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A Physical Deterministic Inverse Method for
Operational Satellite Remote Sensing:

An Application for Sea Surface
Temperature Retrievals

Prabhat K. Koner, Member, IEEE, Andrew Harris, and Eileen Maturi

Abstract—We propose a new deterministic approach for remote
sensing retrieval, called modified total least squares (MTLS), built
upon the total least squares (TLS) technique. MTLS implicitly
determines the optimal regularization strength to be applied to the
normal equation first-order Newtonian retrieval using all of the
noise terms embedded in the residual vector. The TLS technique
does not include any constraint to prevent noise enhancement in
the state space parameters from the existing noise in measure-
ment space for an inversion with an ill-conditioned Jacobian. To
stabilize the noise propagation into parameter space, we introduce
an additional empirically derived regularization proportional to
the logarithm of the condition number of the Jacobian and in-
versely proportional to the L2-norm of the residual vector. The
derivation, operational advantages and use of the MTLS method
are demonstrated by retrieving sea surface temperature from
GOES-13 satellite measurements. An analytic equation is derived
for the total retrieval error, and is shown to agree well with the
observed error. This can also serve as a quality indicator for
pixel-level retrievals. We also introduce additional tests from the
MTLS solutions to identify contaminated pixels due to residual
clouds, error in the water vapor profile and aerosols. Comparison
of the performances of our new and other methods, namely,
optimal estimation and regression-based retrieval, is performed to
understand the relative prospects and problems associated with
these methods. This was done using operational match-ups for
42 months of data, and demonstrates a relatively superior tem-
porally consistent performance of the MTLS technique.

Index Terms—Condition number of matrix, ill-conditioned in-
verse methods, regularization, satellite remote sensing, sea surface
temperature (SST), total error, total least squares (TLS).

I. INTRODUCTION

PARAMETER estimation from remotely sensed satellite
measurements can be broadly categorized into two groups:

a) the direct method, which directly correlates the measure-
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ments with geophysical parameter/s without considering a
proper physical model; and b) multivariable parameter esti-
mation using some approximation of radiative transfer (RT)
physics, which is usually referred to as the physical method.
A direct method (e.g., regression) is generally used when the
number of spectral measurements is limited, where the effects
of RT physics are heavily approximated. This is often inade-
quate for characterizing the full-range of variability of global
geophysical conditions (atmospheric and oceanic states). Thus,
some corrections on the measurement often become necessary
to improve such result (by means of altering the measurement
values) that is done either statistically or by RT modeling using
a priori ancillary data [1]. The geophysical parameters are too
dynamic, and a priori data-based corrections may introduce a
high error in the retrievals, which are further used as another
set of a priori data for other applications. As a consequence,
there can be a cumulative effect of these errors on higher level
products.

The main challenge of multivariable parameter estimation
employing RT physics is that it is an ill-posed inverse problem.
Conceivably, there exists no unique solution according to the
review of retrieval theories in remote sensing (e.g., [2]–[4]).
A large number of approaches have been developed to find
a solution, all of which have their inherent limitations and
assumptions. Most of the “physical” techniques for satellite
remote sensing applications are in fact stochastic/probabilistic
approaches. Such techniques differ from each other both in
the procedure for solving a set of spectrally independent RT
equations (e.g., matrix inversion, numerical iteration) and in the
choice of ancillary data. These ancillary data are used to con-
strain the solution (e.g., atmospheric covariance statistics and
a priori estimate of the retrieved parameters), which may in-
troduce errors from ancillary sources. Therefore, it is critically
important to establish and implement a physical deterministic
inverse method for operational satellite applications.

There are two distinct schools of thoughts in the development
of physical inverse model. i) One school believes that there is a
true value of all individual retrieved parameter, but associated
with error root-mean-square error (RMSE) and these methods
can be derived at individual measurement points. ii) The other
school assumes that all retrieved parameter values are uncertain
and as a result these parameters are stated in the expected value
and uncertainty of retrieval standard deviation (SD). As per
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the present literature survey, we shall refer to the first one as
“deterministic” and the second one as the “stochastic” approach
[5]–[7]. This work compares the outcomes of these two differ-
ent approaches after bringing them to a common platform, i.e.,
the deterministic approach. Using the deterministic paradigm,
the expected value of the parameter in the stochastic approach
is combined with the mean error and true state of the parameter.
The mean error is often known as the bias term. Therefore,
RMSE =

√
(bias2 + SD2), which is the reported total error

(RMSE) in the deterministic approach.
One of the traditional deterministic approaches is least

squares (LS) method, which is well understood and was first
introduced by Legendre in1805 [8]. However, it does not work
well in real life problems (linear or nonlinear) when the prob-
lem is ill-conditioned. For an ill-conditioned problem the error
propagated from measurement space to state space is multiplied
by the condition number of the matrix [9], [10]. Many real life
applications are ill-conditioned problems. The need to constrain
the problem by other assumptions has resulted in a number
of different inverse methods. The bases of real life applied
deterministic and stochastic approaches are regularization/
constrained (e.g., [11]–[17]) at a single measurement point
and Bayesian probability theory (e.g., [2], [18]–[20]) for a set
of measurement, respectively. Parameter estimation, in gen-
eral, can be viewed as an optimization problem, in which
an objective function representing data misfit (measurement
error) is minimized in a given norm [12]. From a deterministic
viewpoint, the two-norm (i.e., a quadratic objective function) is
mathematically attractive because the minimum can be explic-
itly written in a closed form. In the stochastic approach, this
choice of two-norm is statistically the most likely solution if
data are normally distributed, however, this estimate is typically
less accurate if the data are not normally distributed or have
outliers [20].

A significant difference between methods and their solutions
lies in how the weight (regularization strength) is chosen. It
is often stated that the stochastic approach is more accurate
than the deterministic approach because it better weights the
data and parameter misfits using corresponding covariance
matrices. On the other hand, most traditional deterministic
approaches such as positivity constraints or regularization only
use constraints or simple weights on the parameter misfit [20],
but do not include the data misfit information. Thus, in practice,
solving atmospheric inverse problems is dominated by optimal
estimation method (OEM), which is in stochastic family. How-
ever, the weight of the data misfit embedded in the mathemati-
cal formulation of OEM for inherently nonlinear RT problems
presents its own issues. For example, the weight of the residual
by the data misfit covariance matrix in this approach may not
improve optimization results because the contribution from the
nonlinear term is also weighted. In contrast, recent determin-
istic approaches have considered the fidelity of the data or the
data misfit criterion [10], [14], [15] on the determination of the
optimal regularization strength. However, some deterministic
methods have been established on an experimental basis using
simulations, and there are no popular deterministic techniques
implemented for an operational environment. One of the pri-
mary aspects of this paper is to establish the benefit of the

physical deterministic method in overcoming many operational
hurdles.

One of the inputs for stochastic methods is the measurement
error covariance matrix, and it is difficult to construct a properly
representative one for any satellite retrieval because of errors
in the instrument, the forward model, RT spectral coefficients,
and due to nonlinearity. Additionally, near-real-time processors
in remote sensing frequently use high approximations of the
Jacobian matrix in order to speed up the calculation [21], [22].
Among the existing deterministic and stochastic methods, Total
Least Squares (TLS) is the only one, which inherently accounts
for the Jacobian error in its optimization, since it calculates
the data misfit criterion and feeds it into its regularization
scheme [23]–[26]. In addition to the theoretical discussion
about inverse problems, we will discuss in this paper various
operational problems as well as demonstrate an evidence of suc-
cessful sea surface temperature (SST) retrievals from GOES-13
(Geostationary Operational Environmental Satellite) measure-
ments using a modified TLS (MTLS) method.

Although the MTLS method can generally be applied for
any inversion problem, we have chosen satellite SST retrievals
to demonstrate the technique because of the availability of
suitable high-quality reference data sets (buoy temperatures)
required for validation. Most SST retrievals from satellite mea-
surements are still performed using regression-based methods
and, over the years, there has been only limited progress. Such
approaches were justifiable in the interest of time and compu-
tational resources when they were formulated [27], [28] at the
cost of highly approximated RT physics. With the availability
of improved computational facilities, render the development of
a deterministic physical approach, such as the MTLS method,
both feasible and desirable. In order to demonstrate its advan-
tages, this paper also compares retrievals from the proposed
MTLS, OEM and the traditional regression-based formulation.

II. THEORETICAL BACKGROUND OF MTLS

Although TLS has first been used only in recent decades [17],
[29], this fitting method has a longer history in the statistical
literature and has been known under different nomenclature,
e.g., orthogonal regression or errors-in-variables. For instance,
in 1877 Adcock [30] employed this approach for univariate
problem. However, despite its long use in statistical inversion,
a deterministic version of TLS has only recently been derived
using linear algebra, which will be recapped here. The TLS
method [31] is based on minimization of the errors in the
measurement (δy) and the Jacobian (δK) at the individual
pixel level as follows:

min
‖δK‖,‖δy‖,x

‖δK‖2 + ‖δy‖2 subject to

(K − δK)x = yδ − δy (1)

where ‖.‖ is the second-order mathematical norm and x is the
vector of state space parameters. The terms K, yδ, δK and δy
are the Jacobian and measurement vector (both including error),
and errors in the Jacobian and the measurements, respectively.
The basic assumptions are that any real-world inverse problem
comprises errors in Jacobian and measurement, and that the
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theoretical equation yδ − δy = (K − δK)x can be formed
after subtraction of these errors from K and yδ . It involves
three-parameter minimization processes of δK, δy and x. First,
we consider the inner minimization with two parameters δK
and δy in the norm space to reduce it to a one-parameter
minimization problem

min
‖δK‖,‖δy‖

‖δK‖2 + ‖δy‖2 subject to

‖(K − δK)x‖ = ‖yδ − δy‖ (2)

The Lagrangian function of (2) can be written as

L(δK, δy, λ) = ‖δK‖2 + ‖δy‖2

+ λ {‖(K − δK)x‖ − ‖(yδ − δy)‖} (3)

where L is the Lagrangian function and λ is the Lagrange
multiplier. Applying Karush-Kuhn-Tucker (KKT) conditions
[32], [33] to (3), it can be formulated as

2‖δK‖ − λ‖x‖ =0
(
∇‖δK‖L = 0

)
(4)

2‖δy‖+ λ =0
(
∇‖δy‖L = 0

)
(5)

‖(K − δK)x‖ = ‖yδ − δy‖ (∇λL = 0) (6)

where ∇ is the partial derivative of the Lagrangian function.
Combining (4) and (5), the relation of δK and δy can be
derived as

‖δK‖ = −‖δy‖ ‖x‖. (7)

Similarly, combining (6) and (7), δy can be separated out as

‖δy‖ =
‖yδ −Kx‖
1 + ‖x‖2 (8)

‖δK‖ can be determined by substituting the expression of ‖δy‖
in (8) into (7)

‖δK‖ = −‖(yδ −Kx)‖ ‖x‖
1 + ‖x‖2 . (9)

We now replace the ‖δy‖ [(8)] and ‖δK‖ [(9)] into (2) and
the three-parameter minimization reduces to a one-parameter
minimization as

min
‖δK‖,‖δy‖,x

‖δK‖2 + ‖δy‖2

=

{
−‖(yδ −Kx)‖ ‖x‖

1 + ‖x‖2
}
+

{
‖yδ −Kx‖
1 + ‖x‖2

}2

= minx
‖yδ −Kx‖2
1 + ‖x‖2 . (10)

The well-known first-order necessary condition [34], [35]
for an exact solution for linear function (f(x)) of (10) can be
formulated as

x =
(
KTK + g(x)I

)−1
KTyδ (11)

where, g(x) = ((‖yδ −Kx‖2)/(1 + ‖x‖2)) and I is the iden-
tity matrix. Using a first-order Taylor series approximation at

kth iteration f(xk) = f(xk−1) +K(xk−1)Sk and the residual
vector Δyδ = yδ − f(xk−1), (11) can be rewritten as

Sk =
(
KTK + g(xk−1)I

)−1
KTΔyδ (12)

where Sk is the update of an iterative inverse method. The
constant g(xk−1) is dependent on the state space parameters
and it cannot be uniquely determined by using any analytical
solution without knowing the true state vector. Thus, this prob-
lem is solved by eigenvalue analysis and considering the error
in variables as described in Markovsky and Huffel [36] who
demonstrated that the adoption of the lowest singular value of
the matrix [K Δyδ] is the appropriate value of g(xk−1) for both
single and multiple iterative solutions. This allows factorizing
the matrix [K Δyδ] using singular value decomposition (SVD),
as follows:

[u σ v] = [K Δyδ] (13)

where σ represents the singular values. The lowest value of σ
is the appropriate regularization strength (σend) for an iterative
solution [36]. Equation (12) can now be reformulated to its final
form for a single iteration as

xtls = xig +
(
KTK + σ2

endI
)−1

KTΔyδ (14)

where, xig is the initial guess information for the parameter
space. This method yields a good retrieval when the condition
number of the Jacobian may be considered low for a given
problem. Since the RT problem is inherently ill-conditioned,
the regularized TLS (RTLS) or truncated TLS (TTLS) are most
commonly used (e.g., [23], [24], [31], [37], [38]). The number
of state space variables of the present problem, which will be
introduced in the next section, is only two. It is not feasible to
develop a first derivative operator for such a problem, which is
the minimum requirement for the RTLS method. The present
problem will be constructed with three measurements and two
parameters and there will be only two singular values. A study
was made using truncation of second singular value from the
solution space but the solution produces erroneous results due
to excessive regularization. Thus, we proposed an alternate way
to regularize the TLS solution.

As reported by Koner et al. [24] using a mathematical
derivation, the error realization into the state space parameters
for any ill-conditioned linear inversion is proportional to the
condition number of the Jacobian (κ) and all errors associated
with this inversion, which can be written as

‖e‖ ≤ κ Σ‖Ei‖ (15)

where e is the realization of the error into the retrieved pa-
rameters and Ei represents errors associated in the inversion,
including errors in Jacobian, forward model, measurements,
and ancillary data. Since TLS formulation does not account for
the error propagation due to an ill-conditioned matrix, we have
modified the TLS to minimize enhancement of errors from the
measurement to the state space. We have empirically modeled
this for our specific application and found that the lowest
singular value multiplied by log(κ) and divided by L2-norm
of the normalized residual vector in a step function is the
optimal regularization strength, which we refer to as “modified
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total least squares” (MTLS). A similar type of logarithmic
constraint (log(n) instead of log(κ), where n is the cardinality)
is assumed for theoretical ill-conditioned inverse problems
in [39], where they argued that a logarithmic constraint has
important optimality properties.

The basic understanding of the ill-conditioned inversion is
that the regularization strength would be high when the problem
is highly ill-conditioned and/or high error. It is very difficult
to estimate the noise embedded in a particular retrieval in
an operational environment. The residual is the sum of the
noise and signal. Therefore, using some knowledge of the
problem, it is possible to approximate the signal-to-noise ratio
(SNR) value. Most satellite inverse operational problems have
a wide range of SNR, as signal varies widely depending on
the variation of the target parameters that are dynamic. When
the residual values are low, the information content is also low
and noise is higher compared with the signal. Since the truth
is close to initial guess when the signal is low, the inversion
error may be comparable to or higher than the improvement of
the state space knowledge by the inversion. Thus, we increase
the regularization strength to avoid relatively higher inversion
error compared with the information gain, in the case where the
information content is very low. The L2-norm of the normalized
residual (Δyn

δ ) is applied to increase the regularization strength
for low residual cases in a step function. This normalization
is based on the amount of error in the problem, e.g., if the
expected error is 10–50 (of some arbitrary unit), the residual
is divided by 100 and similarly if the expected error 0.1–0.5
(of the some arbitrary unit), the residual is divided by 1.
The residual constrained regularization is a step function with
respect to SNR, which is given as

γsnr =
‖Δyn

δ ‖√
m

; when SNR ≤ β

γsnr =1; when SNR > β (16)

where m is the number of measurements and β is the threshold
of SNR, which must be proportional to the condition number of
the Jacobian. The basic concept is that high signal is required if
problem is highly ill-conditioned. The implemented additional
regularization is the combined concepts of the SNR and residual
norm-based optimization [40], [41]. We need more research on
this to identify the proper value of β for generalization. The
final formulation of MTLS is

xmtls = xig+

(
KTK +

2 log(κ)

γ2
snr

σ2
endI

)−1

KTΔyδ. (17)

The empirical information content for such a problem can be
determined [2], [10], [16] in terms of degree of freedom in
retrieval (DFR) by taking the trace of the model resolution
matrix (M rm). The expression for M rm and DFR as follows:

M rm =

[(
KTK +

2 log(κ)

γsnr
σ2
endI

)−1

KTK

]

DFR = trace(M rm). (18)

Equation (18) gives an assessment of the amount of in-
formation coming from the measurements into the retrieved
parameters.

A. Error Analysis

When a problem is solved using (17), there are errors from
two major sources embedded into the retrieved parameter [10].
Data error, which penetrates from the measurement space to the
state space is driven by the condition number of the inverted
matrix after regularization. The inserted regularization for re-
duction of the condition number of the original Jacobian con-
tributes so-called regularization/smoothing error. The resultant
retrieved error at individual pixel level can be derived using a
simple algebra for a regularized inversion as

e =
√
e2 =

√
〈‖xmtls − xtrue‖2〉. (19)

Combining (1), (17), and (19) and omitting the square root
yields

‖e‖ =

〈∥∥∥∥∥
(
KTK +

2 log(κ)

γsnr
σ2
endI

)−1

KT

(Δ{Kxtrue − δKxtrue}+ δy)

− I(xtrue − xig)

∥∥∥∥∥
〉
. (20)

Using the assumption that the statistical errors in the compo-
nents of δy are uncorrelated and replacing the M rm from (18),
the (20) can be rewritten as

‖e‖ = 〈‖(M rm − I)(xtrue − xig)‖〉

+

〈∥∥∥∥∥
(
KTK +

2 log(κ)

γsnr
σ2
endI

)−1

KT

(Δyδ −K(xtrue − xig))

∥∥∥∥∥
〉
. (21)

The first term of (21) is independent of statistical term and
referred to as the systematic error. From the stochastic point of
view, it is a bias for a fixed regularization scheme in a given
data set. However, we use dynamic regularization, and thus, the
error from this term varies for retrievals at different pixels. The
second term in (21) contains the statistical error δy and, under
the aforementioned conditions discussed, (21) can be further
simplified to

‖e‖ = ‖(M rm − I)(xtrue − xrig)‖

+

∥∥∥∥∥
(
KTK +

2 log(κ)

γsnr
σ2
endI

)−1

KT

∥∥∥∥∥
× 〈‖(Δyδ −K(xtrue − xig))‖〉 . (22)

The requirement for accurate error estimation in (22) is
knowledge of the true state space parameter (xtrue) and the
function is perfectly linear. Thus, (22) is a useful tool for the
optimization of the different errors for establishing validity of
linear regularized inverse methods during development using
simulation studies. However, most real life problems are nonlin-
ear and xtrue is never available. Thus, we substitute here xtrue

by the value of xrtv for the approximated analytical error (AE)
calculation. The values of this analytical error are subsequently
used to determine the quality of retrievals in our study. This also
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helps to assess our assumption that the retrieved value for x is
a valid (useful) substitute for this problem.

III. DATASETS FOR FORWARD MODELS

It is a common practice to use data of match-up between
satellite measurements, in situ references and other ancillary
information to validate and further improve a product in most
operational environments. In the present study, we have used
BTs from the GOES-13 imager and National Centers for En-
vironmental Prediction (NCEP) surface and upper-air forecast
fields. The satellite SST and buoy match-ups were operationally
generated at the Office of Satellite Products and Operations
(OSPO) at NOAA for both day and night scenes. The match-up
window was set to ±30 min for buoys coincident with satellite
pixels, yielding about 100 000 matches (irrespective of cloud
cover) for each month in this match-up database (MDB) and
the data are geographically well distributed. Subsequently, the
in situ data in our MDB are quality controlled using correspond-
ing quality flags from NOAA iQUAM [42].

Upper-air forecast fields within 3 h of each match were
obtained from NCEP. The NCEP data with a latitude and longi-
tude resolution of 1 degree are also stored in our MDB during
original data processing and comprise profiles of atmospheric
temperature and relative humidity at specified pressure levels,
and surface pressure and temperature. In this validation exer-
cise, the nearest profile is associated with each match. Despite
the fact that mature RT forward models exist in IR and near IR,
a fast forward RT model, the Community Radiative Transfer
Model (CRTM), is used in the operational environment to
reduce computational cost. Simulated Brightness temperatures
(BT) were calculated employing the CRTM v2.0 [43] with
NCEP data as input for the study of MTLS and OEM. We have
also used the CRTM-derived partial derivatives (Jacobians) of
the channel BTs with respect to surface temperature (δyλ/δs,
where y=BT and s=SST) and logarithm of total column water
vapor (TCWV) (δyλ/δ log(w) where w=TCWV), required to
solve (17) and (25). (Note that, even for retrospective process-
ing we have used NCEP forecast data rather than reanalyzed
fields in order to assess accuracy in the operational setting.)

In addition we have also used climatological aerosol profiles
as input to the CRTM. This is mainly to aid in mitigation of
nighttime aerosol contaminated pixels, which is not feasible
employing any spectral difference available with the limited
GOES-13 channel set. Thus, we use the CMIP5 [44] clima-
tological aerosol profiles [RCP Database (Version 2.0.5)] to
reduce nighttime retrieval errors only, which will serve to partly
alleviate the issue of aerosol contamination.

In this paper, using fast-forward CRTM in the interest of
operational efficiency, our goal is to implement a deterministic
method to improve physical SST retrievals. Speaking strictly
scientifically, the study of day-night together is not a significant
issue as the RT physics for both day and night is mature. How-
ever, approximations of RT physics are used in any fast-forward
RTM, including the CRTM and the confidence for 3.9-μm
daytime simulations is not yet well established. To separate this
effect from an assessment of the true performance of MTLS
and two other comparator methods (regression and OEM), we

have restricted this study to night-only retrievals. However, we
have also done a comparative study for daytime data (not shown
in this paper) which reaches the same conclusion for relative
performance of the methods.

The retrieval problem is initially assumed to be linear within
the range of BTs corresponding to NCEP field errors. This
means we anticipate that a reasonable solution may be obtained
in one step with no iteration. It is also assumed that, in this
limited BT range, only the leading two terms affecting BT, i.e.,
s, w, need to be considered as variables to solve the inverse
problem for the limited number of radiometric channels in the
GOES-13 imager.

The Bayesian cloud screening method reported in
Merchant et al. [45] is used operationally at NOAA and was
therefore considered in this study. The threshold probability
of clear sky was assumed to be 0.98. Ideally, satellite SSTs
are best validated against in situ radiometric SSTs, which are
also skin measurements [46]–[49]. However, such reference
data have a limited availability and routine validation in the
full satellite domain remains unfeasible. Therefore, satellite
SST is customarily validated against in situ SSTs (e.g., buoys),
including in this study. A constant offset of −0.17 K to account
for the skin bulk SST differences was used as a first-order
approximation. This is in agreement with the typical value for
the skin effect at night [46].

IV. OTHER PREVALENT SST RETRIEVAL METHODS

The theoretical basis of a multiple-channel sea surface tem-
perature estimation using satellite infrared data was developed
in the 1970s [50]. An early history of this development is
given elsewhere [27], [28], [51]. The atmospheric correction
term of such methods was formulated by taking advantage of
the differential absorption between 11 and 12 μm channels
using approximated RT physics. However, the 12 μm channel
is replaced by one at 13.4 μm for GOES-12 and beyond. Very
little of the signal in the 13.4 μm channel emanates from the
surface when the water vapor loading is high and it provides
suboptimal corrections for 10–20% of cases in our study. Thus,
we use a linear combination of regression formulation, similar
to the equations in references [52]

sregb = a1y3.9 + a2y11 + a3y13.4

+ (sec(sza)− 1) (a4y3.9 + a5y11 + a6y13.4) + C. (23)

For comparison purposes, in addition to the MTLS retrievals,
we have also included regression SST based on calibration
against buoys (REGB). The coefficients are calculated using the
data for the month of June 2010, which are subsequently used
to derive REGB for all months.

The spatial and temporal distributions of buoys were very
low compared with global satellite measurements and may
not have been statistically significant [53]. The results may
be ambiguous due to the fact that these retrievals are usually
validated against the same set of buoys used to calculate
the regression coefficients. To overcome these problems, RT
coefficient-based regression SST retrieval method has been
developed. The coefficients are calculated using simulated BTs
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by considering a large number of atmospheric profile data
selected to spatially and temporally representative of conditions
within the GOES-13 field of view. For comparison purposes,
we have also included the GOES-13 SST product generated
(OSPO), which is derived using the following regression-based
equation [52]:

sospo = a1 + a2y3.9 + a3y11

+ (sec(sza)− 1) (a4 + a5y3.9 + a6y11). (24)

We have also compared the results of MTLS with those
from the well-known optimal estimation method (OEM), which
is widely used in different satellite retrieval problems [2],
including for SST retrievals [54], [55]. In the implementation
of OEM for SST retrievals the same reduced state vector

x =

[
s

log(w)

]

is used, where, as before, s is SST and w is total column water
vapor. The OEM equation may be stated as

xoe=xa+
(
KTS−1

e K+S−1
a

)−1
KTS−1

e (y−f(xa)) (25)

where xa is the a priori reduced state vector, Sa is the a priori
error covariance matrix and Se is the combined measurement
and RT error covariance matrix. For characterizing the mea-
surement error in this case, the instrumental noise equivalent
differential temperature (NEDT) values are assumed to be:
ε3.9 = 0.05, ε11 = 0.053, ε13.4 = 0.06 K at 300 K as stated by
the satellite operators, where ελ denotes NEdT for a channel
at λ μm. In this paper, the NEDTs are considered constant in
radiance space (the underlying assumption is that the NEDT is
governed by photon noise only) and are calculated according to
the measured brightness temperatures (BT) employing Planck’s
law. To characterize the RT error for a particular sensor, e.g.,
GOES-13, the exact channel-specific errors of the fast-forward
CRTM are not available. Thus, based on the literature about
CRTM error for the AIRS instrument [56], we assumed CRTM
errors to be 0.25, 0.15, and 0.15 K for the aforementioned
GOES-13 channels, respectively. It is very difficult to do a
perfect forward model for any science problem, and more so in
any operational environment when fast models require approx-
imations to the full physical processes, thus the estimation of
error in the forward model is potentially ambiguous, however,
it is a required input for OEM. These uncertainties are added
to the instrumental noises to obtain values equal to the obser-
vational errors (Se) in OE. The radiometric measurements of
3.9, 11, and 13.4 μm are assumed to be mutually independent,
and thus, a diagonal covariance matrix is used for observation
error. A diagonal covariance matrix is also used for Sa, with
values for a priori errors in SST (∼1 K) and 15% variance
in TCWV.

The information content in terms of the degree of freedom of
signal (DFS) [2] is

DFS = trace
[(
KTS−1

e K + S−1
a

)−1
KTS−1

e K
]
. (26)

Retrieval results of these methods are discussed in Section V
and beyond.

Fig. 1. Total errors in SST retrievals from three different methods and in first
guess SST for January 2011. RMSE is shown as solid lines and SD is shown
as dashed lines. MTLS: modified total least square; REGR: regression; OEM:
optimal estimation method; IG: NCEP initial guess surface temperature.

V. RESULTS AND DISCUSSIONS USING CRTM 2.0

Here, we present comparative retrieval results between three
methods, namely, MTLS, OEM and OSPO regression, which
are somewhat related via RT modeling. The comparative per-
formances of all methods with a forward model calculation
employing CRTM 2.1 for MTLS and OEM will be discussed in
Section VI and beyond. The reason why we are showing both
sets of results is because it demonstrates the relative sensitivity
of the two physical retrieval methodologies (MTLS & OEM)
to RTM accuracy. Another objective is to capture different
operational retrieval problems at different times, which may not
be available in a particular month of match-ups. Thus, different
months will be chosen for the discussions of different opera-
tional problems. Finally, in Sections VII and VIII, information
content analysis and the time-series analysis of 42 months will
be presented.

Fig. 1 shows the retrieval errors with reference to buoy
temperatures (SSTb) for three different retrieval methods for the
month of January 2011. The percentage of the total matches
shown in abscissa of Fig. 1 is based on the value of total
analytical error in MTLS. It is not possible to do the binning
based on the fixed value of AE due to the practical constraint
of the problem, because the ranges of analytical errors are
different for different months. Thus, we first sort the analytical
errors in increasing order and select the value of analytical error
at 20% of total cloud-free pixels as the starting point. Then we
divided the range of AE values (from first point to the maximum
of AE) into eight bins. If a bin does not get at the least 5% of
cloud-free data, then it is combined with the subsequent bin.
For each bin, the percentage of total matches is based on the
cumulative analytical errors.

An initial guess (IG) of the parameter to be retrieved is
required for any RT inversion problem. Note that, a priori and
IG are not necessarily the same, i.e., any a prior may serve as
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Fig. 2. Scatter plot of the true versus calculated SST innovation for a single
iteration retrieval for both OEM and MTLS. “corr” stands for correlation factor.

the IG, but the IG does not require a priori knowledge, i.e., it
could be far from truth and could be of a different shape for
profile retrieval. We have assumed that the IG and a priori are
identical for this study. The OEM requires a priori by the nature
of its own derivation and the retrievals must be influenced by
a priori, but the MTLS does not require a priori by its own
definition and the retrievals are expected to be independent of
a priori. If the retrievals are independent of a priori using OEM,
then it is indicative that these retrievals are following a different
inverse theory because the mathematical form of most of the
inverse methods are identical. We have used SST and TCWV
in the 1◦ × 1◦ global forecast system (GFS) data as the IG for
our SST retrievals. Since our main focus on SST retrievals,
the statistical difference between the truth (buoy temperature)
and the IG/a priori of SST (SSTg) is also shown in Fig. 1,
primarily to quantify the improvement of a priori knowledge
after inversion of the satellite BTs measurements using the
different retrieval methods. It is a desirable property of any
retrieval that the addition of the satellite information increases
accuracy over the IG/SSTg.

Fig. 2 shows the adjustment to the initial guess SST cal-
culated by the two physical retrieval approaches (MTLS and
OEM) compared with the “true” innovation (i.e., SSTb-SSTg).
The most desirable result is for points to lie on the 1 : 1 line.
The first thing to note is that the range of SST innovations
is rather large (up to ∼10 K) although the vast majority lies
within a couple of degrees of zero. The significant vertical
spread of points for the OEM, particularly where the required
SST innovation is small, indicates that there is some cloud
leakage in the Bayesian cloud detection. Note that the under-
lying assumption is that the shape of the WV profile (and
corresponding atmospheric temperature) is correct when this
RT-based inversion is considered. However, there is ambiguity
in the NCEP generated shape of the WV profile. Furthermore, if
the total column water vapor is drastically different from IG, it
is impossible to find a solution using only a single iteration due

to nonlinearity. The last bin is likely to contain a substantial
population of “bad” retrievals, i.e., caused by cloud-leakage
or other errors in ancillary information including WV profile
shape error. This is implemented using appropriate threshold
conditions based on the physical understanding of the problem
on the output of SST and TCWV from MTLS retrieval. The
detection of night-time fractional cloud or low level cloud is
very difficult when using only a limited number of imager
measurements and RT output. This will produce low BTs for
all measurements, as a result, MTLS solution will produce a
relatively large negative value of SST increment as well as high
TCWV to compensate for the negative value of the residual.
This offers the prospect that such conditions can be detected
at solution time, by determining a suitable threshold. Thus,
another advantage of MTLS solution is to facilitate improved
quality indexing (QI). It is notable that all retrieval methods
closely follow the trend determined by the QI that is based only
on the computed analytical total error using MTLS method.
This implies that the employed QI is capable of providing
an independent assessment of the inherent errors in this ill-
posed inversion problem, and that the primary sources of error
(channel noise, residual cloud, water vapor, etc.) have broadly
similar effects on all retrievals. It should be noted that AE is
unable to account for certain aspects of the statistics obtained
with respect to in situ matches, such as surface effects, buoy
error and representativity (point-to-area) error.

The errors in SST retrievals are shown in Fig. 1 using two
different metrics: a) RMSE, and b) SD as following the two
schools of thoughts. (Here, RMSE is defined as the square root
of sum of squares of SD and bias.) One may argue that the bias
is also an important term to report, however, it is irrelevant
in the scope of this paper. Bias is produced in a solution
due to model approximation and it is important for controlled
experiments to improve the model. In this present study, bias
may result from the approximation errors of fast forward model,
inverse model and instrument model as well as cloud leakage
and errors in the reference and ancillary data, and these are
difficult to be separated out in an operational environment. The
composite bias has no additional scientific significance unless
the source is identified and we stay away from this in this
paper. Additionally, it is often observed that low bias (difference
between RMSE and SD) and relatively higher SD are typical for
any global data set (e.g., satellite SST). However, the bias term
may increase when the same data set is analyzed on the regional
scale due to local retrieval conditions being different from those
used to derive the global average. This is generally the case
for regression-based methods, which are unable to account for
the full range of retrieval conditions in only a few coefficients.
It can be argued that the most representative single statistic to
indicate the quality of any retrieval is the total error (RMSE),
as well as it is suggested by Rodgers [2], particularly for easy
intercomparison purposes. The errors in the different retrieval
methods, as shown in Fig. 1 are discussed next.

A. Analysis of MTLS Results

As shown in Fig. 1, the RMSE of MTLS retrievals (MTLS)
is always lower than that of initial guess. This confirms that
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the MTLS retrieval scheme is using the satellite measurements
to improve knowledge in the parameter space. It is also able
to analytically calculate the total error at individual pixel level.
The value of RMSE of MTLS is less than 0.65 for up to 13%
of matches and less than 0.55 for up to 10% of matches as
well as the bias is small (i.e., the RMSE and SD values are
close to each other). This improvement is possible due to the
fact that MTLS method inherently calculates the optimum reg-
ularization without requiring extra information, e.g., covariance
matrices of a priori and observational errors. The remaining
error could be due to the fact that presently implemented MTLS
is constrained by CRTM error, which will be discussed later
as well as the ancillary atmospheric data, which has inherent
errors. (These data are generally produced by the solution of
some optimization problems, where conventionally, a Bayesian
inversion technique is used.). Also, as already discussed, a
single iteration in MTLS may not be fully adequate in certain
circumstances, and a second iteration may improve the result
by reducing the functional residual error.

The MTLS technique is a regularization method. It is often
argued that regularization methods reduce the degrees of free-
dom of the solution), as a result, the information content of the
solution is low [57]. However, Fig. 2, which shows the update
after a single iteration, confirms that MTLS can approach the
truth even when the magnitude of the required innovation is
as much as 10 K. This implies that the issue of “loss of
information” for conventional fixed regularization inversion can
be overcome using a TLS-based method, where regularization
is determined by residual where various errors are embedded.
Fig. 2 shows that the correlation coefficient of MTLS retrieval
is 0.88, which is much higher than for OEM (0.6), at least for
CRTMv2.0. The accuracy of CRTMv2.0 will be discussed later.

This analysis (Fig. 2) shows that SST retrievals can depart
significantly from a priori (e.g., SST error can be beyond ∼2 K
of the numerical weather prediction (NWP) analysis/forecast
model). Match-up data sets may exist where “SSTb-SSTg”
is within 2 K due to the fact that only quality controlled
drifter measurements are included and coastal moorings may
be excluded due to high deviation from the background SST.
However, our MDB shows that the difference “SSTb-SSTg”
may be up to 10 K of NWP models because coastal mooring
are included in our database and not excluded purely on the
basis of deviation from analyzed SST. Two key inferences can
be drawn from this: a) the ocean SST may be as high as 10 K
from NWP analysis/forecast model SST; and b) these are still
solvable using MTLS.

B. Analysis of Operational Regression Results

The previous operational GOES SST retrieval scheme at
OSPO used only the 3.9 and 11 μm channels. Fig. 1 shows that
the SD of OSPO retrievals (dashed pink line) decreases with
decreasing number of matches. What is important here is the in-
creased separation between the values of RMSE (solid magenta
line) and SD, which implies increased bias for data expected
to be of higher quality. This does not come as a surprise since
regression SST retrieval is based on a set of statistical coeffi-
cients derived from RT and may be biased with respect to truth

unless the agreement between modeled and observed clear-sky
BT is “perfect.” However, the RMSE of regressed retrievals is
better than that of IG SSTs considering the whole set of data
(up to 12% of matches), which means that regression retrieval
is generally improving the accuracy of the parameter relative to
a priori knowledge (i.e., NWP analyzed SST). The perfor-
mance of the two-channel SST retrieval using RT coefficient-
based regression retrieval, which was implemented in OSPO,
is inherently limited by the number measurements and shows
poorer performance than MTLS. In such retrievals there are two
parameters: SST and the atmospheric correction term. Since
there is noise in any measurement, it is necessary to use at least
three channels because a minimum of three points is required
to draw a line that accounts for the noise and allow a valid
inference for a two-parameter retrieval. The present physical re-
trieval model assumes that TCWV is single parameter, which is
a heavy approximation in RT physics in the IR region, and SST
retrieval will still be somewhat erroneous due to the high ap-
proximation of the WV profile in RT physics and nonlinearity.

C. Analysis of OEM Results

Compared with MTLSrtv, the OEM retrievals (OEMrtv) are
less than satisfactory (see Fig. 1) in this particular example
using CRTMv2.0. RMSE and SD values OEMrtv are always
much higher compared with any other method and also with
respect to the IG. OEMrtv is the only method in this comparison
study that is based on Bayes’ theory and requires an a priori
state and its associated error covariance. Fig. 1 shows that the
a posteriori contains more error than the a priori, as implied by
the higher RMSE and SD values in OEMrtv compared with the
IG. This suggests that by using OEMrtv we lose confidence in
improving knowledge of a system after measurement.

Since this result is unexpected using OEM, despite a low
condition number of Jacobian (∼5) and the problem being
fairly linear, it requires further investigation. The retrieval
problem has been analyzed from a different angle considering
the deterministic paradigm for pixel level. Recalling (15), the
retrieval error is proportional to the condition number of
the matrix and total error associated with inversion. Thus,
the retrieval error will be zero if the error in measurement is
zero until the Jacobian is rank deficient (i.e., condition number
exceeds 1016 for double precision calculations). The inversion
of such a problem, where observational is accurately known,
can be easily formulated as

Δyδ − δy = KΔx. (27)

The left side of (27) has been formulated in a way that if the
observational error is known accurately, subtracting it from
the real-life measurement can generate an effectively “perfect”
measurement. After rearranging we have

Δyδ

Δx
= K +

δy

Δx
or Δx =

(
K +

δy

Δx

)−1

Δyδ. (28)

Equation (28) is valid for a square matrix and a direct
inversion, where the numbers of measurements and state space
parameters are equal.
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In this inversion, ill-conditioned error propagation does not
feature, but, as before, it is not feasible to determine the exact
errors with sign associated with an observation. Even if the
magnitude of error could be assumed accurately known for
simulation purposes, the sign of the random errors should not
be confirmed in any scientific experiment. To minimize these
errors in an inversion, least squares (LS) optimization is neces-
sary. Using matrix algebra and employing LS minimization, in
a few steps (not shown for brevity), (28) can be rewritten for a
rectangular Jacobian matrix as

Δx = (KT δy−2K +Δx−2)
−1
KT δy−2Δyδ. (29)

Equation (29) is deterministically derived using simple linear
algebra for the single pixel. Equations (29) and (25) for the
OEM formulation are identical, and both can produce rea-
sonable retrievals if the expected values of δy and Δx can
be accurately specified in the inversion. A simple numerical
experiment using accurately specified δy and Δx on an in-
dividual retrieval for a random linear function shows that the
retrieval contains error of the order of average SD of δy. This
confirms that (29) can retrieve the state space parameter with
the order of measurement error if measurement error and truth
are perfectly known. However, we find that the retrieval error
is much higher than measurement error if one of the errors
or both are not accurately known and the error enhancement
is proportional to the condition number of inverted matrix. In
practice, stochastically derived estimates of these errors are
used in OEM for a set of measurement because obtaining per-
pixel exact value is unfeasible, and will therefore generally be
either an overestimate or underestimate of the true error in any
given retrieval situation.

VI. RT SENSITIVITY FOR MTLS AND OEM

The error δy in (29) is the collective error due to instrument
noise, errors in ancillary atmospheric data, unaccounted model
parameters and approximation error in the forward model.
In order to analyze and effectively understand the forward
model error, we have performed an offline study. We have
observed a mean difference of 2.5 K between CRTM 2.0 fast
forward model and MODTRAN 4.2 [58] band model simula-
tions for 13.4 μm channel. According to Rodgers [2], all errors
can be included in the error covariance to implement OEM.
Thus, we made an investigation by replacing the specified
CRTM error variance value in 13.4 μm channel of ∼0.15 with
2.5 K. Using a 2.5 K value overall improves the results (i.e.,
SD and RMSE are reduced) compared with using 0.15 K but
the difference between these two parameters is still high (figure
is not shown). This is expected because high error covariance
produces high regularization, which increases bias toward the
IG in the solution in any regularization scheme. What is some-
what surprising is that this observation holds, although 13.4 μm
channel is in the nonwindow region, i.e., does not contribute
directly to the SST innovation. Additionally, this also shows
that the aforementioned experiment does not follow the notion
of OEM theory, rather it illustrates the underlying regularization
principle.

Fig. 3. Plots of retrieval errors for MTLS and OEM with error variance in
channel 13.4 of 0.5K using CRTM2.0 (SD is “dashed” and RMSE =‘∗solid
line’) and MTLS1 and OEM1 using CRTM2.1 as well as REGB and OSPO
(SD is “dot solid” and RMSE is “circle solid”) for July 2012.

The SD of “simulation minus observation” for the 13.4-μm
channel is less than 0.8 in our monthly MDB. It is generally
accepted that bias should not be more than SD for any mean-
ingful analysis, so the model needs to be improved in such a
situation. Results improve if we assume a more reasonable error
covariance of 0.5 K for the 13.4 μm channel instead of 2.5 K
(cf. Fig. 3). As already noted, perfect forward modeling is close
to impossible in any branch of science, particularly in an op-
erational environment. Therefore, it is beneficial for a retrieval
scheme to be as robust as possible to RT errors. To reduce the
effect of a 2.5 K error in the 13.4 μm channel in CRTM2.0
for the MTLS solution, two pseudomeasurements, which are
the difference (BT3.9-BT11) and average ((BT3.9 + BT11)/2) of
the 3.9 and 11 μm as per a linear approximation (including
Jacobians with difference and average) are included for com-
parison study in the following section.

A. Effect of RTM Versions: CRTM 2.0 Versus CRTM2.1

We have tested our results using the older and newer versions
of CRTM (v2.0 and v2.1). As previously mentioned, analysis
thus far was carried out using forward model BTs calculated
with CRTM 2.0. The previously observed offset of 2.5 K in
CRTM 2.0 was addressed in CRTM 2.1 [59] by the devel-
opers of this model. The difference was primarily due to a
post-launch revision of the spectral response function for the
13.4-μm channel [60]. The comparative retrieval results for
different methods and the two versions of CRTM are shown
in Figs. 3 and 4 for two different months (July 2012 and
February 2013). These illustrate some interesting observations,
as described in the following. First of all, the small difference
between RMSE and SD of CRTM v2.0-based MTLS shown in
Fig. 1 is essentially nonexistent in Figs. 3 and 4, which utilize
two additional pseudochannel measurements, aforementioned.
In addition, both the RMSE and SD values in Figs. 3 and 4 are
lower than that without using pseudomeasurements. It should
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Fig. 4. Plots of retrieval errors for MTLS and OEM with error variance in
channel 13.4 of 0.5K using CRTM2.0 (SD is “dashed” and RMSE =‘∗solid
line’) and MTLS1 and OEM1 using CRTM2.1 as well as REGB and OSPO
(SD is “dot solid” and RMSE is “circle solid”) for February 2013.

be also mentioned that a dramatic reduction in SD and RMSE
in OEM is observed, just by using tuned error variance value
(0.15 to 0.5 K).

The observed sensitivity of OEM to RTM error in the non-
window 13.4 μm channel yields a key insight into a weakness
of the OEM. One may argue that the RTM (CRTM 2.0) is
responsible for introducing the high error in OEM (see Fig. 1).
However, can we develop a perfect forward model for any sci-
ence problem? If it is true, why we are not hunting for alternate
method, which can be robust for the error in nonwindow chan-
nel. Moreover, in operational systems, although infrequently,
an error of order 2.5 K for the 13.4 μm channel may also
originate from other non-RTM sources, such as incorrect total
column water, water vapor profile or ice-contamination in the
sensor [61]. Additionally, as in this case, an offset in modeled
BT may also originate due to spectral response function shifts
after launch and sometimes identification of such issues takes a
long time. Therefore, the error specification required for OEM
may not be done in a timely manner, e.g., such an issue with
GOES-12 was detected and reported after completion of the
mission life [62]. Therefore, specifying Se value for OEM
based on prelaunch information will always be speculative
and unclear whether the specified values are representative or
not. The overall statistics will be significantly degraded even
if a few points out of millions of retrievals contain such a
high error. In addition, the detections of such retrievals are
difficult. Validation statistics can be improved by excluding
outliers for those points where references are available, but it is
difficult to exclude outliers in an operational product and for all
retrieval points.

The aforementioned observation also emphasizes the im-
portance of obtaining an optimal regularization in a weighted
regularization scheme. This also implies that a large error can
be propagated into the solution in a weighted regularization
scheme due to small errors in the essential parameters of δy and

Δx in OEM as well as in (29). Since the error assigned to the
3.9-μm channel is greater than that for the 13.4 μm channel, the
information (SST and WV) coming from the 13.4 μm channel
will actually be greater in the OEM solution, considering only
the channel weights in the solution. However, this issue is
complex since it depends on the channel weighting function and
the amount of water vapor. Recall that SST information content
in 13.4 μm channel is very low and will not be influenced as
much as the TCWV information due to the variable weights
of Se. Thus, the error in TCWV is expected to be high due
to RT errors (CRTM2.0) which manifest as large increments
in TCWV (> 100%) in the MTLS solution. Whether or not
it leads directly to a higher error in the SST requires further
investigation.

Another interesting observation from Figs. 3 and 4, sup-
porting our aforementioned arguments, is the sensitivity of
OEM to a change in the version of CRTM. The RMSE val-
ues for OEM retrievals using CRTM 2.0 (with 0.5 K error
covariance) are significantly lower than those using CRTM 2.1
(with 0.15 K error covariance) except last bin. This implies
that, for OEM, a more accurate forward model with reasonable
error specification does not necessarily outperform retrievals
with a less accurate RT model but with a more tuned error
specification. We observed this behavior for many months,
although some months show that the RMSE of OEM using
CRTM 2.1 is better than CRTM2.0 with 0.5 K error covariance.
This demonstrates that an OEM solution may display incon-
sistent results with respect to CRTM versions, because it is
difficult to exactly specify the errors in an operational environ-
ment, i.e., a more accurate model and supposedly correct noise
values do not necessarily produce the most accurate result.

As we mentioned in Section V, bad retrievals identified on
the basis of retrieved WV increment, shown in the last bin,
are mainly due to cloud leakage and/or high error in WV
profile and total column. Large errors are observed in the WV
retrievals using MTLS and CRTMv2.0 due to high simulation
error in the 13.4 μm channel. As result, a large number of
pixels (∼4%) were consigned to the last bin (see Fig. 1) without
significantly improving the results. However, a drastic error
reduction for retrieving WV using CRTMv2.1 is observed,
which is manifested by significant reduction of error at the
cost of fewer discarded observations (see Fig. 3). Errors are
drastically reduced with same trend for all retrieval methods
(REGB, MTLS, OEM) for the last-but-one bin in Fig. 3. This
implies that high cloud leakage is the primary cause for these
pixels that are consigned to the last bin. It can be confirmed
by the argument that REGB does not depend on the forward
model (CRTM+NCEP) and it will be only affected by cloud
in a similar way. We have separately studied this issue and
have found that there was high cloud leakage of Bayesian
cloud detection method for this month. (We have completed
a study on the issue of Bayesian cloud detection problem and
found that there is significant cloud leakage and ∼50% pixels
are discarded for which good SST retrievals may be obtained,
which will be a separate future publication.)

Fig. 3 shows that the reduction of RMSE of 0.85 to 0.47 for
the MTLS solution is possible by discarding only 1% of the
total pixels that are present in the last bin. This is based on the
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interpretation of simultaneous MTLS solutions for TCWV and
SST. On the other hand, the gradients of the lines for the last
bin of Fig. 4 are different for the various retrieval methods. The
gradient for REGB is lower but that retrieval only depends on
measured BTs. The gradients for RT-based OEM and MTLS
are higher but have different magnitudes for the two versions
of the CRTM. The lower gradient of REGB solution in the last
bin indicates that cloud detection is not the only cause for this
month, but rather high RT errors due to imperfect WV profiles.
These profiles also contribute to the population of the last bin,
at least for the physical retrieval methods (MTLS and OEM).

It should be also noted that the monthly average RMSE
of REGB (regression against buoy) excluding the last bin is
slightly lower than the same for OEM irrespective of the CRTM
version for July 2012 (see Fig. 3). The RMSE of REGB
is very slightly lower than that of MTLS using CRTMv2.0
(see Fig. 3) for the set of all data excluding last bin but more
up to the good match of ∼8.5%. However, the RMSE of REGB
is always higher than MTLS RMSE when CRTMv2.1 was
employed for MTLS, for the all data including the last bin. Re-
assuringly, MTLS produces the best results using CRTMv2.1,
which demonstrates that, with improvements to our RTM and
ancillary data, the performance of MTLS will further improve.
As already mentioned, the accuracy of a forward model in an
operational environment is a significant issue.

The most interesting result in Fig. 4 is that the RMSE of
MTLS solutions are close to 0.35 K for almost 6% of match-
ups. The RMSE of REGB for the monthly average is higher
than for the other methods, but REGB does perform better than
OEM (CRTMv2.1) for the best ∼8% match-ups. The RMSE of
REGB does not increase much in the last bin, which implies
that the cloud leakage of the Bayesian cloud detection software
is relatively low for this month. The significant increase for the
last bin of all the forward-model-based retrievals illustrate that
high forward model error is the likely culprit for this month,
presumably due to somewhat degraded quality of ancillary data,
since the CRTM is invariant.

B. Analysis of Simulation Minus Observation Bias Removal

As aforementioned, realistic estimation of the various errors
in an operational environment is a challenging task, however,
OEM requires these errors as input parameters. Thus, some
recent studies introduced measures to estimate these errors from
the same measurements [54], [63], [64].

Some studies have used these estimated errors in error
covariance as suggested by Rogers [2], whereas others use
them in simulation minus observation (S-O) bias removal. The
use of estimated errors in the covariance matrix is safer as it
regularizes the solution or weighted the measurements without
altering the physics of the problem. The main problem with
an overall S-O bias removal is that it is not fully objective, as
the sources of bias (differences) are not completely identifiable.
To estimate this, some assumptions are required, which raise
certain ambiguities. Put another way, the bias that is observed
may be due to an error in the initial guess, which the retrieval is
designed to correct for. We see no strong scientific argument
supporting the use of the same measurements for both bias

Fig. 5. Plots of retrieval errors for MTLS, LS and OEM without RBC using
CRTM2.0 (SD is “dashed” and RMSE =“∗solid line”) and including RBC
(SD is “square solid” and RMSE is “square dashed”) for October 2010
including IG error.

correction and inversion to access more information than using
these measurements in an appropriate retrieval method. Using
spatially and temporally averaged S-O to enforce a potentially
ambiguous zero-mean captures some information from adjacent
pixels, rendering the retrievals not to be fully independent.
From the deterministic point of view, radiance bias correction
(RBC) may result in alteration of functional physics relation-
ships, Jacobian mismatch error and information/residual loss
that will degrade the retrieval. To investigate this, we conducted
an experiment using RBC retrieval, which approximates the
method of Merchant et al. [54]. Their assumption of RBC is
that the mean value of the “forward model BT minus observed
BT” for 2.5◦ spatial resolution of image space and for a period
of 21 days is zero. We cannot consider 2.5◦ spatial resolution
in our study as we are using only in situ match-ups. Thus,
we considered the monthly mean of each buoy point forward
model simulation to be zero for the cloud-free observations. We
consider this to be a reasonable approximation of the method
of Merchant et al. [54] because moored buoys are in a fixed
location and the assumption of drifter movement within ∼2.5◦

spatial grid is not that unreasonable. We have used the (S-O)
bias correction for MTLS without pseudo channel and OEM
without tuned error covariance where RTM error is high using
CRTMv2.0, as shown in Fig. 5. In addition, since the current
problem consists of low ill-conditioned (condition number ∼5)
Jacobian and it is expected from the theory of ill-conditioned
inversion that LS can produce reasonable retrieval if the total
errors are within ∼0.5 K. Therefore, we have also additionally
included LS solution to gain additional insight into fundamental
problem in different inverse methods. The LS formulation is
simply

xls = xig + (KT −K)
−1
KT (y − f(xig)) . (30)

We included both LS and IG errors in this study as baseline
indicators to understand the comparative performances of OEM
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and MTLS when an RBC is implemented. Fig. 5 shows that
the LS solution without RBC produces a RMSE (solid green
line with circles) of 0.76 and SD (dashed green line) of 0.5, for
all matches excluding those in the last bin. The RMSE value is
much higher than the SD value, which confirms that CRTMv2.0
introduces bias in simulated BT for this case. An interesting
observation here is that, as compared with LS, the RMSE values
of OEM is much higher than the same of SD values. Since OEM
is regularized cf. LS in deterministic point of view, this result
may seem surprising, as one might expect the regularization to
mitigate the effect of the biased channel. However, since the
error assigned to the 3.9 μm channel is greater than that for the
(biased) 13.4 μm channel, the weight assigned to the latter will
actually be greater in the OEM case than for LS, thus the effect
of the channel bias is increased. This implies that externally
supplied error assignment for weighting the measurements
poses a potential risk in an operational environment. As we have
shown (Figs. 1 and 5) the OEM solution appears to be degraded
with respect to its a priori knowledge, whereas the LS solution
is an improvement with respect to a priori knowledge for the
whole data set (see Fig. 5), even in the presence of a high error
in simulated BT in a nonwindow channel.

Perhaps more importantly, Fig. 5 illustrates an intrinsic
strength of MTLS. It is understandable that the SD of MTLS
(dashed blue line) improves cf. LS due to optimal regularization
of the ill-conditioned problem, but it also noticeably reduces
the bias compared with LS using CRTMv2.0 without RBC as
indicated by the RMSE curve (solid blue line with circles). One
might anticipate inherently high regularization due to high error
in CRTMv2.0 in MTLS solution, leading to bias toward the
IG, but there is little evidence of this in Fig. 5, i.e., the bias
remains constant across the range of MTLS solutions, whereas
it changes for the IG. The constant bias of the MTLS solution
(in Fig. 5) may have originated from other sources (reference,
or the ancillary NCEP data) because it is not distinctly observed
in Fig. 1. Moreover, the MTLS error does not track the steep
upward trend of IG error, which confirms that it is largely
independent of the IG. This confirms that MTLS can function
adequately in the presence of significant forward-model bias, at
least if it is in nonwindow channel. Furthermore, MTLS pro-
duces best results without RBC, at least of the form developed
and applied in this study.

In contrast, we see that the RMSE of OEM is drastically re-
duced from 1.53 to 0.85 K for the best ∼18% of matches using
RBC (see Fig. 5). However, it is still much higher than RMSE
of MTLS (0.56 K) and LS (0.78 K) without RBC. According
to Fig. 5, the large reduction of OEM error is highlighted for
the success of RBC due to gross error RTM (CRTMv2.0), but
the error of 0.56 K can be achieved using deterministic method
MTLS without RBC, at least when RT error is not in a window
channel. Moreover, the MTLS error increased to 0.8 from
0.56 K by applying RBC, and OEM error of 0.85 K with RBC
is close to IG error. This implies that the solutions are no longer
dependent on the characteristics of the inverse method when
radiance level bias correction is implemented and the error of
all methods is close to IG error.

The SD values for all three forward-model-based retrievals
deteriorate using RBC, including OEM. The OEM results

Fig. 6. Plots of retrieval errors for MTLS, LS and OEM without RBC using
CRTM2.1 (SD is “dashed” and RMSE =“∗solid line”) and including RBC
(SD is “square solid” and RMSE is “square dashed”) for October 2010,
including IG error.

in particular display unfortunate characteristics, i.e., whereas
RMSE improves with RBC, SD increases. This implies that the
functional physics relationships have been degraded somewhat
by the RBC. This is borne out by the results for MTLS, where
both SD and RMSE are increased when using RBC. Despite the
fact that the LS solution is biased without RBC, the RMSE of
LS is higher for data set as a whole after implementing RBC,
whereas a subgroup of 16% of matches are comparable both
with and without RBC. Another interesting result here is that
all three retrievals produce almost identical results and close to
a priori error under RBC, all of whose errors are significantly
higher than MTLS without RBC. This study shows that RBC
may compensate for some of the drawbacks of OEM in an
operational environment, but is not a correct scientific approach
in deterministic framework.

Fig. 6 shows results similar to that shown in Fig. 5, but using
the newer version of CRTM, where the primary source of bias
(13.4-μm channel) has been eliminated. All SD and RMSE for
the three forward-model-based retrievals are degraded when
using the previously described RBC methodology. The most
interesting result found from this study is that the retrieval
results of all three methods using CRTM2.1 under RBC are
noticeably higher than the IG error (Fig. 6), excluding last bin.
RBC may reduce OEM error in the presence of RT gross error,
as is the case with CRTM2.0 and the 13.4 μm channel, but
there may be price to be paid in terms of integrity of functional
physics. The solutions of all forward-model-based retrieval
methods without RBC get better due to the improved version
of CRTM (see Fig. 6). Thus, correction in top level (radiance)
is not a good choice as opposed to fixing the problem at the
root level (forward model), at least in this study. Of course the
latter is more difficult, but, with a sound inversion methodology,
valid retrievals may still be possible in the presence of radi-
ance bias, and accuracy will improve automatically as forward
modeling improvements are made without need to adjust the
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inputs. Therefore, it can be concluded from this study (using
Figs. 3–6) that it may be better if a forward model bias term is
incorporated in error covariance matrix (e.g., [2]) for OEM to
obtain reasonable results as opposed to using RBC.

It is also observed from this study that even using the
improved version of RTM (CRTMv2.1), RMSE of OEM is
more than IG error for more than 70% of retrievals under
clear sky, excluding the last bin. Moreover, the OEM retrieval
(see Fig. 6) also shows a noticeable bias under CRTMv2.1, but
MTLS and LS retrievals are almost bias-free, although some
bias is present in the IG. This implies that OEM has a tendency
to produce biased retrieval along with higher SD compared with
MTLS and LS, because it is impossible to correctly specify all
the required error covariances in an operational environment.
Despite the fact that RT physics is well understood, RT error is
inevitably present in any operational RTM due to approxima-
tions of RT physics for reducing computational costs. Although
we now have reasonable RTM (CRTM 2.1) at this time for this
application, there are many satellite inversion problems where
RT error is still a major issue. Thus, the lesson learned from
this study may be useful for other satellite inversion problem
and the study based on comparison of CRTM 2.0 with CRTM
2.1 is valuable to understand some of these issues. From this
point on, only results from CRTM 2.1 will be discussed.

VII. INFORMATION ANALYSIS OF PHYSICAL RETRIEVAL

In the stochastic approach, according to Rodgers [2], the
averaging kernel (A) is the “dxrtv/dxtrue.” In the deterministic
approach, this is known as the model resolution matrix (M rm)
[12]. The analysis of A/M rm can only give some under-
standing of how much regularization is imposed on the inverse
problem. The “trace” of the A/M rm matrix is the so-called
degree of freedom from signal (DFS; stochastic) [2] or degree
of freedom in retrieval (DFR) in the deterministic approach
[16], which have been formulated before. The normalized DFR
and DFS are plotted in Fig. 7. We have also included the least
squares (LS) solution in this comparison along with MTLS and
OEM because LS solutions have a sensitivity of unity.

The x-axis of Fig. 7 shows cumulatively binned data based
on DFR. The reason for showing a cumulative binning rather
than ordered data is that the number and value of minimum
sensitivity of MTLS varies from month to month due to varying
amounts of error and condition number of the matrix, depend-
ing on the data-driven regularization strength. For example, the
lowest sensitivity of this month (see Fig. 7) is 0.62, but for
some months we found this to be 0.4. Thus, to plot in absolute
(discrete) scale is not necessarily informative and also the lim-
ited number of matches in regions of low sensitivity is another
concern. Furthermore, the sensitivity statistics in discrete bins
is not helpful for comparison purposes due to a wide variation
in the number of matches. Thus, we have partitioned the data
into 10 equidistant points between high sensitivity value of
MTLS (close to 1) and the lowest sensitivity. We consider this
to be appropriate primarily because we are investigating the
sensitivity of the MTLS retrieval. Furthermore, it is reasonable
to expect the sensitivity to display a greater range for MTLS
since its regularization strength (the primary governing factor)

Fig. 7. Plots of retrieval errors for MTLS, LS, IG, and OEM using CRTM2.1
(RMSE =“∗solid line”) and information content in terms of DFS and DFR
(“dashed”), as well as OEM2 (RMSE “+solid line”) and DFS2 (“+dashed”)
using correct a priori error for OEM for December 2013.

is dynamically determined. In contrast, the sensitivity of LS is
one, and is approximately 0.96 for the substantial majority of
OEM retrievals, due to the static nature of the error covariance
matrices. It should be noted that some decrease in sensitivity is
possible in OEM since the water vapor uncertainty is initially
defined as a percentage (15%) and this will result in stronger
regularization when the absolute value of water vapor is low.

This calculation was performed with the latest version of
CRTM 2.1. The OEM solution is worse for any subselection
of data (based on the DFR of MTLS), as compared with both
LS and MTLS, and does not improve for lower bins. (Note that
this analysis shows inconsistent outcome for OEM in different
months. Detailed time series sensitivity will be discussed in a
future paper. Here, we only show one case study.)

Recall that the sensitivity of LS for all subselections is one.
On the other hand, the error of MTLS is lower than those of
LS and OEM, because MTLS is able to make optimal regular-
ization for all sets of subselections. The sensitivity of MTLS
varies from 0.62 to 0.98 due to data driven regularization and
MTLS produces better quality SST retrieval in terms RMSE
from 0.51 to 0.42. The main objective of MTLS is that it
increases the regularization when the problem tends to be either
highly ill-conditioned or has high error in measurement space
or both. This implies that the solution stays close to a priori/IG
when the problem is subject to severe ill conditioning and
observation noise but is not required to correct a large a priori
error, and thus, there is no scope to wrongly introduce more
error than a prior error. Degrading a priori knowledge by use of
an inappropriate retrieval method that has a high sensitivity to
measurement is undesirable. One may now raise the question,
based on this experiment, what such measures of sensitivity
are really showing, and whether a sensitivity of ∼1 is actually
desirable in all circumstances, given the concomitant risk of
increase in noise and therefore total retrieval error. For example,
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one can choose DFR/DFS close to 1 in this experiment but get
high retrieval error when the inverse problem has high noise
and/or high ill conditioning. Conversely, one may have a lower
sensitivity to measurement but have less retrieval error.

It is understandable that LS solution is deteriorating with the
reduction of DFR because the problem approaches to either
high ill-condition or high error or both, as discussed earlier.
An interesting observation in this experiment is that the OEM
solution deteriorates with a higher gradient than the same for
LS and more than 70% of OEM error is higher than a prior
error, whereas it is about 45% for LS. This again proves that
even without significant RT bias (i.e., using CRTM 2.1), the
OEM solution results in degraded a prior knowledge after
measurement more than 70% of cloud free retrievals without
last bin.

One may now question the OEM type of formulation that is
derived using an optimization based on the a priori constraint
of a cost function J of the form [64] as

J=(y−Kx)TS−1
e (y−Kx)+(x−xa)

TS−1
a (x−xa). (31)

In such an assumption, the a priori error should not be less
than the OEM retrieval error. It is not easy to objectively assign
millions of different numbers in the a priori and measurement
error covariance matrices; often only one number is assigned
for the variance. Where this number matches the real life
measurement/s [see (29)], in conjunction with S−1

e , it will sat-
isfy the aforementioned argument, which will therefore provide
the “optimum” regularization and hence solution. All points
follow regularization theory, however, and the error propagated
to state space when observation noise and/or condition number
of the Jacobian will be unnecessarily high if the IG/a priori
is close to truth (which will be the case for the ∼68% of data
that lie within ±1 σ of the true value, even when the a priori
uncertainty is correctly described). This may explain why the
OEM error is more than a priori error for 72% of the data as
aforementioned.

When the value of DFR of MTLS for a subselected data set
is less than 0.72, implying high regularization, a prior error
of those subselected data is still lower than for the other two
retrieval methods. This behavior is anticipated by regularization
theory, since the MTLS retrieval inherently regularizes the
problem when the problem is ill conditioned and has high error
in measurement space (including forward model, data errors),
which is desirable. The most remarkable result with respect
to regularization theory is that the OEM error for different
subselected data is higher than that of LS, which serves as a
basic reference for inverse problems with low condition number
matrix. We find that the condition number of the inverted
matrix (KTS−1

e K + S−1
a ) of OEM is sometimes higher than

for (KTK), which is the inverted matrix in LS, thus the
anticipated regularization does not always happen when apply-
ing OEM methodology to this problem. Furthermore, the term
KTS−1

e is outside of the inverted matrix in the formulation of
OEM. This means that any error in measurement space is also
multiplied by S−1

e . The effective measurement error therefore
increases if the value of error variance is less than 1, which is
true in our case.

Fig. 8. Plots of RMSE for MTLS, REGB, LS, OSPO and OEM except last bin
for the time series of 42 months (2010–2014).

As discussed before, there are difficulties associated with
the estimation of the required OEM input observational error
in an operational environment, and it requires expert skill to
obtain a good estimate of a priori error to implement OEM and
get reasonable results. There is always a debate for assigning
the a priori error for OEM-based solutions, and even the
a priori value itself may be debatable due to the dynamicity of
the geophysical parameters. In order to ameliorate the second
limitation, we have done a study where a priori variance for
SST is defined accurately. This is done by subtracting IG values
from the reference (in situ) values for each individual pixel,
to understand the behavior of the OEM formulation under
more ideal conditions (see OEM2 and DFS2 in Fig. 7). Under
these circumstances, the OEM solution shows a performance
comparable with MTLS, but DFS2 is significantly lower than
the DFR of MTLS, particularly where a priori error is high.
There is no practical application for such a method because
the true a priori error is not generally available (again, there
is no requirement for an inversion if the truth is known), but it
provides further insight and shows that this problem does not
yield a DFS close to 1 when the error covariance for OEM is
optimized. Thus, the observation of relatively low DFR values
∼0.62 for MTLS when a priori error is low is not a matter of
potential concern. It would be more of an issue when the initial
guess error is high (i.e., a large increment is needed) but in this
case the sensitivity of MTLS is very close to 1 (and slightly
better than for the OEM).

VIII. TIME SERIES RESULTS

To compare retrieval performances of various methods, we
have plotted time-series RMSE for 42 months in Fig. 8, where
each point represents monthly average statistics excluding the
last bin where excessive water vapor adjustments and cloud
leakage were identified. As can be seen, MTLS consistently
performs better, as compared with any other method. The sec-
ond best choice in terms of retrieval performance is REGB and
the operational OSPO shows the worst performance (until the
last few months), which is in agreement with results presented
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in Figs. 1, 3, and 4. [The improved performance of OSPO for
last seven months is discussed later in the paragraph]. The low-
est RMSE value of MTLS is less than 0.4. The highest RMSE of
MTLS in this time series is 0.55 for the month July 2012, which
is mainly because of the failure of the cloud detection scheme.
The cloud detection scheme is responsible for the high error of
MTLS (July 2012), as well as the seasonal variations. (We have
completed a separate study on the issue of the implemented
Bayesian cloud detection scheme in OSPO and the cloud leak-
age of this scheme is rather unpredictable, at least in the oper-
ational setup. There is essentially no seasonal variation in the
RMSE of MTLS under a new cloud detection scheme, which
will be published in a separate paper.) One of the interesting
results we found in this study is that the RMSE of OEM is al-
ways higher than LS and more than 60% of the cases of REGB.
However, the good performance of LS solution is possible due
to the fact that the condition number of the Jacobian is generally
less than 10. Furthermore, it can be seen that the RMSE of OEM
is 50% higher than MTLS error for some of the months.

The dramatic improvement in RMSE of the operational
OSPO SST for the last few months coincides with the oper-
ational implementation of MTLS at OSPO in August 2013.
Some minor differences are observed in this period between
offline and operational MTLS studies (Fig. 8) that need to
be further investigated. This present work is the first step to
proceed from theoretical inverse problem to an operational
environment, along with three years of offline validation and
comparison against other results.

IX. CONCLUSION

We have demonstrated in this work the advantage of the
MTLS, which is the family of the deterministic inverse meth-
ods, for producing SST retrievals compared with other prevail-
ing methods. In addition, it is noteworthy that MTLS does not
require additional error information, e.g., well-specified errors
in observational and a priori information. This may provide
a significant advantage for climate-based applications where
retrievals should be as independent of external error sources as
possible. The MTLS retrieval is improved by using the newer
version of CRTM, which implies that more accurate forward
models and ancillary data can further reduce the remaining
MTLS error. This package can also calculate a metric relating
to the total retrieval error and automatic QI at individual pixel
level. Apart from the QI, MTLS is also capable of identifying
the most difficult retrievals due to cloud contamination or high
WV profile error. The sensitivity analysis confirms that MTLS
solution is independent of a priori/IG error. The data driven
dynamic regularization property of MTLS regularizes solutions
toward the IG when the problem is either highly ill-conditioned
or has high observation error or both to keep the solution below
the a priori error.

It is found that OEM retrieval, at least as implemented for
this problem, is worse than the LS solution, and sometimes
worse than the a priori error, irrespective of the version of
CRTM. OEM is the most popular choice for physically based
operational retrievals due to the assumption that a priori based
constraining of an ill-posed inversion should still yield reason-

able results under conditions where there may be unaccounted
for parameters or unforeseen errors, as may be the case in
real-world retrieval problems. However, these results suggest
that this view may be based more on perception of idealized
Bayesian statistics rather than comparative scientific study with
respect to alternative methods. This study has also demon-
strated that the sensitivity of OEM retrievals under practical
circumstances renders it more vulnerable to noise than MTLS
retrievals. Even by employing dynamic error covariance matri-
ces, OEM is unable to produce the best retrieval for a fairly
linear and moderately ill-conditioned problem of SST retrieval.
Moreover, the estimation of error of the errors, which is a pre-
requisite for OEM, is rather difficult in practice, which perhaps
explains why OEM results do not match the expectation from
the theory of adding to/constraining by a priori knowledge.

To date, operational SST retrievals are dominated by regres-
sion (REGB), which highly simplifies RT physics. Mostly, it
does produce reasonable results (SD) due to the fact that the
global variance of SST fields itself is not very high (e.g., com-
pared with gaseous distributions) and the atmospheric attenua-
tion for 3.9-μm channel is rather low, but such methods are still
subject to biases on a spatial and temporal basis, with seasonal
variations, and has no inherent means of correcting for them.

This derivation of MTLS is based on linear algebra. How-
ever, this paper illustrates that a deterministic classical math-
ematics approach can produce better retrievals for real-world
RT problems compared with more recent probability-based
mathematics that solve ill-posed problems using covariance
matrices. The MTLS retrievals outperform the OEM retrievals
due to the fact that the regularization in MTLS is data driven.
As opposed to OEM that uses regularization from user-defined
a priori knowledge of measurement error and forward model
error, as well as a priori knowledge error of the retrieved target
parameter. A reliable estimation of both the errors in an oper-
ational environment is very difficult due to the highly dynamic
atmosphere, fast forward model error, including NCEP data, as
well as error in the measurements. An alternate effort toward
error estimation using simulation minus observation (S-O) bias
correction leads to further ambiguities and may potentially mis-
lead our fundamental science understanding. With the advent
of newer sensors with improved multispectral capabilities (e.g.,
the Visible and Infrared Imaging Radiometer Suite and the
future Advanced Baseline Imager), employing a deterministic
physical method for simultaneous retrieval of SST and WV
(critical for weather and climate studies), such as the MTLS
package, has the potential to provide substantial improvements
in the use of satellite data and derived products.
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