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A Framework of Mixed Sparse Representations
for Remote Sensing Images
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Abstract— In this paper, a new framework of mixed sparse
representations (MSRs) is proposed for solving ill-conditioned
problems with remote sensing images. In general, it is very
difficult to find a common sparse representation for remote
sensing images because of complicated ground features. Here
we regard a remote sensing image as a combination of subimage
of smooth, edges, and point-like components, respectively. Since
each domain transformation method is capable of representing
only a particular kind of ground object or texture, a group
of domain transformations are used to sparsely represent each
subimage. To demonstrate the effect of the framework of MSR
for remote sensing images, MSR is regarded as a prior for
maximum a posteriori when solving ill-conditioned problems
such as classification and super resolution (SR), respectively.
The experimental results show that not only the new frame-
work of MSR can improve classification accuracy but also it
can construct a much better high-resolution image than other
common SR methods. The proposed framework MSR is a com-
petitive candidate for solving other remote sensing images-related
ill-conditioned problems.

Index Terms— Classification, compressive sensing (CS), mixed
sparse representations (MSRs), super-resolution (SR).

I. INTRODUCTION

A. Sparsity for Remote Sensing Images

SPARSITY describes a signal with few nonzero elements
or few nonzero coefficients in a particular transform

domain or basis. Sparsity driven techniques have become very
popular with the development of L1-norm-based optimization
methods [1] and the emergence of the sampling theory of com-
pressive sensing (CS) [2]–[4]. CS works well for sparse signals
or sparse representations with respect to a particular transform
domain or basis. So far, it has been applied in many research
areas [5]–[11]. Sparsity is one of the important ingredients
of CS and is a very useful property for image processing
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such as compression [12], denoising [13], deblurring [14],
and unmixing [15]. In [14] and [16], sparsity in astronomical
images is studied. However, modeling the sparsity in the
remote sensing images [17]–[19] is far more complicated than
point sources or extended sources in astronomical images.

In general, either a dictionary learning method or a domain
transformation method has been used to explore the sparsity
in image processing community. However, dictionary learning
methods highly depend on the training data set, and it is ques-
tionable when a set of well-trained dictionaries is extended to
some previously unseen data. As far as domain transformation
methods are concerned, a particular transformation is good
at providing sparse representation for a certain type of input
signal. For example, wavelet transform [20], [21] is a suitable
tool of sparse representing smooth content in images; curvelet
transform [22] can well represent global line structures of
any directions; discrete cosine transform is excellent in
representing either smooth or periodic components in images.

Wavelet transform has been well known for its
multiscale/multiresolution analysis ability in signal processing
regime. This has brought significant progresses in many
research areas such as image compression [12], [23], image
denoising [24], [25], and image restoration [17], [26]–[28].
Though wavelets are certainly suitable for dealing with
objects of smooth regions, they are ill suited for detecting,
organizing, or providing a compact representation of
intermediate dimensional structures.

Curvelet transform [22], which was created to overcome
the disadvantages of multiscale/multiresolution representations
such as wavelets, is a multiscale pyramid with many directions
and positions at each length scale and needle-shaped elements
at fine scales. Based on [22], we know that curvelets can
always offer a much more optimal performance than wavelets
when representing edges of objects.

Generally speaking, each domain transformation method
is capable of representing only a particular kind of ground
object or texture. In this paper, we propose a general frame-
work of sparse representations for remote sensing images, in
which a remote sensing image is regarded as a combination
of subimages of smooth, edges, and point-like components,
respectively, and a group of domain transformations are used
to sparsely represent each subimage. To verify the effective-
ness of the framework of mixed sparse representations (MSRs)
for remote sensing images, MSR is regarded as a prior for
maximum a posteriori (MAP) when solving ill-conditioned
problems such as classification and super resolution (SR),
respectively.
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B. Classification

Hyperspectral sensors used in remote sensing usually
capture several images from frequency bands/channels in
the visual and nonvisual range with 5–20-nm wavelength
between bands/channels. Hyperspectral images-based classifi-
cation [29], [30] is a very important branch of remote sensing
community. Based on the spectral measurements at a position,
the object’s class may be recognized; therefore, the main task
of classification is to assign a label to each pixel in order to
generate a land cover map [31]–[33].

Classification methods are typically divided into supervised
and unsupervised classification. Here, we focus on the super-
vised classification only for better evaluation purpose. The
framework proposed in this paper can be easily extended to
unsupervised classification as well. There are several ways
to improve classification accuracy such as developing more
effective classification methods. Classification methods have
been investigated for many years, and dozens of new methods
are proposed each year [34]–[39]. One of the new trends
in this research area is to incorporate both spectral and
spatial constraints in the model [36], [40], [41]. Rather than
developing new classification methods to improve the labeling
performance, we will test the proposed framework to add
spatial constraints to the input data by augmenting the original
hyperspectral data cube.

C. Super-Resolution

SR has many different definitions in different research
communities. In this paper, SR means a technique of restoring
a high spatial resolution image from a series of lower reso-
lution images of the same scene captured at different times
in a short period. Optical resolution in itself is a big topic,
which means the ability of resolving details of the object
that being imaged. Roughly speaking, it involves two critical
concepts: lens resolution and sensor resolution. First, lens
resolution that is effected and limited by the Rayleigh criterion,
i.e., the angular resolution θ = 1.22(λlight/Daperture), where
λlight denotes the incoming light and Daperture is the diameter
of the lens aperture. An Airy disk is formed, of which the
diameter dAiry is

dAiry = 2.44
flengthλlight

Daperture
(1)

where flength is the focal length of the lens.
Sensor resolution indicates the ability to accurately capture

all of the details from the incoming light, and it depends on
the sampling interval. Based on the Nyquist sampling theorem,
the sampling interval has to be twice of the highest specimen
spatial frequency in order to accurately preserve all details in a
digital image. In other words, two detectors have to be placed
in the Airy disk [42]. When and only when lens resolution
matches sensor resolution, the best optical resolution can
be achieved. Strictly speaking, given a fixed lens resolution,
doubling the density of the sensor array with the same area
of the array size does not improve twice of the spatial
resolution of the imaging system, but it can help to improve the
accuracy of measuring the features from the captured images.

Thus, we should bear in mind that the SR technology discussed
in this paper mainly works in the same way.

Since the first SR technology was proposed in 1984 [43],
many SR methods have emerged and can be roughly sub-
divided into the following main categories: the frequency
domain approaches, spatial domain methods, and learning-
based methods. The frequency domain approaches are early
methods used for SR from 1984 [43]. Assuming that the
images suffer global translational motion [44], the frequency
domain-based methods combine all high-frequency informa-
tion in the Fourier domain and restore a high-resolution image.
The main advantages of the frequency domain approaches
include theoretical simplicity and straightforward implemen-
tation, which can be paralleled.

The spatial domain methods include the projection onto
convex sets (POCS) approach, iterative back projection (IBP)
approach, and the probabilistic reconstruction approach such
as MAP. According to the method of POCS, incorporating
prior knowledge into the formulation can be interpreted as a
restriction on global optimality on a convex set. Simplicity is
the major advantage of POCS [45]; however, nonuniqueness
of the solution, slow convergence, and high computational cost
are the main disadvantages.

IBP [46] is similar to the back projection used in tomog-
raphy. The algorithm emulates the imaging process, back
projects the error between the emulated and actual low-
resolution (LR) images to the SR image, and iteratively
updates it. The advantage of IBP is that it is intuitive and easy
to understand; a shortcoming is that the method cannot deal
with noise contaminated LR images, because the noise will be
regarded as an error to be projected back to the SR image.

MAP is one of the most popular probabilistic methods.
This stochastic regularization technique requires a probability
density function of the data known as a prior image model
that represents the distribution of the image pixel values.
Li et al. [17], [47] proposed a MAP method based on
the universal hidden Markov tree model MAP-uHUM. The
method regards a universal hidden Markov tree model, which
can be calculated by training in the wavelet domain, as a prior
model. The results on real data show that the method works
well. The main advantages of MAP-based methods [48], [49]
are the direct inclusion of a priori constraints, such as the
Huber function [50], for the ill-conditioned problem. However,
the disadvantage [48], [49] is that the blur of the LR images is
assumed to be due to simple averaging, which is not suitable
for real applications.

A fast and robust SR algorithm was proposed in [51],
in which a cost function of the difference between the model
of the observations and the actual observations was optimized,
plus a regularization term: bilateral total variation (BTV).
Although it is robust against minor incorrect estimation of
warping model, blur kernel, and noise variance, it cannot
deal with remote sensing images properly, because they
assume global translational shifts only for the warping model
and severe misalignment largely decreases the reconstruction
quality. Recently, Bayesian image SR methods were pro-
posed [52], [53]. By marginalizing over registration parame-
ters, this approach allows the calculation of the registration
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parameters concurrently while obtaining the super-resolved
images.

In general, the learning-based SR methods work in the
following way [54]–[56]: learn a degeneration model of high-
resolution images from LR images first, and then reconstruct
the original high-resolution images based on the degeneration
model. Miura et al. [55] proposed a learning-based BTV SR
method, and the method uses principle components analysis
to remove noise. The results indicate that the method can pro-
vide good performance turning National Television Standards
Committee TV signal to HDTV. The main shortcoming of this
kind of method is slowness. The step of searching the matched
high-resolution block from a huge data set consumes a lot
of time.

Recently, Candès and Fernandez-Granda [57] wrote a paper
on SR. A theorem was proposed that if we assume nonzero
components of high-resolution signal being separated by at
least 2/ fc distance of sampling grid, where fc is the cut-off
frequency, perfect SR results can be achieved via L1-norm
minimization. Their efforts shined a light on the behind theo-
rem of SR from a mathematical point of view. However, there
is limited shining stuff we can borrow from the paper. First,
remote sensing images are not sparse in the spatial domain
and we cannot guarantee that the high-resolution signal is
separated by at least 2/ fc distance of sampling grid. Second,
they did not consider the circumstance of which there are
several LR sampled signals without a uniform sampling grid.

In summary, SR methods suffer some problems in real
applications for the remote sensing community. One of the
most challenging problems is that there is rarely general sparse
representation for solving the typical ill-conditioned problem
of SR.

II. METHODOLOGY

A. MSR for Classification

It is very difficult to find a general transform that can explore
sparsity for the images with complex features, especially,
for remote sensing images where heterogeneous contents are
present all the time. We assume that a remote sensing image z
consists of three types of subimages: the point components zs

in the image domain itself, the smooth components zw showing
sparsity in the wavelet domain, and curve/line components zc

showing sparsity in the curvelet domain. Therefore, we have

z = zs + zw + zc (2)

where zs , zw and zc are of the same size as z. In some
circumstances, sparsity is regarded as a prior for signal in
MAP, so our intention is to apply the MSRs as a prior for solv-
ing a remote sensing image-related MAP problem. From (2),
we can see that there are many potential combinations for
those subimages, and therefore, it is a typical ill-conditioned
problem.

Because noise contamination is inevitable for all imag-
ing facilities including hyperspectral imagers, we proposed a
subimage separation model for classification

min {λ1‖W (zw)‖1 + λ2‖C(zc)‖1 + λ3‖zs‖1}
s.t. z = zs + zw + zc + e, ‖e‖∞ ≤ δ (3)

where W denotes the wavelet transform matrix, C is the
curvelet transform matrix, λ1, λ2 and λ3 denote different
weights for the contribution from different transformations,
e is the noise following some distributions, say Gaussian
distribution, and δ is the variance of the noise. If we select
a large λ1, which means we put more weight on the smooth
components and more smooth-like structures will be shown
in the resolved subimage zs . In other words, λ1–λ3 mainly
work as balancing parameters among those different structures.
If we set both λ1 and λ2 as 0, then (3) will degenerate
to a basis pursuit denoising problem [4]. In general, those
balancing parameters can be set based on experience and
the understanding of the input images. The above separation
method can be run for each channel of the hyperspectral image
(which is stored as a data cube) by solving (3) and will create
a three times larger data cube.

In the above equations, we use L1-norm minimization,
which is the foundation of CS [4] and it has the property
of producing many coefficients with zero values and very few
nonzero coefficients, i.e., it stimulates the sparsity. We can
apply the augmented Lagrange multiplier (ALM) method to
solve (3), and the convergence analysis can be derived as
follows. By introducing variables u = W (zw) and v = C(zc)
in (3), we have

min {λ1‖W (zw)‖1 + λ2‖C(zc)‖1 + λ3‖zs‖1}
s.t. z = zs + zw + zc + e; ‖e‖∞ ≤ δ

u = W (zw); v = C(zc). (4)

Equation 4 can now be easily converted into an unconstrained
problem under the ALM framework [58], [59] as (ignoring
‖e‖∞ ≤ δ at the moment)

min

{
λ1‖u‖1 + λ2‖v‖1 + λ3‖zs‖1 + 〈y1, u −W (zw)〉

+ηwμ

2
‖u −W (zw)‖22 + 〈y2, v − C(zc)〉

+ηcμ

2
‖v − C(zc)‖22 + 〈y3, z− (zs + zw + zc + e)〉

+ηeμ

2
‖z− (zs + zw + zc + e)‖22

}
(5)

where y1, y2, and y3 are the Lagrange multipliers in vector
format; 〈., .〉 denotes the inner product of two vectors; and
ηw, ηc, and ηe are the penalty parameters. Now, we can
propose the following algorithm for solving (5).

1) Fixing u, v, zw, zc, and e, solve for zs by

min
zs

λ3‖zs‖1+ ηeμ

2

∥∥∥∥zs − (z− zw − zc − e)− 1

ηeμ
y3

∥∥∥∥
2

2

which has a closed-form solution.
2) Fixing u, v, zs , zc, and e, solve for zw by

min
zw
− 〈y1, W (zw)〉 + ηwμ

2
‖u −W (zw)‖22 − 〈y3, zw〉

+ ηeμ

2
‖zw − (z− zs − zc − e)‖22

which is a least squares problem with a closed-form
solution.
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3) Fixing u, v, zs , zw, and e, solve for zc by

min
zc
− 〈y2, C(zc)〉 + ηcμ

2
‖v − C(zc)‖22 − 〈y3, zc〉

+ ηeμ

2
‖zc − (z− zs − zw − e)‖22

which is a least square problem with a closed-form
solution.

4) Fixing u, v, zw, zc, and zs , solve for e by

min
ê
−〈y3, ê〉 + ηeμ

2
‖ê − (z− zs − zw − xc)‖22

which has a closed-form solution. To obtain e, we
project ê to the convex set ‖e‖∞ ≤ δ, which is a
straightforward thresholding on entries in ê.

5) Fixing v, zw, zc, zs , and e, solve for u by

min
u

λ1‖u‖1 + ηwμ

2

∥∥∥∥u −W (zw)+ 1

ηwμ
y1

∥∥∥∥
2

2

which has a closed-form solution.
6) Fixing u, zw, zc, zs , and e, solve for v by

min
v

λ2‖v‖1 + ηcμ

2

∥∥∥∥v − C(zc)+ 1

ηcμ
y2

∥∥∥∥
2

2

which has a closed-form solution.
7) Updating y1, y2, and y3 by

y1 ← y1 + μ(u− W (zw))

y2 ← y2 + μ(v− C(zc))

y3 ← y2 + μ(z− zs − zw − zc − e).

8) Some update for μ as an adaptive way.
The above algorithm can be guaranteed to be convergent

(see [58], [59]). In fact, the idea behind the above algorithm
is very simple. In each iteration, by projecting the residual to
each domain, the algorithm keeps large magnitude components
and sets small magnitude coefficients to zero, and this is
in accordance with L1-norm minimization. As the iterations
proceed, the residual is getting smaller and smaller. The
different types of structured components can be reconstructed
in the wavelet domain, the curvelet domain, and the spatial
domain, respectively, in each iteration. When either a certain
number of iterations are reached or the algorithm converges to
a minimum, the algorithm terminates. As a result, the point-
like component zs , the smooth component zw, and the edge
component zc can be eventually separated. Moreover, we can
also regard the above algorithm as a denoising method and
the bonus of the separation is the cleaned image that is the
summation of these subimages.

B. MSR for SR

To reconstruct a high-resolution image, we need a good
understanding of the whole process of capturing LR images.
As we know that onboard panchromatic cameras can capture
only the reflected light from the surface of the earth, the
reflected light will suffer from the air turbulence and diffusion
from the optical lens system. Therefore, the procedure for
obtaining observed LR images on board can be modeled by

gi = DHi Mi z+ ni , i = 1, . . . , K (6)

where z (the original SR image) can be regarded as an ideal
set of pixels obtained by sampling a continuous scene at
high resolution, K is the number of LR images, gi is the
i th observed LR image, Mi is a warping matrix representing
the step of warping the original HR image to the grid of
the observed image, Hi is a blur matrix representing all the
inevitable blurriness caused by imperfected optical systems
within onboard cameras, D is a subsampling matrix repre-
senting the degenerate step of the original HR image to an
observed LR image, and ni represents the inevitable noise
contamination with an additive noise of Gaussian distribution
with zero mean and variance δi .

Choosing the j th LR image as a reference image, then
g j = DH j z or g j = DH j M j z, where M j is an identity
matrix in this case. In general, the mapping matrix Mi must
be estimated initially from the LR images between gi and
the reference LR image g j , and the blurring matrix Hi can
be approximated by a Gaussian blur kernel whose size is
estimated from sharp points or edges in the images. Let N×N
be the number of pixels in the original SR image and d be
the decimating rate (subsampling rate). gi , z, and ni are all
symbolized as lexicographically ordered vectors of lengths
N2/d2, N2, and N2/d2, respectively. Thus, Hi and Mi are
N2 × N2 matrices. The size of D is N2/d2 × N2.

From (6), we can see that the imaging procedure is not
invertible, and the SR technique represents a typical ill-
conditioned problem. This implies that there is no unique
solution. A well-posed problem is preferred, and restoring the
original SR image z is desired.

Here, we propose the following solution for the SR problem
with the framework of MSR:
min {λ1‖Wzw‖1 + λ2‖C(zc)‖1 + λ3‖(zs)‖1}

s.t. ‖gi − DHi Mi z‖2 ≤ δi , i = 1, . . . , K (7)

where W and C are the same as defined in the above section
and δi denotes the variance of the Gaussian noise in the i th
image. In (7), λ1–λ3 denote different weights for the contri-
bution from different transformations. Since the proposed SR
method is an MSR-based SR for remote sensing images, the
method will be shorted as MSR-SR for simplicity.

Here, we use the iterative shrinkage-thresholding algo-
rithm [60] for solving the SR problem as follows.

1) Initialization:
a) Choose parameters: the soft threshold τ (this can

be set by 1 for most normalized circumstances) and
the stopping threshold δ (this can be set by noise
level).

b) The total number of iterations l = floor(τ/δ).
c) Set the weighting parameters λ1 · · · λ3.
d) zs = 0; zw = 0; zc = 0; z = zs + zw + zc.

2) Within l iterations:
a) Reconstructing the sparse components zs for each

LR image gi .
i) Calculate the residual

r =
K∑

i=1

{DHi Mi z− gi }.
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ii) Calculate the gradient d =∑K
i=1{M∗i H ∗i D∗r}.

iii) Update zs = zs − d.
iv) Soft threshold (zs), i.e., set any absolute values

below (τ/λ3) to zero and update zs .

b) Reconstructing the smooth components zw for each
LR image gi .

i) Calculate the residual

r =
K∑

i=1

{DHi Mi z− gi }.

ii) Calculate the gradient d =∑K
i=1{M∗i H ∗i D∗r}.

iii) Update zw = zw − d.
iv) Calculate the DWT coefficients for zw.
v) Soft threshold the wavelet coefficients of Wzw,

i.e., set any values below τ
λ1

to zero and update
Wzw.

vi) Calculate the inverse wavelet transform for the
wavelet coefficients, and then update zw.

c) Reconstructing the edge structures zc for each LR
image gi .

i) Calculate the residual

r =
K∑

i=1

{DHi Mi z− gi }.

ii) Calculate the gradient d =∑K
i=1{M∗i H ∗i D∗r}.

iii) Update zc = zc − d.
iv) Calculate the curvelet coefficients for zc.
v) Soft threshold the wavelet coefficients of Czc,

i.e., set any values below (τ/λ2) to zero and
update Czc.

vi) Calculate the inverse curvelet transform for the
curvelet coefficients, and then update zc.

d) τ = τ − δ.

3) Reconstructed SR image z = zs + zw + zc.

In the above pseudocode, ∗ denotes the back projection step
of (6) when calculating the gradient. For example, M∗i denotes
the warping matrix representing the warp of the observed
LR image gi , and H ∗i is the conjugate transpose of the blur
matrix Hi . Note that D∗i represents an interpolating step that
can be implemented with the traditional bilinear interpolation
method. The selection of those weighting parameters is a bit
tricky, the more weight put on a particular type of structure, for
example, we say point components, then the threshold (τ/λ1)
of the shrinking operator would be very small. That means few
structures or energy will be left for the following two steps of
resolving smooth components and the edge-like components.
On the other hand, if we set a small λ1, then the thresh-
old (τ/λ1) of the shrinking operator would be very big, which
will lead to squeezing most of structures or energy from zs to
those smooth components and edge-like components.

As for the MSR-based classification, the residual will be
projected to each representative domain, respectively, and is
getting smaller and smaller in each iteration when solving
the SR problem. As iterations progress, the different types
of structured components can be reconstructed in the spatial

domain, the wavelet domain, or the curvelet domain. Either
a certain number of iterations are reached or the algorithm
converges to a minimum and the algorithm terminates. The
super-resolved image z can be reconstructed simply by adding
zs , zw and zc.

III. EXPERIMENTAL RESULTS

To test the proposed framework of MSR, it is applied
to solve the ill-conditioned problem: classification and SR
introduced above, respectively.

A. MSR for Classification

In general, point-like components in hyperspectral images
do not help in terms of adding spatial constraints in clas-
sification, and therefore, we ignore the resolved point-like
components and utilize the smooth components and the edge
components only. We simply augment the original hyperp-
spectral image by attaching the separated smooth subimage
and the curvelet resolved subimage as a spatial constraint
to the original data cube and use this expended data cube
in traditional classification methods without any changes in
terms of input parameters. In this paper, three classification
methods are used to verify the improvement of using the
expanded hyperspectral data cube. One is the widely used
spectral classification method support vector machine (SVM)
in remote sensing community. The other spectral-based clas-
sification method used in this paper is logistic regression via
variable splitting and augmented Lagrangian (LORSAL) algo-
rithm [61], which mainly implements a multinomial logistic
regression classifier. The spectral–spatial classification method
for hyperspectral image data proposed in [37] is abbreviated
as MAP marginal (MPM)-loopy belief propagation (LBP).
This method serves as an engine in the context of active
learning to exploit both spatial and spectral information simul-
taneously. Li et al. [37] used the LBP algorithm to estimate
the MPM solution. The reason we use those two methods is
that LORSAL represents a typical classification method that
considers no spatial constraint, while MPM-LBP is a well-
performed spatial-spectral-based classification method. Our
intention is to test whether the data augmentation by MSR
can improve the classification accuracy for both spectral-
only-based classification methods and spectral–spatial-based
classification methods. Again, we are not intent to propose a
new classification method. On the contrary, our contribution
is the MSR framework that augments the original data cube
and helps improve the classification accuracy for most of any
classification algorithms at hand.

As far as the testing data are concerned, we use two popular
data cubes to test the above algorithm. One is the hyperspectral
data set that was collected by the ROSIS optical sensor over
the urban area of the University of Pavia, Italy. The flight was
operated by the Deutschen Zentrum for Luftund Raumfahrt,
and managed and sponsored by the European Union. The
image size is 610 × 340 pixels, and its spatial resolution is
1.3 m/pixel. The number of data channels captured by the
sensor is 115 with wavelength range from 0.43 to 0.86 μm.
The ground truth of the data set can be seen in Fig. 1(a). As can
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Fig. 1. Ground truth of PaviaUni data and Indian Pines’ AVIRIS data.

be seen in Fig. 1(a), there are nine mutually exclusive ground
truth classes in the region. After removing the severely noise
contaminated frames, there are 103 frames left in the PaviaUni
data cube. We run the algorithm 103 times channel by channel
and separate the whole data cube. Therefore, the original data
cube is expanded into three times larger 610 × 340 × 412
(in which 1–103 frames are the original data cube,
104–206 frames are the smooth components, 207–309 frames
are the edge components, and 310–412 frames are the point
components in the new expanded data cube). The original
image of channel 100 can be found in Fig. 2(a). After the
above segmentation step, the smooth components (channel 203
in the new expanded data cube), edge components (chan-
nel 306 in the new expanded data cube), and point components
(channel 409 in the new expanded data cube) within chan-
nel 100 are separated and shown in Fig. 2(b)–(d), respectively.

The other data cube used in this paper was captured by the
AVIRIS sensor over the Indian Pines region in Northwestern
Indiana in 1992. This scene is of 145 × 145 pixels whose
spatial resolution is 20 m. The number of data channels
captured by the sensor is 220 with wavelength range from
0.4 to 2.5 μm. The ground truth of the data set can be seen in
Fig. 1(b). As can be seen in Fig. 1(b), there are 16 mutually
exclusive ground truth classes in the region. After removing
the severely noise contaminated frames, there are 191 frames
left in the AVIRIS data cube in our test. Again, we run the
algorithm 191 times channel by channel and separate the
whole data cube into three kinds of components. Therefore,
the original data cube is expanded into three times larger
145 × 145 × 764 (in which 1–191 frames are the origi-
nal data cube, 192–382 frames are the smooth components,
383–573 frames are the edge components, and 574–764 frames
are the point components in the new expanded AVIRIS data
cube). The original image of channel 9 of Indian Pines’
AVIRIS data can be found in Fig. 3(a) as an example. After
the above segmentation step, the smooth components (channel
200 in the new expanded data cube), edge components (chan-
nel 391 in the new expanded data cube), and point components

TABLE I

CLASSIFICATION RESULTS OF SVM

TABLE II

CLASSIFICATION RESULTS OF LORSAL

TABLE III

CLASSIFICATION RESULTS OF MPM-LBP

(channel 582 in the new expanded data cube) within channel 9
are separated and shown in Fig. 3(b)–(d), respectively.

In the experiments, we use fixed parameter settings to
concentrate more on the proposed framework and less on its
parameter tuning for SVM, LORSA, and MPM-LBP. As for
many other classification methods, we use those standard
evaluation formulas overall accuracy (OA), average accu-
racy (AA), kappa k statistic to carry out the comparison. In the
experiments of PaviaUni data, we randomly select 0.05% of
each class in the ground truth. That is to say that there are
2138 training samples in the training set. Then the whole data
set is used to evaluate the performance of the classification.
Similarly, in the experiments of Indian Pines’ AVIRIS data
set, we randomly selected 1024 training samples, i.e., 10% of
each class in the ground truth. The whole augmented Indian
Pines’ data set is used to evaluate the performance of the
classification. As can be seen in Tables I–III, without changing
anything but using the augmented data, the classification
accuracy can be improved around 5%, especially, in terms of
OA and kappa coefficient. As we can see from Tables I–III,
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Fig. 2. Segmentation results of Pavia University data. (a) Original channel 100 image. (b) Smooth components within channel 100. (c) Edge components
within channel 100. (d) Point components within channel 100. Based on (2), we know that those subfigures (a) ≈ (b) + (c) + (d). To help readers to have a
better understanding, (e)–(h) enlarged bottom-left corner of those subimages are shown.

Fig. 3. Segmentation results of Indian Pines’ AVIRIS data. (a) Original channel 9 image. (b) Smooth components within channel 9. (c) Edge components
within channel 9. (d) Point components within channel 9. Based on (2), we know that those subfigures (a) ≈ (b) + (c) + (d).

the framework works much more effectively for spectral-only-
based classification methods than those spatial–spectral joined
classification methods. This is because that those spatial–
spectral-based classification methods have already utilized the
spatial correlation to some extent. Moreover, we may note that
the performance of the framework works more efficient for
Indian Pines’ AVIRIS data than PaviaUni data. This is mainly

because that the number of training samples for PaviaUni data
is quite big, and the classification results from the original data
set are already good enough, so the improvement is limited.
To help readers have a direct understanding of the performance
of the proposed frame work, we list the experimental results of
PaviaUni data and Indian Pines’ AVIRIS data in Figs. 4 and 5,
respectively. The first rows of Figs. 4 and 5 from left to



LI et al.: FRAMEWORK OF MSRs FOR REMOTE SENSING IMAGES 1217

Fig. 4. Classification results for PaviaUni data. The first row from left to right shows the classification results of SVM, LORSAL, and MPM-LBP with the
original PaviaUni data. The bottom row from left to right shows the improved classification results with the augmented data.

right show the classification results of SVM, LORSAL, and
MPM-LBP with the original data set. The bottom rows from
left to right show the classification results with the augmented
data. By comparing those classification results of the original
data and the augmented data, we can see that improved
classification results can be achieved.

B. MSR for Super-Resolution

In this section, we test and compare our method using
images of size 256×256 pixels from the panchromatic channel
of Landsat7 (spatial resolution of 15 m) captured on four
different dates (September 13, September 29, December 2, and
December 18, 2000) within the Canberra region. The means
of those four aligned and bilinear interpolated images have
been shown in Fig. 6(a), in which the image of September 29
is chosen as the reference. In general, data captured with
minimum time gap are good for SR; however, the repeating
cycle of Landsat7 is 16 days and clouds appeared between
October and November in 2000, so the selection of those four

images is a compromise under these circumstances. Therefore,
changes of objects on the ground over time will be ignored.
The illumination of the four data groups varies over a large
range because of the different atmospheric conditions. Thus,
we rescaled the four images to [0, 1], and performed histogram
matching among them to reduce the effects due to different
atmospheric and illumination conditions. In this test, we set the
SR factor as 2, which means that the spatial resolution of the
super-resolved image will achieve a spatial resolution of 15 m.

From (7), we can see that matrices Mi , Hi , and D need
to be worked out beforehand. In practice, there is no need
to construct real matrices for Mi , Hi , and D because of
memory and computational limitation. Matrices D and D∗ can
be replaced by a downsampling and a bilinear interpolation
operator (d = 2). In this test, matrices Hi and H ∗i can be
approximated by a Gaussian blur kernel of size 5, which
is roughly estimated from sharp edges in those LR images.
Similarly, the elastic image registration method [62] is used to
calculate the warps between LR images rather than to construct
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Fig. 5. Classification results for Indian Pines’ AVIRIS data. The first row from left to right shows the classification results of SVM, LORSAL, and MPM-LBP
with the original Indian Pines’ AVIRIS data. The bottom row from left to right shows the improved classification results with the augmented data.

Fig. 6. Experimental results on real Landsat7 data. (a) Mean of those four aligned Landsat7 images. (b) IBP. (c) MAP-Huber. (d) Our method. (e) Local
area of the aligned mean image in (a). (f) Local area of the IBP reconstructed image in (b). (g) Local area of MAP-Huber reconstructed image in (c).
(h) Local area of the IBP reconstructed image in (d).

real warping matrices Mi and M∗i . Common rigid registration
methods may fail to handle irregular local warps and trans-
formation caused by platform vibration and air turbulence

in LR remote sensing images. Therefore, we use an elastic
registration method to model the warps and to improve the
reconstruction image quality.
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Fig. 7. PSFs and the variance of those equivalent Gaussian σ2 kernel for each SR method. (a) IBP, σ 2 = 2.16. (b) Huber, σ 2 = 2.22. (c) Proposed method,
σ 2 = 2.72.

Fig. 8. Byproducts of MSR-SR in Fig. 6(d). (a) Sparse components zs in the reconstructed image. (b) Smooth components zw . (c) Edge components.
Therefore, the reconstructed image z = zs + zw + zc .

In order to evaluate the performance of the proposed
method, we compare it with other popular methods: IBP [46]
reconstruction and MAP-Huber [48]. The original sizes
of the LR images are 256 × 256 pixels. To carry out a
better comparison, we also display the central part of the
reconstructed images in an enlarged scale. The experimental
results are shown in Fig. 6. The mean of four aligned images
is in Fig. 6(a). We can see that it is very blurred and most of
details are lost. Although all SR reconstructed images from
Fig. 6(b)–(d) are much sharper and clearer than the mean
of four aligned images, the proposed method provides the
best reconstruction under a visual comparison. For example,
as shown in the right corner of Fig. 6(e)–(h), there is a
three-way junction or “T” junction. We cannot see it clearly
in Fig. 6(e)–(g), but the three-way junction can be easily
recognized in Fig. 6(h). Moreover, the bridge in the top left
of the enlarged version in Fig. 6(h) provides a much more
decent appearance than other methods.

In general, it is difficult to carry out a quantitative compari-
son for those super-resolved images by different methods with
real data. Here, point spread functions (PSFs) are computed
by assuming that Fig. 6(a) is a blurred version of those super-
resolved images [Fig. 6(b)–(d)]. In this case, a wider PSF
indicates better resolution, since the blurred image is the same
for all super-resolved images. The PSFs are computed using a
Wiener filter, and the results are shown in Fig. 7, in which
the PSF of our method shows the largest half peak width
(best resolution). To quantify this further, circularly symmetric
Gaussians are fitted to the PSFs based on equivalent volume,
and comparison of the resulting variance of the equivalent
Gaussian σ 2 also indicates that our method achieves the best
resolution σ 2 = 2.72.

Interestingly, as a bonus from MSR-SR, full version of the
sparse components zs , the smooth components zw, and the
edge components of zc can be reconstructed separately and are
shown in Fig. 8(a)–(c), respectively. Those resolved subimages
by MSR-SR may help multispectral/hyperspectral-based clas-
sification methods by easily combining spatial constraint in a
certain way.

IV. DISCUSSION

Ideally, what we wish is that any components in an image
can show sparse representation only in a particular domain.
In other words, a component can show up sparsity only in a
particular domain. As shown in Fig. 8(b) and (c), however,
there are overlapped regions between the wavelet represented
components and the curvelet represented components. This
is mainly because those two transformations (wavelet and
curvelet) are not orthogonal. So here is an open problem,
“incoherence”-like property, which is widely used in the CS
community denoting the two completely uncorrelated trans-
form domains [2], is preferred when selecting the combination
of transformations and the best combination needs further
investigation.

The initialization of those methods is not sensitive, and the
initial Zs , Zs , and Zw can be empty images. The proposed
method will converge to a separation because it is a convex
optimization problem. As far as the computational efficiency
of the framework is concerned, MSR-SR is much slower
than the classification case. This is mainly because there
are extra procedures: such as interpolation, warping, and
blurring in each iteration. Moreover, the elastic registration
is built in with MSR-SR for solving irregular warping among
those LR images, which definitely decreases the computational
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efficiency. In our test, for example, reconstructing a 512×512
super-resolved image from four 256 × 256 images using
MSR-SR takes around 5 min. The computer is a 3.20-GHz
Windows machine with 8-GB RAM. All routines were created
under MATLAB.

V. CONCLUSION

It is very difficult to find a common sparse representation
for remote sensing images because of complicated ground
features. In this paper, we proposed a generalized framework
of MSRs for remote sensing images. By assuming that a
remote sensing image consists of subimages of smooth, edges,
and point-like components, a group of domain transformations
is used to sparsely represent each subimage, since each domain
transformation method is capable of representing only a partic-
ular kind of ground object or texture. The performance of the
framework was tested by solving two typical ill-conditioned
problems: classification and SR. Our experimental results
show that not only the new framework of MSR can improve
classification accuracy but also can construct a much better
high-resolution image than other common SR methods. The
proposed framework MSR is a competitive candidate prior for
solving other remote sensing images-related MAP problems.
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