σ 2
max(p)

)
∂t̄(p)

f ∗(Ēmeas − f (t̄(p)))
)
.

(14)

Here, σmax(p) is the maximum singular value of the operator
∂t̄(p)

f (·). It should be noted here that σ 2
max(p) normalizes

the adjoint operator ∂t̄(p)
f ∗(·) at each iteration to ensure

convergence. However, unlike PASD, this normalization oper-
ation may not produce the largest step that guarantees the
convergence of NIST or NLW [38]. Consequently, PASD is
more efficient than NIST because: 1) the normalization process
of NIST requires the estimation/computation of σmax(p) and 2)
NIST converges slowly due to the suboptimal selection of the
iteration step.

It should also be noted here that one can use q = 2
in (11). The resulting optimization problem can be solved
using PASD after the projection operator is dropped, i.e., the
projection operator is replaced by an identity operator. This
turns PASD into truncated NLW. It is well known that
NLW starts by recovering the slowly varying components
of the solution (i.e., low spatial frequency components) and
as the iterations continue, components with faster variations
(i.e., high spatial frequency components) are recovered [45].
But these higher frequency components are more suscepti-
ble to noise in the measured data. Therefore, the iterations
are truncated before the noise starts corrupting the solu-
tion. In other words, truncation acts like a regularization
scheme [1]–[4]. Consequently, higher frequency components
of the solution are not recovered. This means that solving the
optimization problem (11) with q = 2 using truncated NLW
promotes the smoothness in the solution.

III. NUMERICAL RESULTS

In this section, several numerical experiments, which
demonstrate the efficiency and applicability of PASD, are
described. Its performance and accuracy are compared with
those of NIST and truncated NLW. In all examples considered
here, it is assumed that the investigation domain resides in
free space. The incident field generated by each transmitter t ,
t = 1, . . . , NT , is approximated by a plane wave polarized in
âs direction, s = 1, . . . , N P

E inc
t,s (r) = E0e− j k0k̂t ·râs .
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Here, E0 is the amplitude of the plane wave’s electric field and
k̂t is the unit vector in the direction of plane wave propagation.
For every transmitter t , N P = 2, â1 = âφ (s = 1), and â2 = âθ

(s = 2), where âφ and âθ are the unit vectors along φ and
θ directions in the Spherical coordinate system. The transmit-
ters are located at points (RT âr , [2mπ/NT

φ ]âφ, [nπ/NT
θ ]âθ ),

m = 1, . . . , NT
φ and n = 1, . . . , NT

θ . The total number of
transmitters NT = NT

θ NT
φ . For a given transmitter location,

the propagation unit vector k̂t is directed from the transmitter
location toward the origin. The receivers are located at points
(RR âr , [2mπ/N R

φ ]âφ, [nπ/N R
θ ]âθ ), m = 1, . . . , N R

φ and n =
1, . . . , N R

θ . The total number of receivers N R = N R
θ N R

φ . Let
τ ref(r) represent the actual contrast of the investigation domain
and {t̄ ref}k = τ ref(rk), k = 1, . . . N . Measured fields stored in
Ēmeas

t,s are synthetically generated by adding white Gaussian
noise to the scattered fields, which are computed using t̄ ref

and Ē inc
t,s in (8). The accuracy of reconstruction is quantified

using one of the following error criteria:
di f f (p) = ‖t̄(p) − t̄ ref‖2

err(p) = ‖t̄(p) − t̄ ref‖2

‖t̄ ref‖2

where p represents the iteration number of the imaging
algorithm used. Using error function di f f (p) is more mean-
ingful when there is a comparison between reconstructions of
different t̄ ref .

A. Parameter Selection

This section explains how the parameters of PASD are
selected for its accurate and efficient execution. In all examples
considered, PASD starts with a zero initial guess, i.e., t̄(0) =
0. The general rule of thumb in selecting α, γ , and v
is that their values should reduce the number of possible
checks/failures of the conditions (13) while maintaining the
efficiency of the algorithm. The shrinking factor v reduces
the iteration step (see Step 3.3) if the conditions in (13) are
not satisfied. The value of v should not be very close to
unity since this increases the chances of another condition
failure leading to an increase in the number of repetitions
of the same iteration. It should not also be too small since
this might reduce the iteration step leading to an unnecessary
increase in execution time. Therefore, v is selected to be 0.9.
Parameters α and γ are supposed to satisfy the conditions α ≥
supt̄∈Bq

‖∂t̄ f (t̄)‖2 and γ ≥ 2 sup{t̄ ,h̄}∈Bq
‖∂2

t̄ f (t̄, h̄)‖2/‖h̄‖2
2,

respectively, as described in [38]. It is clear from these condi-
tions that the selection of α and γ depends on the supremum of
the first and the second order Frechet derivative operator com-
puted within Bq . From (12), one can see that Frechet derivative
operators are functions of the transmitter–receiver configu-
ration (including frequency), investigation domain geometry,
and discretization. Their supremum within Bq is predicted by
running numerical tests using the same setup as the inverse
problem before PASD is executed.

Maximum singular value σmax(p) does not have to be
computed at every iteration since 1/σ 2

max(p) is used as only a
normalization factor to ensure convergence. Value of σmax(p)

TABLE I

PARAMETERS OF PASD AND NIST FOR THE INVESTIGATION
DOMAIN WITH TWO SPHERES

computed at one iteration can be used at the next few iterations
without sacrificing from convergence depending on how much
the Frechet derivative changes from that iteration to the
next few iterations. Typically, at the first few iterations of
the algorithm, the value of the Frechet derivative changes
significantly between iterations. However, as iterations evolve
and the solution starts to converge, the variation in the Frechet
derivative values is less significant. Consequently, in all numer-
ical examples considered here, σmax(p) is computed at every
iteration for the first five iterations and every ten iterations
after that.

B. Two Spheres

The investigation domain includes two dielectric spheres
with radius 0.39 m, which are centered at (0.45, 0.45, 0.45)
and (−0.45,−0.45,−0.45) m, respectively. Their relative per-
mittivity is 2.5. The investigation domain is discretized using
N = 8000 cubic cells with dimension �d = 0.15 m. The
sparseness level, i.e., the ratio of number of nonzero entries in
t̄ ref to N , is 2.2%. The parameters of the transmitter-receiver
configuration are f = 126 MHz, NT

φ = 5, NT
θ = 4, N R

φ = 6,
and N R

θ = 5. The level of noise in Ēmeas is 25 dB. The
parameters of PASD and NIST are given in Table I. Note that
the sparsity relaxation explained in Section II-C is not used
for this example.

Fig. 2(a) plots err(p), which is computed by truncated NLW,
NIST, and PASD, versus p. In addition, Fig. 2(b) plots err(p)

versus execution time of the three methods. It is clearly
shown that PASD achieves significantly better accuracy within
shorter time. For q = 0, NIST achieves err(200) = 48.51%
in 131.7 min, while PASD reaches the same error level in
1.8 min. For q = 1, NIST achieves err(200) = 47.92%
in 130.9 min, while PASD reaches the same error level in
15.6 min.

Fig. 2(c) shows the slices of the actual relative permit-
tivity profile at x = 0.375 m and y = −0.375 m planes.
Fig. 2(d)–(h) shows the relative permittivity profiles recon-
structed by truncated NLW at p = 200, NIST with q = 0 at
p = 200, NIST with q = 1 at p = 200, PASD with q = 0
at p = 60, and PASD with q = 1 at p = 60, respectively.
As expected, reconstructions generated by PASD and NIST are
sharper than that obtained by truncated NLW [for example,
compare Fig. 2(d) with (g) and (h)]. In addition, the local
variations in contrast levels are captured more accurately by
PASD and NIST.
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Fig. 2. Investigation domain with two spheres. (a) err(p) versus p and
(b) err(p) versus execution time for truncated NLW, NIST, and PASD.
(c) Actual relative permittivity profile. Relative permittivity profiles recon-
structed by (d) truncated NLW at p = 200, (e) NIST with q = 0 at p = 200,
(f) NIST with q = 1 at p = 200, (g) PASD with q = 0 at p = 60, and
(h) PASD with q = 1 at p = 60.

C. Coated Cube

In this example, the investigation domain includes a coated
cube centered at the origin. The dimension of the cube and
the thickness of the coating layer is 0.3 m. The relative

TABLE II

PARAMETERS OF PASD AND NIST FOR INVESTIGATION
DOMAIN WITH A COATED CUBE

permittivities of the cube and layer are 1.5 and 2.5, respec-
tively. The investigation domain is discretized using N = 8000
cells with dimension �d = 0.15 m. The sparseness level is
6.4%. The parameters of the transmitter–receiver configuration
are f = 126 MHz, NT

φ = 4, NT
θ = 4, N R

φ = 4, and N R
θ = 4.

The level of noise in Ēmeas is 25 dB. The parameters of PASD
and NIST are given in Table II.

Fig. 3(a) plots err(p), which is computed by truncated NLW,
NIST, and PASD, versus p. In addition, Fig. 3(b) plots err(p)

versus execution time of the three methods. The results show
that PASD is more efficient and accurate than the other two.
For q = 0, NIST achieves err(200) = 27.02% in 358.3 min,
while PASD reaches the same error level in 82.6 min. For
q = 1, NIST achieves err(200) = 30.59% in 359.38 min, while
PASD reaches the same error level in 44.98 min.

Fig. 3(c) shows the slices of the actual relative permittivity
profile at x = 0 m, y = 0 m, and z = 0 m planes. Fig. 3(d)–(h)
shows the relative permittivity profiles reconstructed by trun-
cated NLW at p = 200, NIST with q = 0 at p = 200, NIST
with q = 1 at p = 200, PASD with q = 0 at p = 60,
and PASD with q = 1 at p = 51, respectively. Comparing
Fig. 3(d) with (g) and (h), one can note that in the solution
reconstructed by truncated NLW (where the smoothness is
promoted), the core of cube under the coating cannot be
detected; both the core and coating appear as if they have
the same permittivity. On the other hand, in the solutions
reconstructed by NIST and PASD, the core and coating can
be clearly identified.

D. Austria Scatterer

The scatterer in this example is the 3-D version of the
well-known 2-D Austria dielectric permittivity profile [1].
The scatterer consists of a spherical shell with inner radius
0.6 m and outer radius 1.1 m and two spheres with radius
0.35 m. The shell and spheres are centered at (0, 0, 0) and
(0, 1.5, 0.95) and (0,−1.5, 0.95) m, respectively. The relative
permittivity of all structures is 2.5. The investigation domain
is discretized using N = 27 000 cells with dimension �d =
0.15 m. The sparseness level is 5.4%. The parameters of the
transmitter–receiver configuration are f = 100 MHz, NT

φ = 3,
NT

θ = 3, N R
φ = 5, and N R

θ = 4. The level of noise in
Ēmeas is 25 dB. The parameters of PASD and NIST are given
in Table III.

Fig. 4(a) plots err(p), which is computed by truncated NLW,
NIST, and PASD, versus p. In addition, Fig. 4(b) plots err(p)

versus execution time of the three methods. For q = 0, NIST
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Fig. 3. Investigation domain with a coated cube. (a) err(p) versus p and
(b) err(p) versus execution time for truncated NLW, NIST, and PASD.
(c) Actual relative permittivity profile. Relative permittivity profiles recon-
structed by (d) truncated NLW at p = 200, (e) NIST with q = 0 at p = 200,
(f) NIST with q = 1 at p = 200, (g) PASD with q = 0 at p = 60, and
(h) PASD with q = 1 at p = 51.

achieves err(200) = 42.93% at 892.4 min, while PASD reaches
the same error level in 107.7 min. For q = 1, NIST achieves
err(200) = 37.09% in 569.5 min, while PASD reaches the same
error level in 94.59 min.

Fig. 4. Investigation domain with the Austria scatterer. (a) err(p) versus p
and (b) err(p) versus execution time for truncated NLW, NIST, and PASD.
(c) Actual relative permittivity profile. Relative permittivity profiles recon-
structed by (d) truncated NLW at p = 200, (e) NIST with q = 0 at p = 200,
(f) NIST with q = 1 at p = 200, (g) PASD with q = 0 at p = 60, and
(h) PASD with q = 1 at p = 60.

Fig. 4(c) shows the slices of the actual relative permit-
tivity profile at x = 0 m, y = 0 m, and z = 0 m.
Fig. 4(d)–(h) shows the relative permittivity profiles recon-
structed by truncated NLW at p = 200, NIST with q = 0
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TABLE III

PARAMETERS OF PASD AND NIST FOR THE INVESTIGATION
DOMAIN WITH AUSTRIA SCATTERER

TABLE IV

PARAMETERS OF PASD AND NIST FOR THE INVESTIGATION

DOMAIN WITH A HIDDEN TARGET

at p = 200, NIST with q = 1 at p = 200, PASD with
q = 0 at p = 60, and PASD with q = 1 at p = 60,
respectively. In the solution reconstructed by truncated NLW,
wavelike ripples, which make the two spheres undetectable,
are observed. However, these ripples are eliminated in the
solutions reconstructed by NIST and PASD, allowing the
detection of the spheres as two separate objects.

E. Hidden Target

The investigation domain includes a spherical shell with
inner radius 1.6 m and outer radius 1.86 m and a cubic target
of dimension 0.75 m. The shell and the cube are centered at
(0, 0, 0) and (0.525, 0, 0.525) m, respectively. Note that the
cube is located inside the shell. The relative permittivities
of the shell and cube are 2.0 and 2.5, respectively. The
investigation domain is discretized using N = 27 000 cells
with dimension �d = 0.15 m. The sparseness level is 5.4%.
The parameters of the transmitter–receiver configuration are
f = 100 MHz, NT

φ = 3, NT
θ = 3, N R

φ = 5, and N R
θ = 4. The

level of noise in Ēmeas is 25 dB. The parameters of PASD and
NIST are given in Table IV.

Fig. 5(a) plots err(p), which is computed by truncated NLW,
NIST, and PASD, versus p. In addition, Fig. 5(b) plots err(p)

versus execution time of the three methods. For q = 0, NIST
achieves err(400) = 55.99% in 1635 min, while PASD reaches
the same error level in 141.5 min. For q = 1, NIST achieves
err(400) = 49.7% in 1103 min, while PASD reaches the same
error level in 181.7 min.

Fig. 5(c) shows the slices of the actual relative permittivity
profile at x = 0 m, y = 0 m, and z = 0 m planes.
Fig. 5(d)–(h) shows the relative permittivity profiles recon-
structed by truncated NLW at p = 400, NIST with q = 0 at
p = 400, NIST with q = 1 at p = 400, PASD with q = 0
at p = 60, and PASD with q = 1 at p = 100, respectively.
It is clearly seen that the solutions reconstructed by NIST and
PASD are sharper than that reconstructed by truncated NLW.
In the images obtained by NIST and PASD, the target located
inside the shell can clearly be identified.

Fig. 5. Investigation domain with a hidden target. (a) err(p) versus p and
(b) err(p) versus execution time for truncated NLW, NIST, and PASD.
(c) Actual relative permittivity profile. Relative permittivity profiles recon-
structed by (d) truncated NLW at p = 400, (e) NIST with q = 0 at p = 400,
(f) NIST with q = 1 at p = 400, (g) PASD with q = 0 at p = 60, and
(h) PASD with q = 1 at p = 100.

F. Range of Validity

In this section, several numerical results are presented
to demonstrate how changes in receiver–transmitter
configuration, contrast and sparseness levels, level of noise in
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Fig. 6. Investigation domain with two spheres. (a) err(p) versus p and
(b) err(p) versus execution time for PASD and NIST using four different
transmitter–receiver configurations: 1) NT

φ = 5, N T
θ = 4, N R

φ = 5, and

N R
θ = 4; 2) N T

φ = 4, N T
θ = 3, N R

φ = 5, and N R
θ = 4; 3) N T

φ = 4, N T
θ = 3,

N R
φ = 4, and N R

θ = 3; and 4) N T
φ = 3, N T

θ = 3, N R
φ = 3, and N R

θ = 3.

measurements, and frequency affect the convergence
of PASD.

1) Transmitter–Receiver Configuration: All parameters
used in this example are the same as those in Section III-B
except the transmitter–receiver configuration. In addition,
the conductivity of the spheres is now 5 mS/m. Reconstruction
is carried out using PASD with q = 1 and NIST with q = 1 for
four different transmitter–receiver configurations: 1) NT

φ = 5,
NT

θ = 4, N R
φ = 5, and N R

θ = 4; 2) NT
φ = 4, NT

θ = 3,
N R

φ = 5, and N R
θ = 4; 3) NT

φ = 4, NT
θ = 3, N R

φ = 4, and
N R

θ = 3; and 4) NT
φ = 3, NT

θ = 3, N R
φ = 3, and N R

θ = 3. The
parameters of PASD and NIST are the same as those given
in Table I.

Fig. 6(a) plots err(p), which is computed by PASD and
NIST, versus p for all four simulations. In addition, Fig. 6(b)
plots err(p) versus execution time of the two methods.
Fig. 6(a)and (b) shows that PASD converges faster than NIST
for every transmitter–receiver configuration. In addition, it is
clear that decreasing the numbers of the transmitters and
the receivers degrades the accuracy. But as expected this
also comes with a decrease in the computation time per
iteration.

2) Contrast Level: All parameters used in this example are
the same as those in Section III-B except the permittivity of
the spheres. In addition, the conductivity of the spheres is now
5 mS/m. Reconstruction is carried out using PASD with q = 1

Fig. 7. Investigation domain with two spheres. di f f (p) versus execution
time for PASD and NIST for five different values of permittivity: 1) 1.5; 2)
2.5; 3) 3.5; 4) 4.5; and 5) 5.5.

Fig. 8. Investigation domain with a single sphere. di f f (p) versus execution
time for PASD and NIST for four different levels of sparseness: 1) 1.1%;
2) 2%; 3) 5.4%; and 4) 11.4%.

and NIST with q = 1 for five different values of permittivity:
1) 1.5; 2) 2.5; 3) 3.5; 4) 4.5; and 5) 5.5. The parameters
of PASD and NIST are the same as those given in Table I
except l1, which is selected as 145, 235, 335, 430, and 512
for simulations 1)–5), respectively.

Fig. 7 plots di f f (p), which is computed by PASD and NIST,
versus execution time for all five simulations. Fig. 7 clearly
shows that PASD does not lose its efficiency as the contrast
is increased (i.e., level of nonlinearity increases).

3) Sparseness Level: In this example, the investigation
domain includes a single sphere centered at the origin.
Its relative permittivity and conductivity are 2.5 and 5 mS/m,
respectively. The investigation domain is discretized using
N = 8000 cubic cells with dimension �d = 0.15 m.
The parameters of the transmitter–receiver configuration are
f = 126 MHz, NT

φ = 5, NT
θ = 4, N R

φ = 6, and N R
θ = 5.

The level of noise in Ēmeas is 25 dB. Reconstruction is carried
out using PASD with q = 1 and NIST with q = 1 for four
different levels of sparseness: 1) 1.1%; 2) 2%; 3) 5.4%; and
4) 11.4%. It should be noted here that the varying levels of
sparseness are obtained by changing the radius of the sphere.
The parameters of PASD and NIST are the same as those given
in Table I except l1, which is selected as 132, 240, 648, and
1368 for simulations 1)–4), respectively.

Fig. 8 plots di f f (p), which is computed by PASD and NIST,
versus execution time for all four simulations. Fig. 8 shows
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Fig. 9. Investigation domain with the Austria scatterer. (a) err(p) versus
execution time for PASD and NIST under four different levels of noise:
1) 25; 2) 20; 3) 15; and 4) 10 dB. (b) err(p) at p = 60 versus noise level for
PASD. Relative permittivity profiles reconstructed by PASD at p = 60 for
noise level (c) 25, (d) 20, (e) 15, and (f) 10 dB.

that PASD converges much faster than NIST for all levels of
sparseness considered in this example.

4) Noise Level: All parameters used in this example are
the same as those in Section III-D except the level of noise
in Ēmeas. In addition, the conductivity of the scatterer is
now 5 mS/m. Reconstruction is carried out using PASD with
q = 1 and NIST with q = 1 for four different values of noise

Fig. 10. Investigation domain with two spheres. err(p) versus execution time
for PASD and NIST for five different values of frequency: 1) 125; 2) 115;
3) 105; 4) 95; and 5) 85 MHz.

level: 1) 25; 2) 20; 3) 15; and 4) 10 dB. The parameters of
PASD and NIST are the same as those given in Table III.

Fig. 9(a) plots err(p), which is computed by PASD and
NIST, versus execution time for all four simulations. Fig. 9(a)
shows that PASD maintains a better convergence rate than
NIST for all levels of noise considered in this example.
Fig. 9(b) plots err(p), which is computed by PASD at p = 60,
versus the noise level. Fig. 9(a) and (b) confirms the robustness
of PASD against high levels of noise in the measurements.
To demonstrate this further, Fig. 9(c)–(f) shows the slices
of the relative permittivity profiles reconstructed by PASD at
p = 60 for noise levels of 25, 20, 15, and 10 dB, respectively.

5) Frequency: All parameters used in this example are the
same as those in Section III-B except the permittivity of the
spheres. In addition, the conductivity of the spheres is now
5 mS/m. Reconstruction is carried out using PASD with q = 1
and NIST with q = 1 for five different values of frequency:
1) 125; 2) 115; 3) 105; 4) 95; and 5) 85 MHz. The parameters
of PASD and NIST are the same as those given in Table I.

Fig. 10 plots err(p), which is computed by PASD and NIST,
versus execution time for all five simulations. Fig. 10 shows
that PASD maintains its faster convergence for different values
of frequency.

G. Two Spheres: Comparison With Multiscale NIST

In this section, performance and accuracy of PASD are
compared with those of multiscale NIST. Multiscaling is
implemented using 3-D Gaussian blobs with changing vari-
ances [46]–[48]. To reduce the computational cost, multiscal-
ing is only applied at NIST iterations where the maximum
singular value σmax(p) is computed, i.e., at every iteration for
the first five iterations and every ten iterations after that as
explained in Section III-A. The investigation domain and the
parameters used in this example are the same as those in
Section III-B except the numbers of transmitters and receivers.
In this example, NT

φ = 5, NT
θ = 4, N R

φ = 5, and N R
θ = 4.

Fig. 11(a) plots err(p), which is computed by multiscale
NIST with q = 1 and PASD with q = 1, versus execution
time. Fig. 11(a) clearly shows that PASD has a faster con-
vergence rate: multiscale NIST reaches err(134) = 59.42%
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Fig. 11. Investigation domain with two spheres. (a) err(p) versus execution
time for PASD and multiscale NIST. Relative permittivity profiles recon-
structed by (b) multiscale NIST and (c) PASD.

in 79.4 min, while PASD reaches the same error level in
only 8.4 min. Fig. 11(b) and (c) shows the slices of the
relative permittivity profiles reconstructed by multiscale NIST
at p = 134 and PASD at p = 60, respectively. It is clear
from Fig. 11(b) and (c) that PASD achieves a more accurate
reconstruction at convergence.

IV. CONCLUSION

A scheme for efficient and accurate nonlinear electromag-
netic imaging of sparse 3-D domains is described. The scheme
solves the nonlinear Tikhonov minimization problem, which
is constrained with L0/L1-norm of the solution, using an
accelerated steepest descent algorithm. A projection operator
is applied at every iteration of the algorithm to enforce
the sparsity constraint. The projected volume is reduced as
the iterations of steepest descent algorithm proceed. This
increases the convergence rate of the algorithm by avoiding
the solution from getting stuck at local minima. Numerical
results demonstrate the accuracy and efficiency of the scheme
in reconstructing 3-D sparse dielectric profiles.
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