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Evaluation of the Range Accuracy and the
Radiometric Calibration of Multiple Terrestrial
Laser Scanning Instruments for
Data Interoperability

Kim Calders, Mathias I. Disney, John Armston, Andrew Burt, Benjamin Brede,
Niall Origo, Jasmine Muir, and Joanne Nightingale

Abstract— Terrestrial laser scanning (TLS) data provide
3-D measurements of vegetation structure and have the potential
to support the calibration and validation of satellite and airborne
sensors. The increasing range of different commercial and scien-
tific TLS instruments holds challenges for data and instrument
interoperability. Using data from various TLS sources will be
critical to upscale study areas or compare data. In this paper,
we provide a general framework to compare the interoperability
of TLS instruments. We compare three TLS instruments that
are the same make and model, the RIEGL VZ-400. We compare
the range accuracy and evaluate the manufacturer’s radiometric
calibration for the uncalibrated return intensities. Our results
show that the range accuracy between instruments is comparable
and within the manufacturer’s specifications. This means that
the spatial XYZ data of different instruments can be combined
into a single data set. Our findings demonstrate that radiometric
calibration is instrument specific and needs to be carried out
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for each instrument individually before including reflectance
information in TLS analysis. We show that the residuals between
the calibrated reflectance panels and the apparent reflectance
measured by the instrument are greatest for highest reflectance
panels (residuals ranging from 0.058 to 0.312).

Index Terms—Data interoperability, radiometric calibration,
RIEGL VZ-400, terrestrial light detection and ranging (LiDAR).

I. INTRODUCTION

ORESTS account for approximately 31% of the land

surface on the earth, covering a total area of approxi-
mately 4 billion hectares [1]. These forest ecosystems play
vital productive, recreational, climatological, and ecological
roles. Precise and accurate data about forest structure and
function are needed to keep these roles balanced [2]. Decisions
made by policy makers or natural resource managers require
input data that are not linked with the spatial scales covered
by conventional forest inventory methods. Remote sensing,
in particular from satellite and airborne sensors, can obtain
data over large or inaccessible forested areas. Such data
are seen as one of the key ways to provide quantitative
information on forests, particularly in developing countries [3].
A critical issue in using remote sensing data of any sort is
interoperability, i.e., being able to combine observations from
multiple sensors in a consistent way. This requires accurate
characterization of the instrument’s radiometric and geometric
performance, ideally via cross calibration.

Light detection and ranging (LiDAR) is an active remote
sensing method to assess forest structure directly by trans-
mitting laser energy and analyzing the reflected energy as
a function of time. Airborne LiDAR has been used in for-
est inventories since the 1980s [4], [5]. Terrestrial LiDAR
has been used for finer scale forest measurements since the
late 1990s, but uptake for operational forest monitoring has
been slower [6]. Terrestrial LiDAR, also called terrestrial laser
scanning (TLS), is a ground-based method that can measure
the 3-D distribution of plant constituents to centimeter or even
millimeter precision and accuracy at plot-level scales. There
are two general modeling approaches for extracting forest
attributes from TLS data: gap probability-based methods
and geometric modeling methods [6]. Several studies in the
last decade have demonstrated the use of TLS as a rapid
and robust measurement tool for forest monitoring [7]-[13].
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TABLE I

OVERVIEW OF THE RIEGL VZ-400 LASER SCANNERS USED IN THE
EXPERIMENTS (RECORDED BEFORE RADIOMETRIC CALIBRATION)

Owner | Year manufactured | Time power on | Time laser on
RSC! 2012 2816 hrs 176 hrs
UCL? 2014 179 hrs 33 hrs
WUR? 2010 1564 hrs 186 hrs

! Queensland Government & University of Queensland, Australia
2 University College London, United Kingdom
3 Wageningen University, The Netherlands

The availability of TLS instruments is expected to increase
over the next years, offering new opportunities such as revis-
iting plots more frequently, acquiring more plots for the
same investment, scanning larger areas [14], or providing
more accurate comparisons of similar forest types in different
biomes. However, the already increasing variety of instruments
with different designs and capabilities means that data and
instrument interoperability is a challenge that will need to
be overcome to make the best use of TLS data from various
sources.

In this paper, we intercompare the radiometric calibra-
tion of three TLS instruments. The instruments we compare
here are the same make and model, the RIEGL VZ-400;
however, the intercomparison approach we present is more
generally applicable. The previous study [15] comparing the
performance of different commercial instruments for forest
monitoring suggested that at the time of writing, the RIEGL
VZ-series offers the highest quality data for monitoring vege-
tation structure due to its multiple return output. We compare
the range accuracy of the individual scanners and evaluate
the manufacturer’s radiometric calibration of the uncalibrated
return intensities [16]. This work gives some insight into the
potential for large-scale TLS mapping (>5-10 ha) using multi-
ple instruments and their data interoperability. The calibrated
intensity values allow us to relate these uncalibrated intensities
to quantitative properties, namely, the reflectance of the target
materials.

II. MATERIAL AND METHODS
A. TLS Instruments

In this paper, we compare three RIEGL VZ-400 terrestrial
laser scanners (RIEGL Laser Measurement Systems GmbH,
Horn, Austria). The individual scanner information prior to the
comparison experiment is summarized in Table I, illustrating
their different manufacturing dates and time in use.

The VZ-400 is a time-of-flight waveform recording scanner
and has a range (R) up to 350 m. The arrival time of the
return echo (#;) is used to calculate the range of individual
targets [17]

0
&=§xm—w) (1)

where v, is the group velocity speed of light (about
3x10% m/s) and tref is the timestamp of laser pulse emission.
vg is defined as co/ng, where co is the speed of light in
vacuum and the factor ng addresses the group velocity index of
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refraction, which is influenced by air temperature, air pressure,
and humidity [18]. All RIEGL instruments are calibrated
at well-defined atmospheric conditions at the manufacturer’s
facilities, and a detailed description of atmospheric parameter
effects on v, is given in [18]. The evaluation of atmospheric
effects on v, is outside the scope of this paper, but the
influence is expected to be minimal at the relatively short range
values recorded in forests [19].

The line scanning mechanism uses a rotating multifacet
polygonal mirror, which leads to fully linear, unidirectional,
and parallel scan lines. A collimated beam is used [20] and the
beam divergence is nominally 0.35 mrad. The scanner operates
at a wavelength of 1550 nm (near infrared) [21]. The RIEGL
VZ-400 scanner measures up to four returns per emitted pulse,
with returns being derived from onboard waveform processing.
The advantage of having multiple returns in vegetation studies
has been discussed in [11] and [22]. These studies revealed a
weaker response at greater canopy height from single return
instruments, concluding that multiple returns will lead to an
improved vertical sampling of vegetation. The onboard wave-
form processing of the RIEGL VZ-400 instrument allows for
echo digitization: the system samples signals every 2 ns and
converts them into a digital representation before target detec-
tion. This is an advantage compared with analog discrete return
systems, which have to accomplish target detection in real
time using analog electronics. The latter can be problematic
when return energy from different targets overlaps and ranging
errors occur for second and higher order returns [20]. The
RIEGL VZ-400 only records samples (i.e., sampling blocks)
of the returned waveform and [20] refers to the VZ-400 data
as “tightly coupled echo signal samples.”

RIEGL VZ-400 instruments provide range, scan angles,
calibrated amplitude, apparent reflectance, and pulse deviation
for each triggered return. The calibrated amplitude is pro-
portional to a fixed device-specific echo signal power level
(e.g., the detection limit of the device). The calibrated ampli-
tude for each measurement is Agg

Pecho

Agg = 10 x log < PoL ) 2)
Here, Pecpo is the optical input power for a specific measure-
ment and Ppp, is the minimum detectable input power [16].
RIEGL performs amplitude calibration by varying the Pecho
over its dynamic range using different calibration targets and
storing the device’s internal uncalibrated amplitude. Agp is
range dependent, and therefore, the apparent reflectance papp is
a more useful measure when combining scan data from
different instruments or scan locations. p,pp is defined as the
reflectance of a diffuse Lambertian target filling the laser
beam that would return the same amount of intensity as
the actual target at the same distance [8]. RIEGL derives
Papp,dB values from subtracting the reference-range-dependent
AgB,ref (R) from the target’s actual Agg. The reference is the
received reflectance from a nearly 100% reflective extended
Lambertian target orthogonal to the direction of the laser beam.
The peak Agp of the VZ-400 is observed around 7 m, and
the laser range 1/R? law is applicable to Agp from distances
further than 20 m [16].
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Fig. 1. Density plot illustrating a typical dynamic range of deviation and

papp Values recorded in a deciduous woodland, Wytham Woods, U.K. [14].
Data were captured with the UCL RIEGL VZ-400 in 2015 from the same
scan location in (a) summer (leaf-on) and (b) winter (leaf-off).

Gaussian decomposition, the reconstruction of a waveform
pulse using one or more Gaussian pulses is common practice
in LiDAR analysis [23]. The problem with this method is
that the Gaussian model generally does not fit the entire
dynamic range of the system equally well and this can lead
to a ranging error of several millimetres, especially for high-
amplitude signals. Therefore, the RIEGL VZ-400 onboard
waveform processing uses stored device-specific pulse shapes
that cover the entire dynamic behavior of the system and a 2-D
optimization algorithm [16]. The comparison of the recorded
waveform with the stored reference shapes is quantified by the
pulse deviation (0) and this value increases for overlapping
pulses or slanted targets

N
5= lsi — pil 3)
i=1

where N is the total number of digitized samples s; that
are matched to the corresponding reference pulse, which has
interpolated p; values for the phase and amplitude given by the
optimization algorithm. Fig. 1 gives an example of a typical
deviation and p,pp dynamic range of a deciduous woodland in
the leaf-on (summer) and leaf-off (winter) conditions.

B. Range Accuracy

RIEGL defines accuracy as the degree of conformity of
a measured quantity to its actual (true) value [21]. Range
accuracy is derived from the calibration certificates provided
by RIEGL for a number of different ranges and targets. These
certificates show nominal and measured range values to fixed
targets. The nominal values are measured at certain time
intervals using a total station. The nominal values on the
certificates are slightly different between different instruments.
This is because the calibration measurements are done in a
fixed setup that allows multiple scanners to be mounted at
once. Therefore, depending on which position the scanner
was mounted, the nominal values on the calibration certificate
can differ slightly. The nominal values of the targets in the
fixed setup are measured at certain time intervals with a total
station (RIEGL, personal communication).

C. Experimental Setup for Evaluating
the Radiometric Calibration

Radiometric calibration is described as the process of deriv-
ing physically well-defined radiometric quantities from an
instrument’s raw measurements [24]. A radiometric calibration
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for terrestrial laser scanners is typically based on a set of
measurements using multiple calibrated reflectance panels at
different distances [25], [26], and Hartzell et al. [27] used this
approach to generate an empirical radiometric VZ-400 cali-
bration model.

We wused five different SphereOptics (SphereOptics
GmbH, Germany) reflectance panels of dimensions
20 cm x 20 cm with the nominal reflectance values 0.05, 0.2,
0.5, 0.9, and 0.95. The calibration report of each panel
(dated March 10, 2015) shows that the total diffuse
hemispherical reflectances of these panels are 0.047, 0.242,
0.418, 0.902, and 0.947 at wavelength 1550 nm, calibrated
traceable to a Physikalisch-Technische Bundesanstalt reference
standard with a total calibration uncertainty of =+0.35%
(95% confidence).

The same reflectance panels were scanned in May 2015
(UCL, WUR, London, U.K.) and August 2015 (RSC,
Brisbane, Australia). All experiments were conducted indoors
and all panels were scanned with a 0.04° angular resolu-
tion. The scanners and panels were mounted on a tripod
and leveled using a spirit level. Each panel was scanned
from six nominal distances: 1 m, 2 m, 5 m, 10 m, 20 m,
and 30 m (RSC) or 37.5 m (UCL, WUR). The nominal
distances were measured using a measurement tape, but the
VZ-400 range recordings are used in the further analysis. The
RIEGL VZ-400 supported minimum range is 1.5 m [21], but
it is possible to reduce this to 0.5 m. The maximum range of
this experiment is sufficient for application in a range of forest
types as the bulk of the LiDAR returns in these ecosystems are
generally close to the scanner. The previous work [11] demon-
strated that for five different forest types in Australia (ranging
from woodland to rainforest), the 90th percentile of the return
frequency distribution ranges between 9 and 46 m.

To compare the instrument’s apparent reflectance
measurements with the calibrated panel reflectance values,
we converted the papp,dp readings from the scanner into a
bidirectional reflectance factor papp using

Papp = 10Papp.aB/ 10 4)

III. RESULTS AND DISCUSSION

The number of returns per panel varied from more than
69000 at a 1-m distance (Fig. 2) to only 21 to 33 returns
for the panels at 37.5 m. The angular range was largest for
the panel at 1 m (approximately 10°-11°, which equates to a
maximum angle of incidence of approximately 5°-5.5°) and
reduced with increasing panel-instrument distance (e.g., less
than 0.5° at 20 m). The attributes of returned laser pulses
are determined by the distance, beam divergence, and angle
of incidence. A nonperpendicular angle of incidence leads to
the broadening of the return pulse. Pfennigbauer et al. [28]
demonstrated the weak effect of pulse broadening for the
RIEGL VZ-instrument, mainly due to the small beam diver-
gence of the instrument (nominally 0.35 mrad). They stated
that it was questionable whether an increase in pulse width
was measurable for incidence angles below 5°. These findings
were confirmed in [29], which reported no real differences
for incidence angles smaller than 20° at distances smaller
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Fig. 2. Examples of the distribution of VZ-400 papp and deviation values on the 0.047 and 0.947 reflectance panels for the distances of 1, 2, 10, and 20 m.
A¢ and A® give the true angular azimuth and zenith angle intervals, respectively, that cover the panel.

than 32 m. Therefore, we average point attributes per panel
similar to [25] and [26]. Fig. 2 shows the distribution of
the returns on the 0.047 and 0.947 reflectance panels for the
distances of 1, 2, 10, and 20 m and their corresponding papp
and deviation values. The residuals around the mean value are
shown in Fig. 3. All panels show a homogeneous distribution
of pulse attributes across the panel. Fig. 3(a) suggests that the
lowest reflectance panel (0.047) at close range has a weak
spatial relation of the pupp residuals. However, the panel at
2 m and all panels at further distances do not show similar
patterns. We suggest that this is due to the low signal-to-noise
at short distances and this might be part of the reason why the
RIEGL VZ-400 supported minimum range is 1.5 m [21].

A. Raw Waveform Analysis

Fig. 4(a) shows typical raw waveforms recorded by the
VZ-400. Similar to [27], an offset between the peak in

waveform intensity and the registered range is observed. This
range offset has previously been observed in the full waveform
airborne RIEGL LMS-Q680I sensor and was attributed to the
transimpedance amplifier that is used in the receiver electron-
ics to exhibit sufficient nonlinearity to introduce a significant
delay that depends on the recorded intensity samples [30].
RIEGL [17] confirms that this is also the case for the VZ-400
sensor and a calibration table (proprietary information) is used
to compensate for the range deviation.

Stronger returns, i.e., higher panel reflectance, cause the
typical VZ-400 long trailing edge to be more prominent than
when the return energy is lower [Fig. 4(a)] due to higher
energy returns causing nonlinearity in the detector electronics.
This is observed for all three instruments and consistent
with [27] and [23].

The waveforms clearly show the different dynamic ranges of
the digitizer intensity values of the three scanners. For similar
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Examples of the distribution of VZ-400 papp and deviation residuals (around the mean value) on the 0.047 and 0.947 reflectance panels for the

distances of 1, 2, 10, and 20 m. A¢ and A® give the true angular azimuth and zenith angle intervals, respectively, that cover the panel.

measurements (i.e., the same reflectance panel and distance),
the RSC instrument records the highest absolute intensity
samples. The differences in waveform length [Fig. 4(a)] are
due to the constant development of the production procedure
and the manufacturer has reduced the storage time of the
waveform in newer (see Table I) instruments (RIEGL, personal
communication). The relationship between maximum intensity
sample (i.e., the waveform peak) and the panel reflectance is
nonlinear. Fig. 4(b) shows that all instruments have the highest
maximum intensity sample at 10 m for all the spectral panels
and the lowest maximum intensity sample for the furthest
panel distance. These observations agree with [16] evaluating
this instrument and the nonlinear characteristics for distances
up to about 20 m are due to vignetting or central obscuration.

B. Range Accuracy

Table II summarizes 20 different range accuracy assess-
ments ranging from approximately 11.5 to 138 m (eight for

the RSC and WUR instrument and four for the UCL scanner;
RIEGL provides new calibration certificates after every
service). All the differences between the instrument and nom-
inal ranges lie within the manufacturer’s specifications, which
are the key for data interoperability. Most of the current
studies and applications in TLS that use calibrated commercial
instruments use only the spatial component of the data [6]. For
example, vertical plant profiles describe the plant area volume
density as a function of canopy height through estimates
of the vertically resolved gap probability [11], [12], [31].
Other applications try to explicitly model the 3-D structure
of vegetation, using the point clouds as input [13], [32]-
[34]. These findings essentially mean that the spatial point
cloud data (i.e., the XYZ data) of multiple VZ-400 instru-
ments can be combined and used in one single data set.
Using multiple instruments would significantly reduce the
time spent in the field if using the same fieldwork
protocol, allow larger areas to be scanned within the
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Fig. 4. RIEGL VZ-400 waveforms. (a) Examples of all raw waveforms for three different reflectance panels at a 10-m range. The vertical red line indicates
the range registered by the instrument. (b) Overview of the maximum intensity sample (i.e., peak waveform) for all panels at all distances.

TABLE I

RANGE ACCURACY ASSESSMENTFOR DIFFERENT TARGET TYPES: RANGE
DIFFERENCE BETWEEN THE MEASURED RANGE WITH THE RIEGL
VZ-400 AND THE NOMINAL REFERENCE VALUES

Target Scanner | Nominal range [m] | A range'[m] | Specified accuracy*[m]
Reflector foil WUR 13.771 0.002 +0.005
(diameter 5S0mm) ‘WUR 11.562 -0.002 +0.005
RSC 11.760 0.000 +0.005
RSC 11.563 0.001 +0.005
UCL 11.812 0.002 +0.005
Reflector foil WUR 136.909 0.001 +0.007
(diameter 150mm) | WUR 137.276 -0.004 +0.007
RSC 138.055 0.000 +0.007
RSC 137.274 0.000 +0.007
ucCL 136.905 0.003 +0.007
Target plate WUR 131.330 0.001 +0.006
(p > 10%) WUR 131.324 -0.002 +0.006
RSC 131.330 -0.003 +0.006
RSC 102.320 -0.002 +0.006
ucL 131.324 -0.001 +0.006
Target plate WUR 129.260 0.001 +0.006
(p = 80%) WUR 129.257 -0.001 +0.006
RSC 129.260 -0.002 +0.006
RSC 102.270 -0.002 +0.006
ucL 129.257 0.001 +0.006

1" A range = VZ-400 instrument value - nominal value
2 Manufacturer’s accuracy specifications

same time frame or increase the number of scan locations
within a plot.

C. Evaluation of the Radiometric Calibration

Fig. 5 compares the VZ-400 mean p,pp estimates with the
reflectance values from the reference panels. Fig. 5 shows that
papp estimates for higher reflectance targets generally have

greater absolute bias and uncertainty. This is most prominent
for the UCL scanner for the 0.902 and 0.947 reflectance panels
at 20 m, with the average overestimations of 0.254 and 0.312,
respectively (compared with 0.093 and 0.069 for the WUR
instrument and 0.074 and 0.058 for the RSC instrument).
In this scenario, the papp values are larger than 1, which
generally indicates a target reflecting with a higher reflectivity
than that of a Lambertian target [16]. The larger uncertainty
in RIEGL pgpp for higher reflectance targets is possibly
caused by the log scale (dB) recording of intensity data
and the user should be extra careful about high reflectance
values when carrying out a radiometric calibration. However,
the majority of p,pp values measured in the field (see Fig. 1)
are generally below 0.4 with a peak around approximately
0.05-0.1 in leaf-off conditions and a bimodal distribution in
leaf-on conditions (peaks approximately around 0.05 and 0.2).
The average absolute p,pp residual over the 30 different
scenarios was 0.074 for the UCL instrument, 0.05 for the
WUR instrument, and 0.049 for the RSC instrument. The
maximum and minimum absolute p,pp residuals were 0.312
(0.947 reflectance panel at 20 m) and 0.001 (0.047 reflectance
panel at 2 m) for the UCL scanner, 0.164 (0.947 reflectance
panel at 5 m) and 0.001 (0.418 reflectance panel at 5 m) for
the WUR scanner, and 0.132 (0.947 reflectance panel at 10 m)
and 0 (0.947 reflectance panel at 30 m) for the RSC scanner.

Although many TLS applications currently use XYZ point
cloud data only (see Section III-B), inclusion of reflectance
information or other attributes derived from raw waveforms
may improve existing methods. The vertical plant profiles
generated in [11] and [12] use the multiple return VZ-400 data
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Fig. 5. Comparison of spectral reflectance from the reference panel with papp values measured by the VZ-400 for different ranges. The vertical error bars

indicate the 95% confidence interval around the mean papp of the panel.

to estimate gap probability. Their method assumes that for
a single outgoing pulse, each return equates to 1/n of the
intercepted beam area, where n is the total number of returns
for that outgoing pulse. The use of additional p,p, informa-
tion may further improve the estimation of intercepted beam
area for each return [35]. Separating woody and nonwoody
components in the point cloud is important to separate plant
area profiles into leaf area profiles and wood area profiles.
The distinct wood and leaf area profiles will provide more
valuable information about ecosystem dynamics than the
integrated plant area profiles. A separation of the returns is
also important for geometric modeling, i.e., extracting the
size and shape of tree components from point clouds. Above-
ground biomass (AGB) is an important indicator for carbon
storage and sequestration of forests and their productivity [36].
Nondestructive estimates of AGB using TLS data show sig-
nificant differences from AGB estimates using traditional
allometric equations [13]. The TLS method could be further
improved if leafy and woody returns could be reliably sepa-
rated, because leaves generally do not resemble the geometric
structure of a cylinder. It is important to note that the RIEGL
conversion of the calibrated amplitude Agg (2) into pupp
applies only to targets that intercept the laser pulse completely
(i.e., single returns) [16]. This complicates the use of intensity
for multiple return LiDAR systems, because the intercepted
laser energy from previous returns has to be accounted for.
The results in this paper indicate that the three VZ-400
sensors show different responses to the same reference panel
at the same distance. This suggests that radiometric calibra-
tion models of one instrument cannot be used for another
instrument. For example, Fig. 6 shows the spectral reflectance
for bark and leaf in a deciduous woodland in the U.K.
At 1550 nm, the wavelengths of the RIEGL VZ-400 with
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Fig. 6.  Leaf and bark spectral reflectances of a deciduous woodland,

Wytham Woods, U.K. The solid line indicates the weighted average spectral
reflectance and the area around the mean represents the 95% coverage
interval. The weights are allocated based on the number of trees per species,
with Acer pseudoplatanus (55%), Fraxinus excelsior (20.6%), and Corylus
avellana (14.3%) being the dominating species. Data were captured with an
ASD spectrometer in the summer of 2015. The vertical blue line represents
the wavelength of the RIEGL VZ-400 (1550 nm).

the 95% coverage interval of bark and leaf reflectance are
0.391-0.546 and 0.298-0.344, respectively. This suggests that
for this particular forest, only a maximum calibration uncer-
tainty of 4.7% absolute reflectance is acceptable in applica-
tions that benefit from the separation between woody and
nonwoody components in the LiDAR data. However, using
intensity information from a single wavelength scanner limits
this separation because the received intensity is a function of
the spectral reflectance properties of the canopy constituents,
the area of the beam that is intercepted, and the local angle
of incidence [37]. The dual-wavelength scanners DWEL and
SALCA try to overcome the limitations of a single-wavelength
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scanner by taking the spectral ratio of the two laser wave-
lengths at approximately 1064 and 1550 nm [37], [38].

IV. CONCLUSION

One of the challenges of interoperability is the commercial
confidentiality of instrument internal performance properties,
making interoperability difficult. This implies that it is gener-
ally up to the user to carry out calibration measurements. Our
findings demonstrated that the XYZ data of VZ-400 sensors
is intercomparable and we suggest that data from multiple
instruments can be merged into a single data set. This enables
us to use TLS in large-scale (>5-10 ha) mapping and merge
data from different instruments together. An evaluation of the
radiometric calibration of three same make and model sensors
showed that radiometric calibrations and therefore p,pp are
instrument specific and that absolute bias is greater for high
reflectance returns. We therefore recommend a radiometric
calibration of each instrument before including reflectance
information in new or existing methods. To extend this paper
to intercomparing instruments with different wavelengths and
specifications, we would need to understand how the observed
bias (and variance) might propagate through to derived
quantities using a combination of measurement [39] and
simulation [23].

3-D information plays an important role in the calibration
and validation of many airborne and spaceborne sensors. This
is particularly true of sensors that measure canopy structure
near directly. A new large footprint spaceborne instrument,
Global Ecosystem Dynamics Investigation (GEDI) LiDAR,
is currently being developed and was scheduled for launch
in 2018 [40]. The European Space Agency BIOMASS mission
is expected to launch in 2020 and this spaceborne P-band
RADAR system will acquire data at a spatial resolution
of 200 m [41]. The combination of explicit 3-D forest stand
reconstructions based on TLS data and radiative transfer
models will provide a framework for testing the structural
metrics derived from planned missions such as GEDI and
BIOMASS.
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