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Development of Prototype Algorithms for
Quantitative Precipitation Nowcasts From AMI
Onboard the GEO-KOMPSAT-2A Satellite

Sukbum Hong, Dong-Bin Shin, Byeonghwa Park, and Damwon So

Abstract—Statistical approaches for quantitative precipitation
nowcasts (QPNs) have emerged with recent advances in sensors
in geostationary orbits, which provide more frequent observa-
tions at higher spatial resolutions. Advanced Meteorological Im-
ager (AMI) onboard South Korea’s second geostationary satellite
(GEO-KOMPSAT-2A), scheduled for launch in early 2018, is
an example of these sensors. This paper introduces operational
prototype algorithms that attempt to produce QPN products for
GEO-KOMPSAT-2A. The AMI QPN products include the poten-
tial accumulated rainfall and the probability of rainfall (PoR)
for a 3-h lead time. The potential accumulated rainfall algorithm
consists of two major procedures: 1) identification of rainfall
features on the outputs from the GEO-KOMPSAT-2A rainfall rate
algorithm; and 2) tracking of these rainfall features between two
consecutive images. The potential accumulated rainfall algorithm
extrapolates precipitation fields every 15 min. Rainfall rates at
each time step are accumulated to yield the 3-hourly rainfall. In
addition, the extrapolated precipitation fields at 15-min intervals
are used as inputs for the PoR algorithm, which produces the
probability of precipitation during the same 3-h period. The QPN
products can be classified as extrapolated features associated with
precipitation. The validation results show that the extrapolated
features tend to meet the designated accuracy for the prototype
development stage. We also confirm a tendency for decreasing
accuracy of the QPN products with increasing forecast lead time.
Mitigating the dependence on lead time may remain a chal-
lenge that can be incorporated into the next generation of QPN
algorithms.

Index Terms—Geostationary satellite, potential accumulated
rainfall, probability of rainfall (PoR), quantitative precipitation
nowcast.

1. INTRODUCTION

ROTOTYPE algorithms for quantitative precipitation
nowcasts (QPNs) have been developed for the Advanced
Metrological Imager (AMI) onboard the second Korean geo-
stationary satellite (GEO-KOMPSAT-2A), which is scheduled
for launch in early 2018. The AMI QPN algorithms predict
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precipitation and probability of rainfall (PoR) for very short
time ranges (0-3 h) using only satellite observations. The
AMI QPN algorithms are based on statistical and probabilistic
approaches that were similarly adopted in the rainfall nowcast-
ing algorithms for the Advanced Baseline Imager onboard the
Geostationary Operational Environmental Satellite (GOES)-R
in [1]-3]. Utilization of such satellite data is the focus of this
paper, with the aim of improving QPN results.

Precipitation is an exceedingly important meteorological
phenomenon because it strongly affects agriculture, industry,
and daily life. Moreover, accurate forecasting of precipitation
can save human lives and reduce economic losses from extreme
weather damage such as thunderstorms, tropical depressions,
and cyclones. To obtain the best predictions of precipitation,
observations have been made using rain gauges, radar, satellite
data collection, and numerical models. Radar is considered the
most useful instrument for forecasts over very short time ranges
because it provides the high spatial and temporal resolution
necessary for precipitation estimates with high accuracy. Radar-
based nowcasts currently use extrapolation and statistical analy-
ses such as Tracking Radar Echo by Correlation (TREC) [4] and
Thunderstorm Identification Tracking Analysis and Nowcast-
ing (TITAN) [5]. To extend these techniques to satellite-based
nowcasting, the AMI QPN algorithms are developed with proxy
data from the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) onboard the METEOSAT-9 satellite.

The well-known extrapolation techniques introduced by
Pierce et al. [6] and Reyniers [7] can be classified into area-
and cell-tracking methods. The first strategy divides the latest
images of rainfall fields into grids and compares those grids
with previous images to detect changes in rainfall patterns.
The latter strategy compares the center of individual rainfall
fields with previous images of the same area to determine
the direction of the rainfall field. Area-tracking methods (e.g.,
TREC and the McGill Algorithm for Precipitation nowcasting
by Lagrangian Extrapolation, i.e., MAPLE [8]) are expected to
perform better for larger enveloping rainfall fields. Meanwhile,
cell-tracking methods (e.g., TITAN and Storm Cell Identifica-
tion and Tracking, i.e., SCIT [9]) are optimized in convective
rainfall fields. The AMI QPN tracking method is a blend
of area- and cell-tracking methods to improve motion vector
estimates that utilize the classification of rainfall type based
on the AMI rainfall rate algorithm. More details on the AMI
rainfall rate algorithm can be referred to in Shin et al. [10].

Another type of precipitation now cast, precipitation proba-
bility, is widely used to predict rainfall rates because it provides
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quantitative information in a precise and unambiguous manner
[11]. The most popular method for quantifying the PoR is
based on statistical analyses of past observations [12]. The great
advantage of AMI QPN is conflation of data from two sepa-
rate analytical strategies, through which the PoR can be more
accurately estimated by statistical analysis of 12 consecutive
potential rainfalls for the next 3 h. Despite the simple concept
of this technique, there may be inherent errors due to incor-
rect estimations of rainfall rates, computational anomalies in
calculating potential accumulated rainfall, linear extrapolation
failures resulting from growth or decay of rainfall features, and
changes in velocity [13]. However, the PoR based on the AMI
QPN algorithm is expected to reduce such errors.

Since the AMI QPN algorithms adopt precipitation data
estimated from infrared (IR) observations, it is worthwhile
to briefly review the characteristics of IR-based precipitation
measurements. IR-based precipitation estimates from satellites
are typically resolved by radiation emitted from precipitating
clouds that is related to cloud top temperature for optically
thick clouds. IR-based estimation assumes that colder cloud top
temperatures tend to be associated with higher precipitation rate
(e.g., [14]{16]). As pointed by many investigators, including
Scofield and Kuligowski [17], this assumption works better
for precipitating clouds with cold top temperatures such as
tall convective clouds than for warm or shallow precipitating
clouds. Based on the understanding of the different relation-
ships between IR cloud top observations and precipitation,
more advanced algorithms utilize the cloud physical proper-
ties and microwave-calibrated precipitation data (e.g., [10] and
[18]). Precipitation estimation from IR data still has limitations
since surface precipitation is indirectly inferred from cloud top
observation. However, IR-based precipitation estimates are the
only precipitation data available on a continuous basis in remote
locations.

This paper presents the prototypes of the AMI QPN algo-
rithms. The data sets for testing these algorithms are described
in Section II, and a description of these algorithms is presented
in Section III. The results of the AMI QPN algorithms are
described in Section IV, followed by a summary of future
enhancements to the algorithms.

II. DATA SET

The development of QPN algorithms for AMI begins
with estimations on rainfall rates from SEVIRI onboard the
METEOSAT-9 satellite, which has spectral bands of 6.25-12.0 ym
and spatiotemporal resolutions of 3 km and 15 min, respectively,
similar to those of the AMI. The AMI rainfall rate is estimated
from the a priori information that is constructed with the IR
brightness temperatures from GEO satellites and microwave
rainfall data from low-Earth orbiting satellites. This a priori
database is classified into eight types according to the cloud
types and latitudinal bands. Using the brightness temperature
difference between IR channels, a threshold is determined
to discriminate the cloud types into shallow and not-shallow
precipitating clouds. The latitudinal bands are separated into
four latitudinal zones: 60°-30° S, 30° S-EQ, EQ-30° N,
and 30°-60° N. The database is used to invert IR brightness
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TABLE 1
INPUTS FOR THE AMI QPN ALGORITHMS

Potential accumulated

Scene cainfall Probability of rainfall
July 1, 2012 1545 and 1600 1600 to 1845
July 2, 2012 1545 and 1600 1600 to 1845
July 3, 2012 1545 and 1600 1600 to 1845
July 5, 2012 1745 and 1800 1800 to 2045
July 19, 2012 1445 and 1500 1500 to 1745
July 27,2012 1745 and 1800 1800 to 2045

temperatures to the surface rainfall rate based on the Bayesian
approach. The Bayesian approach possesses the advantages
of simultaneously using multichannel brightness temperatures
and using the PoR reserved in the a priori database. A detailed
description of the AMI rainfall rate algorithm is provided in
the theoretical basis document for the algorithm [10].

The outputs from the AMI rainfall rate algorithm utilizing the
SEVIRI data are precipitation fields estimated every 15 min,
fed into the AMI potential accumulated rainfall algorithm,
which, in turn, provides inputs for the AMI probability of the
rainfall algorithm. Data for evaluating the AMI QPN algorithms
collected from six events during 2012 are listed in Table I.
In summary, the AMI potential accumulated rainfall algorithm
uses two consecutive rainfall rate images for each event in the
selected periods; similarly, the AMI probability of the rainfall
algorithm uses 12 consecutive instantaneous potential rainfall
images.

III. DESCRIPTION OF ALGORITHM

The AMI QPN algorithms produce two products, namely,
the potential accumulated rainfall and the PoR. The potential
accumulated rainfall algorithm provides the 3-h accumulated
rainfall for a very-short-range forecast using extrapolation,
whereas the PoR algorithm yields the rainfall probability during
the same time period through statistical methods.

A. Potential Accumulated Rainfall

The potential accumulated rainfall algorithm first identifies
rainfall features and computes the motion vectors of the identi-
fied rainfall features through extrapolation. The algorithm can
then extrapolate future rainfall rates from current and previous
rainfall rate outputs, as evidenced by satellite observations.
Several investigations, including [19]-{21], have reported that
extrapolation-based prediction is more effective than numeri-
cal weather model-based prediction for a short lead time of
less than a few hours. A primary assumption of the potential
accumulated rainfall algorithm is that the rainfall feature is ad-
vected by a uniform velocity field, whose rainfall rate remains
unchanged because of Lagrangian persistence, as follows [8]:

rr(x,y,t + At) = rr(x + Az, y + Ay, t) (1

where 77 is the rainfall rate, At is the lead time, and Ax and Ay
are the x- and y-components of the motion vectors, respectively.
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The rainfall feature has to be defined as a region of a signifi-
cant precipitation field that is separated from other regions. The
rainfall features are broken into rain pixels and non-rain pixels
by the threshold as follows:

rr(z,y) > 1 mm/h. )

The identification of rainfall features in the prototype al-
gorithm is based on the threshold in (2) and is subsequently
enhanced by two-step smoothing filters. The positive impact of
smoothing has been demonstrated in previous studies [22], [23].
As the first smoothing step, the rainfall rates in each pixel are
substituted by the median rainfall rates in an area of 11 pixels
by 11 pixels. For the second step, the average smoothing filter
in an area of 11 pixels by 11 pixels is used to enhance the
identification of the rainfall features again. After detecting a
rainfall feature, the center and size of the feature are determined
from the maximum value of rainfall rates in the rainfall features.
The identified rainfall feature is masked for removal from the
current image, and then multiple rainfall features are detected
for multiple iterations following the same procedure.

Once the identification of rainfall features is complete in the
current and past satellite images, rainfall features are analyzed
to determine their movement. The AMI tracking technique is a
combination of area and cell tracking to determine the motion
vector of rainfall features. After identifying the rainfall features
in the current satellite image, the motion vector is computed for
the center of the rainfall features using the cross correlation in
(3) between the rainfall features in the current image and those
around the search area in the previous image
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where M refers to the maximum diameter of each rainfall
feature that has been determined by the ratio of rain pixels to
total pixels reaching 0.7 within the rainfall feature or 101 pixels,
whichever is smaller. z and y are the rainfall rates, and Z and ¥
are the averages of x and y for the current and previous images,
respectively.

A flowchart of the AMI potential accumulated rainfall algo-
rithm is shown in Fig. 1, and user-selectable input parameters
for the prototype potential accumulated rainfall algorithm are
listed in Table II.

B. PoR

The probabilistic now cast for AMI derives a precipitation
prediction of more than 1.0 mm of rainfall during the next 3 h.
The PoR algorithm takes the outputs from the potential accumu-
lated rainfall algorithm as inputs, i.e., 12 instantaneous potential
rainfalls. The potential rainfalls can then be regarded as 12 trials
that directly convert the PoR in each pixel as follows:

Z}il agng + NZT'I"
12

PoR; = x 100% ()
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Fig. 1. Flowchart of the potential accumulated rainfall algorithm.

TABLE II
PHYSICAL PARAMETERS OF THE POTENTIAL ACCUMULATED
RAINFALL ALGORITHM

Parameter Value Function
ITthreshold ! 1 mm/hr Identification
med(x, y) > 11 x11 pixels Identification

Timin 3 15 pixels Identification

Imax ri/tis; > 0.7 or 50 pixels Identification
Riearch 5 9 pixels Tracking

Neell 6 25 Identification & Tracking

(1) is the threshold of rainfall rates, (2) is the median smoothing filter, (3) is
the minimum radius of the rainfall features, (4) is the maximum radius of the
rainfall features, (5) is the radius of search area in the past satellite image,
and (6) is the total number of rainfall features.

where n; is a frequency index indicating raining or non-raining
pixels for the tth image. The value of n; is defined as n; =1
for rainfall rates > 1 mm/h, and n; = 0 otherwise.

The total count of n; for the 12 images of the potential
rainfalls then ranges from O to 12. In the calculation of the PoR,
however, decreasing accuracy of the potential rainfall estimates
with increasing time intervals may occur. Moreover, the esti-
mated rainfall rate may have its own particular uncertainty at
the lower limit of rainfall intensity. In order to consider both
the lower limit uncertainty in the rainfall rate estimates and
the degrading quality of the potential rainfall estimates as a
function of time intervals, twofold corrections are made on the
PoR considering both uncertainty of rainfall rate estimation and
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Fig. 2. Flowchart of the PoR algorithm.

weight function for the frequency index. The uncertainty of
rainfall rates Ny-~,.. is set to 1 if the sum of the potential rainfalls
over the entire time span is greater than 0.1 mm; otherwise, it
is set to 0. The weight function o; has been also applied to the
PoR equation. The weight can be empirically estimated by the
following formula:

M=o 5)

where o, is expressed as follows:

max max

1
o=, | ¥ Z Z(rrobsi,J — TTfor; ;)2 (6)

i=1 j=1

where 77r.hs 1S the observed rainfall rate, and rre, is the
predicted instantaneous potential rainfall. The weight function
of the prototype PoR algorithm is calculated from the average
of two events on July 28 and 29, 2012. In addition, the potential
rainfall estimation contains possible errors due to uncertain-
ties in tracking the motion vector and in defining raining
areas. In order to mitigate such problems, the PoR is also
estimated for non-raining pixels close to raining pixels. The
neighboring pixel of a raining pixel gives the PoR estimated as
follows:

PoRy = (<7”L>15 + 0'15) x 100% 7

where (n)15 is the average frequency within a 15-pixel radius
of a target pixel, and o5 is the average standard deviation. The
flowchart of the AMI PoR algorithm is shown in Fig. 2.

IV. RESULTS AND VALIDATION

Satellite rainfall rate data estimated from the AMI rainfall
rate algorithm were collected for six events, each with a 4-h
duration period, during 2012. The distributions of the rainfall

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 12, DECEMBER 2016

rate estimates indicate decaying rainfall features in most cases,
except for the July 19 and July 27 events. The highest values,
based on the observations, are 48.8 mm/h of rainfall rate and
102.8 mm for 3-h accumulated rainfall. The collected rainfall
rate data for six different rain events are used to test the
prototype AMI QPN algorithms.

The results are shown in Figs. 3 and 4 for the potential accu-
mulated rainfall algorithm and the PoR algorithm, respectively.
Validations of the QPN estimates over the full disk observations
of the SEVIRI sensor are performed using scalar accuracy mea-
sures, including the correlation coefficient (Corr), bias (Bias),
and root mean square error (RMSE). Categorical accuracy mea-
sures such as probability of detection (POD), false alarm rate
(FAR), and Heidke skill score (HSS) [24] are also adopted for
the validation. The retrieved potential accumulated rainfalls are
validated with the rainfall data based on SEVIRI observations
for the precipitation cases on July 1, 2, 3, 5, 19, and 27,
2012. Fig. 5 presents scatter plots of the retrieved potential
accumulated rainfalls versus 3-h accumulated rainfall. Table III
summarizes the validation statistics for the retrieved potential
accumulated rainfalls with the 3-h accumulated rainfall. The
accuracy requirements for the potential accumulated rainfall are
10 and 5 mm for pixels classified as raining at the prototype-
development stage and at the final stage, respectively. The
current prototype algorithm has a Bias ranging from 0.121 to
0.267 mm and RMSE values in the range of 3.781-7.948 mm.
The accuracy of the prototype algorithm based on the ranges of
bias and RMSE tend to meet the requirement values at the pro-
totype development stage. Note that all potential accumulated
rainfalls are larger than those of the 3-h rainfall accumulation,
as shown by the positive biases. This problem may be improved
by accounting for growth or decay of rainfall features in a future
version of the algorithm. Note also that the forecasting accuracy
of the potential accumulated rainfall algorithm decreases with
time, as illustrated in Fig. 6. This finding may be due to the
limitations of the extrapolation technique and degradation of
the accuracy of the potential accumulated rainfall estimates.
Table IV summarizes the validation statistics for the retrieved
1-h potential accumulated rainfall and rainfall accumulation.
For comparison, TITAN yields a POD value of 0.59 and a
FAR value of 0.68 at a forecast time of half an hour [5], but
the average values for the AMI potential accumulated rainfall
are 0.49 and 0.26 for POD and FAR, respectively. One prob-
lem with comparing the results of AMI potential accumulated
rainfall with those of TITAN is that there is a difference in
methodology. The comparison indicates that the accuracy of
the AMI potential accumulated rainfall algorithm is compa-
rable with that of the results from TITAN at a forecast time
of 1 h.

A major advantage of PoR is that this method provides a
statistical measure to discrete rain/no-rain information. The
discrimination of rain/no-rain information appears to be easier
than matching a continuous rainfall distribution. For a quan-
titative comparison of the retrieved PoR and 3-h accumulated
rainfall, a pixel with the PoR higher than 50% is considered
as a raining pixel. The validation statistics for the PoR are
listed in Table V: both scalar and categorical accuracy measures
show similar values for the different cases. As the raining and
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Fig. 3. Potential accumulated rainfalls derived from the satellite rainfall rates for six different rain events: (a) 1600-1845 UTC July 1, 2012; (b) 1600-1845 UTC
July 2, 2012; (c) 1600-1845 UTC July 3, 2012; (d) 1800-2045 UTC July 5, 2012; (e) 1500-1745 UTC July 19, 2012; and (f) 1800-2045 UTC July 27, 2012.

non-raining pixels determined from the PoR as a percentage
and the 3-h accumulated rainfall in millimeters are compared,
the categorical accuracy better indicates the difference between
the two products. The POD values appear to be less than
0.5 (average 0.442) for all the cases. The FAR statistics also
fluctuate between 0.254 and 0.343. The accuracy of the PoR is
quite closely related to the potential rainfalls extrapolated every
15 min, which significantly degrade as a function of forecast
lead time. The accuracy of PoR thus can be increased with
improvement in potential accumulated rainfall. Here, it can be
noted that the rainfall estimations are independently made and
viewed as a reference of validation. The validation statistics
produced do not reflect the accuracy of the actual extrapolated
rainfall.

V. SUMMARY AND FUTURE WORK

The prototype algorithms of potential accumulated rain-
fall and PoR have been introduced for the AMI on GEO-
KOMPSAT-2A. The AMI algorithms predict precipitation rates
and probability of occurrence for the next 3 h. The AMI
algorithms are based on the accuracy of the AMI rainfall rates
and assume constant rainfall features in the next 3 h. Evidently,
these assumptions are not always true; thus, the challenge of

how to improve the precipitation forecast in very short time
range remains. In this paper, data from SEVIRI onboard the
METEOSAT-9 satellite were used as a proxy for AMI. A total
of six events on July 2012 over the full disk were selected for
testing the AMI QPN algorithms.

The results also show the positive effect of smoothing fil-
ters for identifying the rainfall features and to estimate their
motion vector. The positive bias from the results of potential
accumulated rainfalls indicates overestimation of precipitation,
which provides an important clue about the advection of the
rainfall features as they change over time. This challenge can
be addressed by accounting for the growth or decay of rainfall
features in a future version of the potential accumulated rainfall
algorithm. The results of the categorical accuracy measures
for both potential accumulated rainfall and PoR show signif-
icant drawbacks associated with a pixel-by-pixel comparison.
Although the accuracy of measurements decreases over time,
this accuracy may be improved by advanced motion vector es-
timations such as applying the weight function and the Kalman
filter. Despite the difficulty in tracking rainfall features due
to rapid changes over time, the classification of rainfall types
offered by the AMI rainfall rate algorithm can assist with the
measurement of motion vectors. The accuracy of the PoR pre-
diction relies not only on the results of potential accumulated
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Fig. 4. Same as Fig. 3 but displaying the PoR.

Fig. 5. Scatter plots of the retrieved potential accumulated rainfalls versus corresponding 3-h accumulated rainfalls for the six different rain events. The dashed
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TABLE II1
VALIDATION STATISTICS FOR THE RETRIEVED
POTENTIAL ACCUMULATED RAINFALL
WITH 3-h ACCUMULATED RAINFALL

Scene Scalar Accuracy Categorical Accuracy
Measures Measures
Corr Bias RMSE  POD FAR HSS
[mm] [mm]

2012.07.01.16:00-18:45 0.432 0267 5.132  0.558 0.408 0.546
2012.07.02.16:00-18:45  0.403 0.208  4.823  0.564 0.431 0.535
2012.07.03.16:00-18:45 0.486 0.121  3.781  0.575 0.399 0.557
2012.07.05.18:00-20:45 0.448 0229 4.007 0575 0.473 0.531
2012.07.19.15:00-17:45  0.356 0.162 5521  0.540 0.486 0.492
2012.07.27.18:00-20:45 0.556 0251  7.948 0.629 0.395 0.593
Average 0.447 0206 5202 0.574 0432 0.542

1.0+ -

0.8+ -

w 0.6 i

5 L ]

—

5 L ]

(})) L ]

041 .

0.2 .

L LD X 7

[ < Bias 1

F o ]

00 L P ) R e

1.5 2.0 2.5
Hours

0.0 0.5 1.0

g
o

Fig. 6. Accuracy measures as a function of forecast lead time.

TABLE IV
SAME AS TABLE III BUT FOR HOURLY RETRIEVED
POTENTIAL ACCUMULATED RAINFALL WITH
1-h RAINFALL ACCUMULATION

Scalar Accuracy Measures Categorical Accuracy Measures

Hour -
Corr Bias RMSE POD FAR HSS
[mm] [mm]
0-1 0.758 0.049 1.754 0.675 0.309 0.672
1-2 0.371 0.144 3.140 0.386 0.622 0.360
2-3 0.233 0.096 3.407 0.295 0.733 0.256
TABLE V

VALIDATION STATISTICS FOR THE RETRIEVED POR
WITH 3-h ACCUMULATED RAINFALL

Scene Scalar Accuracy Measures Categorical Accuracy
Measures
Corr Bias RMSE  POD FAR HSS
[%] [%]

2012.07.01.16:00— 0.530 1.038 1443 0424 0312 0.515
18:45

2012.07.02.16:00— 0.514 0981 1477 0420 0.343 0.502
18:45

2012.07.03.16:00— 0.560 0986 1437 0458 0.295 0.545
18:45

2012.07.05.18:00— 0.562 0.535 10.53 0456 0.294 0.548
20:45

2012.07.19.15:00— 0.513  1.018 1398 0400 0.321 0.494
17:45

2012.07.27.18:00— 0.596 0906 1342 0492 0254 0.584
20:45

Average 0.546 0911 13.61 0442 0.303 0.531

rainfall but also on rainfall rates. However, improvement to the
accuracy of PoR predictions may be achieved through statistical
analysis of rainfall types provided by the AMI rainfall rate
algorithm.
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