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Accurate Object Localization in Remote Sensing
Images Based on Convolutional Neural Networks

Yang Long, Yiping Gong, Zhifeng Xiao, and Qing Liu

Abstract— In this paper, we focus on tackling the problem
of automatic accurate localization of detected objects in high-
resolution remote sensing images. The two major problems
for object localization in remote sensing images caused by the
complex context information such images contain are achieving
generalizability of the features used to describe objects and
achieving accurate object locations. To address these challenges,
we propose a new object localization framework, which can
be divided into three processes: region proposal, classification,
and accurate object localization process. First, a region proposal
method is used to generate candidate regions with the aim
of detecting all objects of interest within these images. Then,
generic image features from a local image corresponding to
each region proposal are extracted by a combination model of
2-D reduction convolutional neural networks (CNNs). Finally, to
improve the location accuracy, we propose an unsupervised score-
based bounding box regression (USB-BBR) algorithm, combined
with a nonmaximum suppression algorithm to optimize the
bounding boxes of regions that detected as objects. Experiments
show that the dimension-reduction model performs better than
the retrained and fine-tuned models and the detection precision of
the combined CNN model is much higher than that of any single
model. Also our proposed USB-BBR algorithm can more accu-
rately locate objects within an image. Compared with traditional
features extraction methods, such as elliptic Fourier transform-
based histogram of oriented gradients and local binary pattern
histogram Fourier, our proposed localization framework shows
robustness when dealing with different complex backgrounds.

Index Terms— Convolutional neural network (CNN), object
localization, remote sensing images, unsupervised score-based
bounding box regression (USB-BBR).

I. INTRODUCTION

AS SENSOR technology and aerospace remote sensing
technology have improved, the quality and quantity of

remote sensing images have also undergone great improve-
ment. Researchers can now conveniently acquire remote sens-
ing images with high spatial or spectral resolutions. These
remote sensing images improve researchers’ chances of under-
standing the image content, especially when analyzing their
semantic meaning (the high-level features in remote sensing
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images). However, while semantic analysis is a difficult and
important part of remote sensing analysis, object detection is
the basic task required for semantic analysis. Consequently, the
problem of object detection has attracted considerable research
attention and has been extensively studied. The difference
between object detection and object localization is subtle.
Object detection focuses on detecting the presence of entire
objects. But object localization has higher requirements than
object detection does. Object localization requires that objects
be located accurately. In this paper, we aim to propose an
accurate object localization framework for remote sensing
images.

Currently, there is small demand for accurate localization
in the remote sensing field. The majority of studies focuses
on detection rather than localization (the two processes have
been confused by some people). Object detection in remote
sensing images faces far more challenges because of more
complex background information they contain than that of
natural images. Remote sensing images offer information
about the texture, shape, and structure of ground objects, and
they can be used for precise object identification. However, in
addition to providing ample information for object detection,
they also present information redundancy problems. Moreover,
because of noise interference, weather, illumination intensity,
and other factors, object detection in remote sensing images
is a troublesome issue.

In this paper, we focus on accurate localization of detected
objects rather than simple object detection. Based on this
aspect, we use object localization to summarize this paper.
In this paper, we tackle the feature extraction problem for
object detection in remote sensing images using convolu-
tional neural network (CNN) models. CNN relies on the
specific layer structure to learn the essential features of
input images, thus avoiding the effort of designing a feature
extraction strategy. In addition, CNN models have a wide
range of application. CNNs with deeper layer structure tend
to have better learning abilities. In this paper, the feature
extraction strategy is based on CNN models with a deep
layer that can describe objects in remote sensing images.
Finally, we propose a new object localization framework for
remote sensing images that can detect and locate objects
accurately.

The rest of this paper is organized as follows. Section II
reviews related works on object detection and applications of
CNN in remote sensing images. Section III presents the details
of the proposed object localization framework. Section IV
discusses the object detection experiments for the proposed
object localization framework, and Section V analyzes the
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detection performance of the proposed object localization
framework. Finally, Section VI concludes this paper.

II. RELATED WORK

Object detection in remote sensing images has been widely
researched in recent years. Many researchers have used local
features to extract characteristics, such as scale invariant
feature transform (SIFT) [1], histogram of oriented gradi-
ents (HOG) [2], and Saliency [3], [4]. These local fea-
tures have a certain invariance, but this invariant ability
needs to be enhanced when dealing with the problems
of various object orientations in remote sensing images.
Cheng et al. [5] introduced a rotation-invariant layer on the
basis of the existing CNN architectures to achieve rotation
invariant and the proposed rotation-invariant CNN model
achieves significantly performance. Xiao et al. [6] used the
elliptic Fourier transform (EFT) to improve the invariance
of HOG features. While local features are the low-level
features of images, object detection is a part of the high-
level semantic analysis, which is more closely aligned with
actually understanding image content. Image understanding is
the ultimate goal pursued by all image processing researchers
constantly pursue. Cheng and Han [7] provided a review of the
recent progress in object detection in remote sensing images
and proposed two promising research directions, namely, deep
learning-based feature representation and weakly supervised
learning-based geospatial object detection.

As image processing theory has developed, many studies
have focused on the mid-level features of remote sensing
images. The most popular mid-level feature is the part-based
model [8]–[12]. The main idea behind part-based models
is that objects consist of several visually important parts;
therefore, the object detection task can be decomposed into
processes that detect these parts. To acquire the semantic
information of images, some studies have applied semantic
models to extract semantic information from remote sensing
images [13]–[15].

Recently, deep learning models have received increased
attention. The most popular deep learning methods are the
CNN models. CNN does not need handcrafted features, and
it requires fewer parameters than other networks, because it
shares weights for the same filter. A CNN model can learn the
essential features of input images based on its specific network
structure. CNN has been widely used in object classification,
object detection, speech recognition, and so on. Zhong [16]
proposes a large patch CNN for the scene classification of
high spatial resolution imagery, which contains a large patch
sampling layer used to generate hundreds of possible scene
patches for the feature learning.

Many theoretical studies concerning CNN have been
made [17]–[29]. As computer technology has advanced, deeper
and more efficient CNN models have been proposed. AlexNet,
developed by Krizhevsky et al. [30], was a ground breaking
CNN architecture and a winning model in the 2012 ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC-2012).
GoogleNet [31] was a winner of ILSVRC-2014; the main
hallmark of this architecture was its improved utilization of
the computing resources inside the network. This improve-

ment was achieved through a carefully crafted design that
allowed the depth and width of the network to increase
while keeping the computational demands constant. The VGG
models proposed by Simonyan and Zisserman [32] were
used to investigate the relationship between the depth of a
convolutional network and its accuracy in a large-scale image
recognition setting. SPP-net [33] could generate a fixed-length
representation regardless of the size or scale of the image,
thus eliminating the requirement for a fixed-size input image.
Resnet [34] was a winner of ILSVRC-2015 and COCO-2015;
the layers were reformulated as learning residual functions
with reference to the layer inputs, instead of learning unref-
erenced functions to ease the training of networks that are
substantially deeper than those used previously.

In the field of remote sensing images, many object detection
experiments use only trained CNN models on large data sets
for pretraining [35]–[39]. Wu et al. [40] altered the typical
CNN proposed by Lecun et al. [41] to create a model used
for aircraft detection. He obtained the candidate object regions
using the BING technique. Zhang et al. [38] used trained CNN
models to extract surrounding features that were combined
with local features (HOG) to describe oil tanks and then
applied gradient orientation to select candidate regions from
satellite images. Qiling Jiang et al. [42] used a graph-based
superpixel segmentation to extract a set of image patches and
then trained a CNN to classify these patches into vehicles and
nonvehicles. Zhu et al. [43] used CNN features from combined
layers to perform orientation-robust aerial object detection.
Ding et al. [44] investigated the capabilities of a CNN model
combined with data augmentation operations in SAR target
recognition. Sevo and Avramovic [45] proposed a novel
two-stage approach for CNN training and implemented a
network-based method for automatic content-based object
detection on high-resolution aerial images. Salberg [37]
extracted features from a pretrained deep CNN and used it for
automatic detection of seals in aerial remote sensing images.
Zhang et al. [46] constructed an iterative weakly supervised
learning framework to automatically mine and augment the
training data set from the original image and combined the
candidate region proposal network and a localization network
to extract the proposals and locate aircraft in large-scale very
high resolution (VHR) images.

In this paper, we use a suitable feature extractor based on
the CNN model to extract the essential features of objects
from remote sensing images. The method used to obtain
the candidate object regions is crucial for object detection.
The common sliding window method performs an exhaustive
search, but it is time-consuming. Moreover, the window can
have only one size at a time; thus, the location precision of
the slide window technique is not high. Therefore, we propose
a new object localization framework to address the location
problem.

III. PROPOSED FRAMEWORK

The proposed object localization framework follows a
pipeline approach. First, when dealing with a test image,
we use a selective search algorithm to generate category-
independent possible regions. Then, all these candidate regions
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Fig. 1. Proposed object localization framework. (a) Test image. (b) Selective search method produces most of the candidate object regions from the test
image and adds some candidate regions extracted from low region density areas, where the selective search method generates few regions. (c) CNN is applied
to extract the features from these candidate regions. (d) Classification results of the regions. We used two approaches to obtain the classification results of
candidate regions: one is a single model strategy and the other is a model combination strategy that averages the outputs of two CNN models. (e) Classification
results of the candidate regions. (f) Final detection results after the accurate object localization process.

are sent to a combined model consists of 2-D reduction
CNNs. Class labels and classification scores for each candidate
region are an average output of two CNN models. Finally,
we perform an accurate object localization process to address
these classified regions. For accurate object localization, we
propose using the unsupervised score-based bounding box
regression (USB-BBR) method to improve box localization
precision after using the nonmaximum suppression (NMS).
In this section, we present our design for each procedure. The
proposed object localization framework is shown in Fig. 1.

A. Region Proposal
Traditionally, a sliding window technique has been used for

object detection; however, the sliding window technique is an
exhaustive search method and is computationally expensive.
Recently, Uijlings et al. [47] proposed a selective search
algorithm that produces object regions by taking the under-
lying image structure into account. The selective search algo-
rithm yields a completely class-independent set of locations.
It also generates fewer locations, which simplifies the problem
because the sample variability is lower. More importantly, it
frees up computational power, which can then be utilized for
more robust machine learning techniques and more powerful
appearance models.

Objects can occur at any scale within an image because of
the diverse means for acquiring images. Moreover, images at
the same scale may be different sizes. Therefore, we collect
images that share approximately the same image with the aim
of acquiring all the similar objects at one scale. Then, we can
apply the selective search algorithm to address the objects that
have different sizes within an image. Furthermore, the bound-
aries of some objects are less clear than the boundaries of
others. The selective search applies a diverse set of strategies
to deal with different size conditions, lighting conditions, and
other imaging cases. These strategies make the selective search
method stable, robust, and independent of the object class.

The quality of region proposals directly influences the
CNN detection result and the accuracy of object localiza-
tion. Consequently, we analyzed the influence of the region
proposals generated by selective search on our data set.
Hosang et al. [48] provided a deep analysis concerning ten
different object-proposal methods and found that the recall
of the selective search method is approximately 0.83 for
an intersection-of-union (IoU) of 0.5 on the ImageNet 2013

validation set when 1000 proposals exist per image. The
experiments also indicate that the greater the number of
candidates, the higher the recall will be. While the recall value
may be different for remote sending images, in any image
classification task, it is a key factor that influences both the
CNN detection result and the accuracy of object localization.

B. Feature Extraction
A CNN model consists of convolution layers, pooling

layers, and full-connection layers. A convolution layer has
several filters and generates different feature maps using these
filters on local receptive fields in the maps of the previous
layer or input. The filter size can be n ×n (where n is smaller
than the input size). Weights are shared between convolution
layers. The pooling layer uses filters to generalize the brief
representation of the convolution layer to reduce the number of
parameters. There are several pooling types; these include max
pooling and average pooling. The pooling operation provides
a form of translation invariance. The feature becomes more
complex and global as the layers become deeper.

In this paper, the CNN models chosen to extract features are
AlexNet and GoogleNet due to their superior performance.
To retain more information for backpropagation, for both
the AlexNet and GoogleNet networks, we add a 64-D inner
product layer before the last inner-product layer. For AlexNet,
we reduce the dimension of the second full-connection layer
from 4096 to 64, and for GoogleNet, we add a 64-D layer
after the last convolutional layer. Moreover, the two CNNs
are combined to detect objects simultaneously and the result
of this combined CNN models is the averaged outputs of the
two CNN models.

To perform feature extraction, we first extract image patches
from the candidate regions generated by the region generation
process. Then, we normalize the image patches to 227 × 227
to fit the input dimensions of the CNN models and use them
as input to the CNN to extract features. The last layers of
the CNN models are softmax classification layers. For the
combined CNN model, we need to perform forward propa-
gations of the two CNN models. After forward propagation,
the two CNN models produce classification results of these
candidate regions. The regions will have class labels and class
scores after forward propagation. For examples, assume that
the candidate region is b and that the class label and classified
scores for the entire set of classes computed by model A are
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lA and sA , while the class label and classified scores for the
entire set of classes computed by model B are lB and sB .
The class score S of the model combination is the average of
sA and sB , while the class label L of the model combination
is the label according to the maximum of S.

C. Accurate Object Localization

To produce the optimum bounding box for locating the
object, we propose a two-stage object accurate localization
method: NMS and USB-BBR. The NMS method is widely
used to tackle the problem of the redundancy of the bounding
boxes, while the accurate localization issue has not been solved
yet, because it lacks the ability to perform an integrated
optimization of the remaining higher quality boxes. Our exper-
iments show that NMS retains extra boxes that are not accurate
for locating the object. In view of this situation, we propose the
USB-BBR method, which can optimizes the bounding boxes.

Given all the scored regions in an image, we apply a greedy
NMS (independently for each class) algorithm that rejects a
region when it has a larger IoU with a higher-scoring selected
region.

The NMS method is mainly used to eliminate region
overlap; however, it may result in several regions for one
object, and some regions may have little overlap with the
ground truth. The detection precision and recall will be
reduced in such cases. We want to use an optimal bounding
box to replace these regions to enhance the location preci-
sion of object detection. We use the USB-BBR method to
reduce the location errors. All the scored regions are allocated
into different groups; each group belongs to one object that
needs to be detected. For a set of scored candidate regions
B = {b1, b2, . . . , bn} where n is the total number of regions
in the set, the regions in B are first sorted by their area in
ascending order. The next step is to classify the regions of
B into m groups, where a group G = {G1, G2, . . . , Gm}.
The grouping begins with the first sorted region, computing
the overlap area ratio of the first sorted region to that from the
rest of B . If the overlap area ratio is greater than or equal to
a given threshold, the two regions are classified into the same
group; otherwise, only the first sorted region is classified into
the group. The group process completes when all the regions
in B have been computed.

Though this grouping process, each object that needs to be
detected may have a group of scored regions. Our goal is to
regress the regions of each group Gk , namely, to produce the
optimum bounding box for locating the object. We assume that
Ik = (xk, yk, wk , hk)

T is the regressed bounding box of Gk ,
where (xk, yk) is the center coordinate of Ik and (wk, hk) are
the width and height of Ik , respectively. Thus, the goal is
to obtain Ik . For bki ∈ Gk , Dki = (xki , yki , wki , hki )

T

corresponds to the i th scored region in Gk . Given
ci = Ik − Dki , we can obtain Ik by

L(Ik) = argmin
n∑

i=1

ui c
T
i ci (1)

where ui is the region score bki in Gk .

Algorithm 1 USB-BBR
Input: The full set of regions B = {b1, b2, . . . , bn}, a

threshold δ, where 0 < δ < 1, a max iteration, t , and
an iteration step s, where 0 < s < δ

1: Set: G = {b1, b2, . . . , bm} (m = n)
2: Set: R = {b1, b2, . . . , bm}
3: I = ∅
4: while t > 0 and δ > 0 do
5: sort the elements of G in ascending order by the corre-

sponding region areas of R
6: i = 0
7: while G �= ∅ do
8: i = i + 1
9: get the area a of r which is the first element of R

10: get the first element G
′

of G
11: G

′
i = G

′

12: remove G
′

from G
13: get L (the length of G)
14: for j = 1, 2, . . . , L do
15: get the overlap area overa between r j and r
16: if overa/a ≥ δ then
17: G

′
i = G

′
i

⋃
G j

18: remove G j from G
19: end if
20: end for
21: end while
22: m = i
23: G = {G1, G2, . . . , Gm} (G1 = G

′
1, G2 =

G
′
2, . . . , Gm = G

′
m)

24: update the elements of R according to G
25: t = t − 1
26: δ = δ − s
27: end while
28: obtain the final region grouping set G = {G1, G2, . . . , Gm}
29: for k = 1, 2, . . . , m do
30: Ik = argmin

∑l
i=1 ui cT

i ci (l is the length of Gk)
31: append Ik to I
32: end for
Output: I

The first iteration regression result of G is denoted as
R = {r1, r2, . . . , rm}, computed by (1). The regions in R may
belong to the same object, so we use an iterative process to
update G. Each iteration uses a descending threshold and the
same grouping method to update G by comparing the overlap
area ratio of regions in R. Then, R is computed from the
updated G. The grouping results occur in the next update
iteration, and the iteration process completes when it reaches
a specified maximum number of iterations or the threshold is
less than or equal to 0. The I is computed by the final grouping
set, G. The threshold for the overlap area ratio decreases as the
iteration time increases. The USB-BBR algorithm is solved by
the least-squares method. Algorithm 1 describes the process
of USB-BBR.

Fig. 2 shows the USB-BBR process. After sorting the
classified regions in B , the grouping process begins moving
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Fig. 2. Illustration of USB-BBR.

from the first sorted region to the last one. All regions are
divided into three groups by computing their overlap area ratio.
Then, the regression optimal region of each group is computed.
The regression result of B is R. The regions in R may still
belong to the same object, so we use an iterative process
to update G and R. The final regression result is computed
when the iterative update process completes. Here, I is the
regression result computed by the final grouping set.

IV. EXPERIMENTS AND RESULTS

A. Data Set

Because of the lack of public data sets intended for object
detection in remote sensing images, we collected 2326 images
downloaded from Google Earth and Tianditu [49]. We labeled
the objects in these images with four categories: oil tank,
aircraft, overpass, and playground. The image resolution for
each class is listed in Table I. The sensors involved are
panchromatic and multispectral due to the various sources of
the image data sets. In this way, the diversity of the data set
poses comprehensive performance challenges.

Using a CNN is different from using other machine learning
methods; CNNs need ample training samples to obtain good
learning abilities. In addition to the size of the training

TABLE I

IMAGE RESOLUTION OF EACH CLASS

TABLE II

DETAILS OF THE TRANSFORMS OF POSITIVE TRAINING SAMPLES

data set, the quality of the training data set is also critical.
A poor-quality training data set—even one containing large
amounts of data—also impacts the learning ability of CNNs.
To address the object diversity in remote sensing images and
the difficult in collecting data for some object classes, we
augmented all the positive samples by translation, scale, and
rotation transforms. The details of these transforms are listed
in Table II. The rotation transform typically performs 90°,
180°, and 270° rotation; however, when there are few instances
of a class, the angle of rotation deceases to increase the number
of rotations, enlarging the quantity in the data set.

The data set includes two parts: positive samples and
negative samples. The collection of positive samples also has
two parts. First, we randomly selected 40% of the ground-
truth boxes of the collected images as the positive samples
for each class. For oil tanks and aircrafts, the translation and
scale transform were used to enlarge the number of samples.
For overpasses and playgrounds, in addition to the first two
transforms, the rotation transform was used to perform data
augmentation.

As the second data source for positive samples, we applied
the selective search method to produce candidate regions from
each image and then computed the IoU between each region
and the ground-truth box. When the IoU was greater than
or equal to 0.5 compared with a ground-truth region chosen
during the first positive sample collection process, the region
became a positive sample; otherwise, when the IoU was less
than 0.3 with the ground-truth region, the region became a
negative sample. This second data source for positive samples
was used to enhance the adaptability of the CNN models.
Because we used the selective search to generate almost all the
candidate regions, these regions do not necessarily completely
surround the entire object. To maintain the consistency of
the training process and detection process, we added positive
samples produced by selective search to the data set. The
number of regions from this second data source of positive
samples is large; however, there were fewer overpasses than
examples of the other classes, which is why the overpass
samples required the rotation transform for data augmentation.
The negative samples were also obtained through the selective
search algorithm by computing the IoU for each class.

The entire data set was divided into a training data set and
a validation data set at a ratio of 5:1 (training to validation,
respectively). The number of positive samples of each class in
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TABLE III

STATISTICS OF THE TRAINING AND VALIDATION DATA SETS

Fig. 3. Examples from the training data set. (a) Positive samples. (b) Negative
samples.

TABLE IV

STATISTICS OF THE TEST DATA SET

the data set is 12 000, containing 2000 validation samples;
the number of negative samples for each class is 48 000,
containing 8000 validation samples. The ratio of positive
samples selected from the first and second positive data set
sources is 5:1, and the positive samples from the second part
of the positive data set were used to enhance the adaptability of
the CNN models. All the CNN data set samples were resized
to 227 × 227. Table III shows the data set statistics.

Fig. 3 shows positive and negative training samples. From
top to bottom, these samples show an oil tank, aircraft,
overpass, and playground.

We evaluated the object detection performance on the test
data set. The sizes of the test images ranged from 1044×915 to
1288×992. Objects in the test images have different sizes. The
numbers of objects in the test data set are listed in Table IV.

B. Experiment Procedures

The experiment included two procedures, as shown
in Fig. 4: the training process and the detection process.
The training process used the GPU and the Compute Unified
Device Architecture (CUDA) to improve the speed. The end
products of the training process are the trained CNN models.
The detection process was used to detect objects in test
images. It has three main tasks: generate the candidate regions
from each test image, extract the features, and obtain the
classification results for the candidate regions using the trained

Fig. 4. Experimental process.

TABLE V

ARGUMENTS FOR TRAINING CNN

CNN models. At the end of this process, the localization
precision of these classified regions is enhanced by applying
the accurate localization process that included both the non-
maximum suppression (NMS) and USB-BBR as described in
the preceding section.

We tested three types of models in this paper: a retrained
model (AlexNet, GoogleNet, and AlexNet + GoogleNet), a
fine-tuned model (AlexNet-finetune, GoogleNet-finetune, and
AlexNet-finetune + GoogleNet-finetune), and a dimension-
reduction model (AlexNet-DR, GoogleNet-DR, and
AlexNet-DR + GoogleNet-DR). There are two ways to
initialize network weights in the training process: one is
a random initialization using small amounts of data and
the other is a fine-tuned initialization by using the trained
CNN models on a large data set. The training process was
performed using the open source Caffe framework [50].

We used small patches to train our CNN models through the
backpropagation algorithm, employing the GPU and CUDA.
We set the learning rate to 0.01 and set the batch size to 256
for AlexNet, and 32 for GoogleNet. Moreover, some tricks,
such as local response normalization, momentum, overlapping
pooling, and dropout, have been used in these networks to
improve their properties. The arguments for CNN training
are listed in Table V. The training process was run on a
RedHat Linux server with the Nvidia GTX Titan X GPU with
12-GB RAM.
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TABLE VI

ARGUMENTS OF THE USB-BBR FOR EACH CLASS

During the detection process, we ran the selective search
method on the test images to extract approximately 1500 pro-
posed regions. Next, we warped the candidate regions and
input them to the trained CNN model to perform forward
propagation, obtain object features and, finally, classifica-
tion results. Given all the scored regions in an image, we
applied the accurate object localization process to increase
the detection performance of these regions. First, the greedy
NMS was applied (for each class independently) to reject
regions that have an IoU overlap greater than a given thresh-
old with a higher-scoring selected region. This process can
greatly decrease the number of overlapped boxes. Second, the
USB-BBR method was applied to reduce localization errors
and obtain the final detection results.

The arguments for the USB-BBR method are the initial
overlap ratio threshold γ , the decreasing step size of γ ,
denoted as �γ , and the maximum number of iterations
maxi ter . We used our proposed USB-BBR algorithm on the
entire training data set for each type of detection object.
We hoped that algorithm applied on the training data set
could be easily used on the corresponding validation data
set. Based on this thought, for each specific object, the entire
training data set was used to obtain the augments for the BBR
algorithm, but without cross validation. It is worth mentioning
that the regression box founded by the USB-BBR algorithm
is insensitive to the initial overlap setting when it is larger
than 0.6. Table VI lists the arguments of the USB-BBR method
for each class.

We used recall and precision to evaluate the performance of
detection result. We obtained the ground-truth area by manual
annotation. Recall represents the number of detected objects
divided by the total number of actual objects (ground truth),
while precision indicates the accuracy of the total detected
objects. We use the widely used IoU criterion to evaluate
the experiment result using our object localization framework.
If the value of IoU is greater than or equal to 0.5, the region
is a TruePositive; otherwise, it is a FalsePositive. The IoU for
oil tanks, aircraft, and playgrounds is 0.5; for overpasses, it is
0.4 because of the uncertainty of the manually labeled ground
truth.

C. Experiment Results

The baseline values for object detection based on our
framework are listed in Table VII. These results are from
the AlexNet-DR and GoogleNet-DR model combination.
Compared with retrained model and fine-tuned model, the
dimension-reduction model performs better. Moreover, the
results also indicate that the fine-tuned weight initialization
can improve both the detection recall and precision, and the

TABLE VII

BASELINE DETECTION RESULTS OF THE PROPOSED
LOCALIZATION FRAMEWORK

TABLE VIII

ARGUMENTS FOR EFT-HOG

model combination yields a better detection performance than
does using a single model. In terms of computing cost, the
running time of the combination model is approximately the
two times of that of a single model. The size of test image we
used is 1280 × 1280 pixels.

The overall performance of the feature extraction
method used in this paper was compared with two other
methods, namely, the local binary pattern histogram Fourier
feature (LBP-HF) [51] and the EFT-HOGs [6]. The LBP-HF
combines a discrete Fourier Transform and the LBP to obtain
the rotational invariance feature. The arguments for LBP-HF
are the radius and the number of sampling points, which
determine the circular region used. In our experiment, the
radius was set to 3, and the number of sampling points
was 24. EFT-HOG uses a circle HOG (C-HOG) feature rather
than the typical rectangle HOG (R-HOG) feature, because
the C-HOG feature has a better rotational invariance than
does the R-HOG feature. To further strengthen the rotation
invariance of the C-HOG descriptors, the author mapped
the features to the Cartesian coordinate system and then
performed an EFT.

There are several optional EFT-HOG arguments: the
numbers of annuli, cells, bins, angle, and the number of
adopted elliptic Fourier coefficients divided by the number
of total coefficients. These are denoted as annulus_num,
cell_num, bin_num, angle, and f , respectively. The images
in the data set were resized to 227 × 227; therefore, the
EFT-HOG arguments for the four tested classes are the same
as those listed in Table VIII.

After extracting features from the training data set, the
feature descriptors from LBP-HF and EFT-HOG were used
to train a support vector machines (SVMs) classifier. The
kernel function for SVM training is the linear function, and
a fivefold cross-validation method is used to avoid overfit-
ting. The trained SVM classifier can be used to classify
the candidate object regions. The candidate regions are the
same as those used for the proposed CNN-based method. The
classified candidate regions also underwent the accurate object
localization process to obtain the final detection result. The
performance comparisons between LBP-HF, EFT-HOG, and
the CNN-based method are listed in Table IX. We can see that
the CNN-based method performs than the artificial features.
Fig. 5 shows a portion of the comparison of the detection
results of the CNN, LBP-HF, and EFT-HOG methods. From
top to bottom are the results of detecting the oil tank, aircraft,
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TABLE IX

PERFORMANCE COMPARISONS OF LBP-HF, EFT-HOG, AND THE CNN-BASED METHOD

Fig. 5. Comparison of the detection results for the CNN, LBP-HF, and EFT-HOG methods. From left to right, the results are for oil tanks, aircraft, overpasses,
and playgrounds. (a) Detection results of the CNN method. (b) Detection results of the LBP-HF method. (c) Detection results of the EFT-HOG method.

overpass, and playground classes; Fig. 5(a) is the detection
result of the CNN method, Fig. 5(b) is the detection result of
LBP-HF method, and Fig. 5(c) is the result of the EFT-HOG
method. As listed in the results, the LBP-HF method suffers
from many false detections and many missed detections. The
EFT-HOG method achieves a better detection performance
than LBP-HF, but it is worse than the CNN method.

The detection performance of the proposed localization
framework based on the CNN method is significantly better
than the performances of LBP-HF and EFT-HOG detection
frameworks. The last two object feature extraction meth-
ods enhance invariance through human intervention, but still
result in a worse performance than CNN. These results
also indicate that CNN can learn better-quality features than
those designed by human. CNN needs only to train on the
data set to obtain the intrinsic features; it does not require
human intervention. CNN can conveniently extract features
from a data set when the data quality and quantity of the
data set meet the needs of the employed CNN models.
This drastically reduces the work and difficulty involved
in feature extraction.

Fig. 6 shows the examples of detection failures of the
proposed localization framework. The yellow boxes denote
false negatives; the red boxes are detected positives by the

proposed framework. FP denotes false positives. For the oil
tanks, many false negatives have low gray values; these may
be difficult to distinguish from the background. As for aircraft,
objects of other classes that appear similar to aircraft may
be mistakenly classified as aircraft. In analyzing the failure
detection results for overpasses, we found that the regions
of overpasses could not easily be determined to be correct,
because the manually labeled ground truth was too subjective.
If a classified positive region has a low IoU value, that region
is evaluated as a false positive. The playground detection
results show the same situation. Other objects that have similar
color compositions or shapes may also be misclassified as
playgrounds.

We found that the recall and precision for overpass detection
were noticeably lower than the recall and precision for the
other three classes—but this result is not caused by CNNs
inability to learn overpass features. Instead, the lower detection
result for overpasses is caused by the manually labeled ground
truth. Overpass regions are subjective; thus, it is difficult to
ensure objectively correct regions for overpasses. The detec-
tion evaluation index in our experiment is strict; consequently,
it results in poor detection result for overpasses. When we
changed the detection evaluation index slightly, the detection
performance for overpasses increased.
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Fig. 6. Examples of detection result failures for the proposed localization
framework. The yellow boxes denote FalseNegative and the red boxes are
detected positives by the proposed framework. FP: FalsePositive.

TABLE X

DETECTION RESULTS FOR OVERPASSES USING

DIFFERENT EVALUATION INDEXES

Table X shows the detection result for overpasses using this
altered evaluation index. Fig. 7 shows a portion of the detec-
tion results with different evaluation index values. Fig. 7(a) is
the detection result when IoU = 0.5, Fig. 7(b) is the detection
result when IoU = 0.4, and Fig. 7(c) is the detection result
when IoU = 0.3. For each result, the blue box is the ground
truth, while the green and red boxes are the FalsePositive and
TruePositive, respectively, as judged by the evaluation index.
We found that the regions evaluated as FalsePositive using
IoU = 0.5 are instead judged as TruePositive by the last two
evaluation indexes. This indicates that if we choose a less
rigorous evaluation, index causes the recall and precision for
overpass detection to increase. In our main experiment, we
used the stricter evaluation index to measure the performance
of the proposed localization framework. The experimental
results demonstrate that the proposed localization framework
has a better detection performance than the compared methods
and has good location precision.

V. ANALYSIS

In this section, we analyze the effects of the proposed
framework on detection performance. For the proposed object
localization framework, we used a large data set to train the

Fig. 7. Detection result for overpasses using different evaluation indexes.
(a) Detection result when IoU = 0.5. (b) Detection result when IoU = 0.4.
(c) Detection result when IoU = 0.3. For each result, the blue box shows
the ground truth, the green box is the FalsePositive judged by the evaluation
index, and the red box is the TruePositive judged by the evaluation index.

TABLE XI

PLAYGROUND DETECTION RESULTS OF CNN MODELS

TRAINED ON DIFFERENT DATA SET SIZES

TABLE XII

OIL TANK DETECTION RESULTS OF CNN MODELS
TRAINED ON DIFFERENT DATA SET SIZES

CNN models and applied model fine-tuning to initialize the
weighs. We also used a model combination method when
classifying candidate regions, and the accurate object local-
ization process to enhance the location precision. We will
systematically analyze the performance effects caused by these
strategies.

A. Size of Training Data Set

It is known that CNN models need ample training data sets
to learn the essential features of tasks. However, creating a
large number of data set examples with labels involves a great
deal of effort and time. Moreover, some classes have few
available samples for collection. In many cases, the size of the
training data set is insufficient. Still, the important determining
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TABLE XIII

COMPARISON OF THE DETECTION RESULTS OF ALEXNET, GOOGLENET, AND THEIR MODEL COMBINATION

TABLE XIV

COMPARISON OF THE DETECTION RESULTS OF ALEXNET-FINETUNE, GOOGLENET-FINETUNE, AND THEIR MODEL COMBINATION

TABLE XV

COMPARISON OF THE DETECTION RESULTS OF ALEXNET-DR, GOOGLENET-DR, AND THEIR MODEL COMBINATION

factor for the performance of a CNN is the training data set.
If either the quantity or quality of the training data set is
poor, the CNN model will have poor learning ability even
when a good network architecture is adopted. Therefore, we
first analyze the effects of different training data set sizes on
detection performance.

In our detection experiments, we used four object classes:
oil tank, aircraft, overpass, and playground. We chose the
oil tank and playground classes specifically to analyze the
effects of different training data set sizes on detection per-
formance. The numbers of samples of oil tanks and play-
grounds in the different sized positive training data sets are
[500, 1000, 3000, 5000, and 11000]. The number of negative
samples in each training data set was four times the number
of positive samples. The ratio of samples in the training data
set to those in the validation data set was 5:1. We trained the
GoogleNet CNN model on these different size data sets. The
weight initialization included both the random values strategy
and the fine-tuning strategy. Then, all these CNN models were
applied to extract features and obtain the classification results.
We compared the recall and precision of each CNN model’s
object detection result to analyze the effects of training data
set size.

Tables XI and XII separately show oil tank detection results
and playground detection results trained using different data
set sizes. These detection results indicate that the CNN models
require ample numbers of samples to achieve good learning
ability. However, there is a peek point where the recall or
precision achieves the highest value, and when the number of
data set increased, the value of recall or precision decreased.

B. Feature Extraction and Classification

The common method for obtaining class labels of candi-
date regions is to perform forward propagation in the CNN
model. In our experiment, in addition to this method, we

also used a model combination to obtain the class labels of
candidate regions. The model combination is used to reduce
the false detection rate by using a feature combination from
two different CNN models. The model combination is similar
to performing forward propagations twice, and it obtains the
classification result from the outputs of two CNN models.

In our experiments, we tested three types of models in this
paper: a retrained model, a fine-tuned model, and a dimension-
reduction model, as shown in Tables XIII–XV. These results
show that weight initializations play a crucial role in the
learning ability of CNN models, and the model combination
strategy can improve the precision value to a certain extent.
The detection results of the fine-tuned model are listed in
Table XIV. From an analysis of the detection performance
listed in table XIII, XIV, and XV, the fine-tuned methods result
in better performance in detection results, causing an increase
in recall and precision to a certain extent. Namely, the fine-
tuned model can increase the learning performance of CNN
models. And the detection precision of a combination model
is higher than that of a single model.

Beyond the fine-tuning strategy and model combination
strategy, we also explored three dimension-reduction models:
AlexNet-DR, GoogleNet-DR, and AlexNet-DR + GoogleNet-
DR, all of which added a 64-D inner-product layer before
the last inner-product layer. The parameters are initialized
by the pretrained models that trained on ImageNet data.
When applying the fine-tuning method, the learning rate also
decreases by 0.1%. The results of the dimension-reduction
models are listed in Table XV.

C. Region Proposal and Unsupervised Score-Based
Bounding Box Regression

In the first stage, we use the selective search method
to obtain a lower quantity of high quality object regions.
The performance of the region proposal is profoundly affected
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TABLE XVI

COMPARISON DETECTION RESULTS OF REGION PROPOSAL AND USB-BBR USING GOOGLENET-FINETUNE MODEL

by the number of object locations and the criterion IoU
criterion. To evaluate the performance of the region proposals
on our test data set, we took all object locations generated
by selective search into account and used an IoU of 0.4
for overpasses and 0.5 for the other three types to calcu-
late the effect of this criterion on recall. The results are
listed in Table XVI. As shown in Table XVI, the recall
criterion of region proposal gradually decreases while the
precision increases, indicating that the CNN detection and our
localization process can improve the accuracy of the object
location. This decrease in recall is expected, because after
CNN detection and NMS, fewer boxes are predicted as objects
of interest than before. But when using the USB-BBR, the
precision improves, because the locations of regions have
been optimized as well as the number of bounding boxes,
particularly the bounding boxes of false positive regions,
which decreased over the entire object detection framework.

In addition to the region proposals, we also tested the recall
criterion of boxes detected by the GoogleNet-finetune model
and the GoogleNet-finetune with NMS model. We obtained
the classification results of candidate regions by the forward
propagation of CNN. There are many overlapping regions
in the classification results. The NMS method was used to
eliminate smaller regions that have an IoU greater than a
threshold value with a higher-scoring region. The number
of overlapped regions decreases considerably. However, even
after NMS the results still did not meet our need, because each
object always has many regions.

We hoped to obtain an optimal bounding box to locate
the objects more precisely. To deal with the problem of
several regions corresponding to one object, we used the USB-
BBR algorithm after NMS. The detection results of using
the GoogleNet-finetune model with the USB-BBR method
are also listed in Table XVI. Compared with the result from
using a CNN with NMS, using a CNN with USB-BBR can
greatly increase the localization precision, because the process
optimizes several regions into one region; consequently, the
location accuracy is much higher, especially for overpasses and
playgrounds. As Table XVI shows, the recalls of the detection
results with USB-BBR are lower than these of the GoogleNet-
finetune model without USB-BBR; however, this is expected
because there is an interconstraint relationship between recall
and precision. The region numbers of detected regions with
and without the USB-BBR for the GoogleNet-finetune model
are listed in Table XVII. The average number of regions for
each class is the total region number divided by the total
number of test objects. The average number of overpasses and
playgrounds regions after USB-BBR is greatly decreased. This
result leads to the reduced detection recall values for these two
classes after USB-BBR.

TABLE XVII

NUMBER OF REGIONS DETECTED BY THE GOOGLENET-FINETUNE

MODEL BOTH WITH AND WITHOUT THE USB-BBR METHOD

Fig. 8. Comparative detection results both with and without USB-BBR.
The first column shows the detection results without USB-BBR. The second
column shows the detection results with USB-BBR.

Fig. 8 shows a portion of the comparison detection results
both with and without the USB-BBR method. The first column
is the detection result without using the bounding box regres-
sion method; the second column is the detection result using
the USB-BBR method. As Fig. 8 shows, the USB-BBR has
better localization precision. Therefore, the USB-BBR method
can increase the detection localization precision.

VI. CONCLUSION

In this paper, we proposed an object localization framework
based on CNN in remote sensing images. The framework
uses the CNN models to extract object features and obtain
classification results. In the first stage, we used a selective
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search method to generate the major part of the candidate
object regions. In the second stage, we designed a dimension-
reduction model using trained models to initialize the network
weights and then use it to extract features and classify the
objects to different categories. We also tested a retrained model
and a fine-tuned model. In the third stage, we proposed a new
USB-BBR algorithm, as part of the accurate object localization
process, to obtain better detection localization precision, and
we used NMS to decrease the number of overlapped regions.
The addition of the USB-BBR method can help to obtain an
optimal bounding box for each group of classified regions.
In addition, we investigated the influences of different sizes of
training data sets, different weight initialization methods, and
different model combinations on detection performance. These
results can help guide other researchers to obtain good results.
The results of the experiments indicate that the proposed
localization framework is both simple and robust. In further
work, we will continue to enhance this framework and improve
its detection and localization performance.
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