
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015 5473

A Scalable Tile-Based Framework for
Region-Merging Segmentation

Pierre Lassalle, Jordi Inglada, Julien Michel, Member, IEEE, Manuel Grizonnet, and Julien Malik

Abstract—Processing large very high-resolution remote sensing
images on resource-constrained devices is a challenging task be-
cause of the large size of these data sets. For applications such
as environmental monitoring or natural resources management,
complex algorithms have to be used to extract information from
the images. The memory required to store the images and the
data structures of such algorithms may be very high (hundreds
of gigabytes) and therefore leads to unfeasibility on commonly
available computers. Segmentation algorithms constitute an essen-
tial step for the extraction of objects of interest in a scene and
will be the topic of the investigation in this paper. The objective
of the present work is to adapt image segmentation algorithms
for large amounts of data. To overcome the memory issue, large
images are usually divided into smaller image tiles, which are
processed independently. Region-merging algorithms do not cope
well with image tiling since artifacts are present on the tile edges
in the final result due to the incoherencies of the regions across the
tiles. In this paper, we propose a scalable tile-based framework
for region-merging algorithms to segment large images, while
ensuring identical results, with respect to processing the whole
image at once. We introduce the original concept of the stability
margin for a tile. It allows ensuring identical results to those
obtained if the whole image had been segmented without tiling.
Finally, we discuss the benefits of this framework and demonstrate
the scalability of this approach by applying it to real large images.

Index Terms—Image processing, image segmentation, image
tiling, region merging, scalability.

I. INTRODUCTION

R ECENT Earth observation satellites, such as QuickBird,
WorldView, GeoEye, and Pléiades, provide very high-

resolution (VHR) images, which are useful in applications such
as environmental monitoring or natural resources management.
The Pléiades satellites provide images with a ground sampling
distance of 0.5 m and a spatial coverage of 400 km2 (40 000 ×
40 000 pixels) allowing for detailed observation of the Earth
surface. As a result, a scene contains billions of pixels, which
represents a large amount of data to process. Dealing with
such quantity of data has become a challenging issue for the

Manuscript received November 14, 2014; revised March 17, 2015; accepted
April 6, 2015. Date of publication May 4, 2015; date of current version June 10,
2015. The work of P. Lassalle was supported in part by the French Space
Agency (CNES) and in part by Communications & Systems (CS) through a
three-year Ph.D. grant.

P. Lassalle is with the Centre d’Etudes Spatiales de la Biosphère (CESBIO),
Centre National d’Études Spatiales (CNES), 31401 Toulouse, France.

J. Inglada and J. Michel are with the DCT/SI/CB, Centre National d’Études
Spatiales (CNES), 31401 Toulouse, France.

M. Grizonnet is with the Earth Observation, Centre National d’Études
Spatiales (CNES), 31401 Toulouse, France.

J. Malik is with CS Systèmes d’Information, 31506 Toulouse, France.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TGRS.2015.2422848

remote sensing community because of the limitation of memory
available on computers. The classical way to solve this problem
is to divide these large images into smaller tiles (rectangular
image subsets of the image) and process each one of these
tiles independently. This operation is called image tiling. For
traditional pixelwise or with fixed-size regular neighborhood
image processing algorithms, image tiling is straightforward
to apply without introducing artifacts in the results. However,
those algorithms consider only spectral information from the
pixels since a pixel does not have morphological information.
That is why new trends known as object-based image analysis
(OBIA) [1], object-based image classification, spatial reasoning
[2], [3], and geospatial analysis have recently emerged using
segmentation techniques to extract objects of interest in the
scene and derive spatial relations between them. Some textural
and morphological attributes are then computed from these
objects for a subsequent classification. Segmentation quality
is therefore essential for a correct characterization of these
objects. However, as illustrated in Section II, image tiling does
not cope well with most of the segmentation algorithms and
particularly for region-merging algorithms. In this paper, the
focus is on the use of image tiling operations for region-merging
algorithms. The ability to make these algorithms scalable to
arbitrary large images, while ensuring identical results, is very
appealing.

This paper makes the following original contributions.

• We define the concept of stability margin to constrain a
segmentation algorithm to satisfy the properties of stabil-
ity introduced in [4] and determine a formal expression
of the margin. We derive this stability margin for region-
merging segmentation algorithms, and we also give the
definition of a stable segment when using a tiling scheme
(see Section III-A3 and A4).

• Leveraging this stability margin, we propose a scalable
tile-based framework for region-merging algorithms for
the segmentation of images of arbitrary size. This frame-
work aims at ensuring identical regions to those obtained
if the whole image had been segmented without tiling (see
Section III-B).

Finally, we present some experiments (see Section IV),
which demonstrate the following.

• The expression of the stability margin for our generic
region-merging algorithm avoids artifacts on the tile
edges, while ensuring identical results.

• The feasibility of the new framework to segment full VHR
scenes.

0196-2892 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

5474 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

Fig. 1. Impact of image tiling. (a) Represents the output obtained from the reference segmentation of the whole image at once. (b) Represents the output from
the tile-based segmentation of the image. The image has been divided into 4 tiles of 250 × 250 pixels. (c) Shows the presence of an artifact on a tile border due
to the fact that segments containing pixels along the tile edges are forced to have their contour along the tile edges. (d) Shows a different segment from the test
segmentation compared to the one obtained from the reference segmentation due to the absence of knowledge of segments in other tiles. (a) Segmentation without
tiling. (b) Tiled segmentation. (c) Example of an artifact. (d) Different segments.

This paper is organized as follows: Section II illustrates the
impact of image tiling on the result when performing a region-
merging segmentation. An overview of the previous work is
presented in Section II-A, and B describes the background
elements of region-merging segmentation. Section III gives a
description of the proposed solution. Section III-A introduces
the concept of the stability margin for segmentation algorithms.
It also presents the expression of the stability margin for region-
merging algorithms. In Section III-B, we introduce a scalable
tile-based framework for region-merging algorithms, which
allows the segmentation of images of arbitrary size despite the
memory constraints. Finally, Section IV presents some results,
which exhibit the correctness of the stability margin expression
and the feasibility of the tile-based framework to segment full
VHR remote sensing scenes.

II. PROBLEM STATEMENT

In order to illustrate the problem of applying a tiling proce-
dure for image segmentation, we propose the following exper-
iment. A 500 × 500 image is considered. The region-merging
algorithm uses the Baatz & Schäpe criterion [5] to form the
partition of the image into disjoint segments. This criterion
needs three user-defined parameters: two parameters for the
relative importance of the spectral and shape weights and a

value for the scale threshold. This criterion is described in more
detail in Section II-B1. For this experiment, the parameters are
set to 0.5, 0.5, and 60, respectively.

The first result is obtained from the segmentation of the
whole image at once. This result represents the reference seg-
mentation and is denoted GT . For the second segmentation,
the image is first divided into four tiles of 250 × 250 pixels.
Each tile is segmented independently, and the result is obtained
from the mosaicking of the results of each tile. The result is
denoted by TS and represents the tiled segmentation. Fig. 1(a)
and (b) shows GT and TS.

The comparison of GT and TS is made by using the Hoover
metrics [6]. Four metrics can be used from this comparison.
RC is the score of correct segment matches. RF is the score
of fragmentation and represents the proportion of segments of
GT , which are fragmented into several segments of TS. RA
is the score of aggregation and represents the proportion of
segments of TS fragmented into several segments of GT . RM
is the score of missing detection and represents the proportion
of segments of TS and GT , which cannot be classified into the
three previous metrics. The scores of the metrics range from
0 to 1. RC = 1 means that both segmentations are identical.
The scores obtained from the comparison are the following:
RC = 0.8, RF = 0.006, RA = 0.0325, and RM = 0.1018,
reflecting that both segmentations are not identical. Therefore,

LASSALLE et al.: SCALABLE TILE-BASED FRAMEWORK FOR REGION-MERGING SEGMENTATION 5475

image tiling has an impact on the final result. Fig. 1(c) shows
an example of an artifact on the border of a tile. Indeed, the first
consequence of image tiling is that segments located on the tile
edges are forced to have their contours along the tile edges.
In addition, a discontinuity of the contour can be observed
between segments at each side of the tile edge showing a
mismatch. Fig. 1(d) shows an example of a segment of TS
inside a tile different from the one of GT . Image tiling not
only produces artifacts at the tile boundaries but also modi-
fies some merging decisions inside the tiles. These two main
consequences have been identified with the stability benchmark
described in [4].

A. Previous Work

Several approaches have been investigated to remove the
artifacts on the tile edges. In [7] and later in [8], the authors
introduced the idea of “contagious” segments. At the beginning
of the segmentation procedure, the contagious segments are the
pixels along the tile edges. During the merging process, when
a segment merges with a contagious segment, the resulting seg-
ment becomes contagious. A solution proposed by the authors
was to prevent two contagious segments from merging, in order
to limit the propagation of the contagious property. However,
as mentioned in [9], this approach is unreliable because, often-
times, there are so many segments, which became contagious,
that the region-growing process would stall prematurely. An-
other idea was to divide the image into adaptative tiles [10].
The borders of the tiles are built along the line of the maximum
image gradient. This way, it is expected that the lines follow
the border of the segments. However, the authors warn that, in
certain cases, this approach creates inconsistent objects. In [9],
the authors propose an alternative solution for the contagious
segments. They propose the RHSeg algorithm, which is an
approximation of the original algorithm HSeg [11]. A split-and-
remerge process is performed after each iteration to remerge
the contagious segments. This method successfully removes
the artifacts on the tile edges but remains an approximation of
HSeg. Therefore, the equivalence of the results, with respect
to the segmentation without tiling, is not ensured. A different
idea was to process the artifacts after stitching the segmented
tiles together. In [12], the authors propose using a topological
criterion to remove the artifacts on the tile edges. Two segments
on each side of a tile border are merged, if their contact surface
is greater than a user-defined threshold. This solution does not
guarantee the removal of all the artifacts on the tile edges
since a region located on one side of the tile edge can have
several contact surfaces with segments on the other side of
the tile edges. In this case, when this segment is merged with
one of the candidate regions, it triggers artifacts located at the
contact surfaces between the other segments. More recently, an
exact solution for the mean-shift algorithm has been proposed
[4] when using image tiling. Unstable operations consisting of
optimizing the execution time were removed from the classical
mean-shift algorithm. The biconnected component algorithm,
which was used in the classical version to assign the labels
to the pixels that converged to their modes, was replaced by
the connected component algorithm. With this new version,
the authors propose dividing the image into tiles containing an

additional stability margin. The size of the additional stability
margin depends on the spatial range of the mean-shift window
and the number of iterations to be performed. They also define
a way to stitch the segmented tiles to produce the final output.
With this version, they ensure the absence of artifacts on the
tile edges and, furthermore, identical results to a segmentation
obtained without tiling.

In summary, ensuring identical results when performing
image tiling turns out to be a difficult task for region-merging
algorithms. Some solutions have been proposed, but they do
not ensure the equivalence of the result. However, one solution
has been found for the mean shift using the concept of stability
margin. In this paper, we extend this approach to any region-
merging algorithm.

B. Background Elements of Region-Merging Segmentation

Region-merging algorithms appear to be very well suited for
the interpretation of high-resolution images [13] because of
their high-quality results compared to other approaches [14].
To obtain a partition of the image, region-based segmentation
algorithms [15], [16] do not handle pixels but segments, which
are sets of connected pixels. The pixels that belong to the same
segment exhibit common properties according to a homogene-
ity criterion. These algorithms have received a lot of attention
from the OBIA community.

Region-merging algorithms start by assigning a different
segment to each pixel of the image. The algorithm consists
of merging adjacent segments until a termination criterion is
fulfilled. At each iteration, merging costs are computed be-
tween adjacent segments. These merging costs are based on
a homogeneity criterion and can represent not only how two
similar segments are but also how homogeneous the resulting
larger segment would be. The adjacent segment, for which the
merging cost is the smallest compared to the other adjacent
segments, is called the best adjacent segment of the given
segment. A segment and its best adjacent segment are merged,
if their merging cost is smaller than a threshold. This threshold
avoids undersegmentation. The merging process stops when
there are no more possible fusions of segments. The homogene-
ity criterion can be based on statistical measures [17], spectral
attributes [18], or topological attributes [5]. A specific criterion
for partitioning the image can be defined for a particular need.
A huge diversity of criteria can therefore exist.

1) Overview of Some Homogeneity Criteria:

• Spectral information
The first region-growing algorithms, which appear in

the literature, were based only on spectral information.
A user-defined threshold usually limits the growth of the
segments. In [18], the criterion is based on the Euclidean
distance between spectral vector values. A segment is
described by its spectral mean vector. The similarity
between two segments is then the Euclidean distance
between their mean vectors. A threshold determines the
maximum value of the distance to merge the segments.
This region-growing algorithm has been integrated in the
SPRING image processing software [19] and recently in
the InterImage open-source image processing software

5476 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

[20]. In [21], the criterion is based on the distance between
spectral variance vectors. The region-based segmentation
consists of a multiple-pass where adjacent segments with
a distance lower than a user-defined global threshold are
merged. There is also a minimum segment size, which en-
forces the construction of segments in areas of high local
variance in the image. Finally, in [22], the authors propose
an unsupervised region-based segmentation method for
hyperspectral data. The first preprocessing step consists
of reducing the dimension of the hyperspectral analysis
by performing a principal component analysis. Next, the
mean-shift filtering is performed to create initial segments
in the image. Finally, a region-merging process is per-
formed using the Bhattacharyya distance [23].

• Spectral and spatial information
Recently, the increase of the spatial resolution has

made interesting the combination of spectral and shape
information to merge the segments. In [5], the authors
propose a region-merging algorithm based on spectral and
spatial information. The criterion used is called the Baatz
& Schäpe criterion. Each segment Ri is described by
spectral and spatial attributes. The spectral attribute is the
vector of standard deviation values of the pixels contained
in Ri denoted by σi. The spatial attributes are the area
ai, which is the number of pixels contained in Ri; the
perimeter pi; and its rectangular bounding box bi, whose
sides are aligned with the image axes. The cost of fusion
between two adjacent segments Ri and Rj is denoted by
hi,j and represents the increase in heterogeneity. Both
segments Ri and Rj are merged if hi,j < s2, where s is a
scale parameter. Ri,j denotes the resulting segment from
the fusion of Ri and Rj .

The spectral increase of heterogeneity based on the
standard deviation of Ri and Rj is noted by

hspeci,j = (ai + aj) · σi,j − (ai · σi + aj · σj) (1)

where σi,j is the standard deviation vector of the pixels
contained in Ri,j .

The shape component hshapei,j is the spatial increase
of heterogeneity based on the degree of smoothness and
compactness. The degree of smoothness hsmooth is de-
fined as the ratio between the perimeter pi of the segment
and the length len(bi) of its bounding box. The degree of
compactness hcompact is defined as the ratio between the
perimeter of the segment and the square root of its area.
The expressions of the increase of both degrees when
merging Ri and Rj are

hsmoothi,j
=
ai,j · pi,j
len(bi,j)

−
(

ai · pi
len(bi)

+
aj · pj
len(bj)

)
(2)

hcompacti,j =
ai,j · pi,j√

ai,j
−
(
ai · pi√

ai
+

aj · pj√
aj

)
. (3)

Then, the total spatial increase of heterogeneity is

hshapei,j = wcpt · hcompacti,j + (1− wcpt) · hsmoothi,j

(4)

where wcpt ranges from 0 to 1, indicating the importance
of the degree of compactness relative to the degree of

smoothness. Finally, the global increase of heterogeneity
when merging these two segments is

hi,j = wspec · hspeci,j + (1− wspec) · hshapei,j (5)

where wspec ranges from 0 to 1, indicating the weight of
the spectral component relative to the spatial component.
To limit the undersegmentation, the user has to choose s,
which influences the size of the resulting segments and
the values of wspec and wcpt, to adjust the relative weight
of the spectral and shape components and between the
compactness and the smoothness degrees. The merging
steps are repeated until there are no more possible merges.
In [24], the authors propose a criterion based on spectral
and spatial information called the full lambda schedule
algorithm. The merging cost is expressed as follows:

ai·aj

ai+aj
· ‖Mi −Mj‖2

len(∂(Ri, Rj))
< λ (6)

where Ri is the segment i of the image, ai is the area
of Ri, Mi is the average vector of spectral values of Ri,
len(∂(Ri, Rj)) is the length of the common boundary of
the segments R1 and Rj , and λ is a threshold.

Larger values of λ produce larger segments with
smaller common borders, and smaller values produce
smaller segments with larger common borders.

In [25], the authors propose a multistage segmentation
process by first selecting the seeds using the gradient
of the image. Next, a region-growing approach based
on spectral and morphological information is applied
using these seeds. Finally, a region-merging process based
on spectral and morphological information is applied to
refine the segments obtained from the region-growing
procedure. We can also cite the work in [26], where
the authors propose a segmentation algorithm combining
spectral and morphological components to form a hierar-
chy of segments for each band of the image. A generic al-
gorithm is then used to select the optimal segments, which
correspond to actual objects in the scene. The hierarchical
partition of the image is achieved by using a statisti-
cal clustering algorithm based on the Kullback–Leibler
divergence.

2) Overview of Different Heuristics for Region Merging:
For a given segment, there exist different ways to choose the
adjacent segment to be merged with. Four possibilities are
described in [5] as follows.

• Fitting (F): A segment R1 is merged randomly with one
of its adjacent segments R2, for which the homogeneity
criterion is fulfilled.

• Best Fitting (BF): For a segment R1, we retain one of
its adjacent segments R2, for which the homogeneity
criterion is fulfilled best. It represents the most similar
adjacent segment.

• Local Mutual Best Fitting (LMBF): For a segment R1, we
determine its most similar adjacent segment R2. For R2,
we determine its most similar adjacent segment R3. R1

and R2 are merged if R3 = R1.

LASSALLE et al.: SCALABLE TILE-BASED FRAMEWORK FOR REGION-MERGING SEGMENTATION 5477

• Global Mutual Best Fitting (GMBF): At each iteration, we
merge the pair of adjacent segments in the whole image,
which fulfills the homogeneity criterion best.

Based on [5], we selected LMBF since it allows a symmetric
growth of the segments, while minimizing the global hetero-
geneity within the final segments of the image. The authors in
[27] claim that the use of this heuristic provides higher quality
results. Another interesting aspect is the locality of the required
neighborhood for each segment at each iteration. The size of
this neighborhood can therefore be computed in advance. For
any segment, it corresponds to the adjacent segments and the
adjacent segments of those adjacent segments. Finally, this
heuristic allows overcoming the issue of visiting order. If we
consider the BF heuristic, we notice that a different visiting
order may produce different resulting segments. For instance,
let R1, R2, and R3 be three segments. Let R2 be the best
segment of R1, R3 the best segment of R2, and R2 the best
segment of R3. If we visit the segments in this order R1 →
R2 → R3, then we have R1 and R2, which will merge, but R3

will not merge since R2 has already merged and does not exist
anymore. If we visit the segments in this different order R2 →
R3 → R1, then we have R2 and R3, which will merge, but R1

will not. As a consequence, the resulting segments are different.
If we consider the LMBF heuristic and the previous visiting
orders, we obtain the following for both the same resulting
segments: the segment from the fusion of R2 and R3 and the
segment R1. In fact, the segments will always be the same for
any visiting order since this heuristic is bijective. Indeed, the
decision to merge is taken only if two segments are mutually
the best, which avoids the fusion of one of these segments with
any other region.

As we just saw in this section, a region-merging algorithm
can be modeled by generic operations on a graph data structure.
Each segment represents a node in the graph, and each edge
represents a link between two adjacent segments. Each node
is tagged with specific attributes according to the homogeneity
criterion, and each edge contains three attributes: a pointer to a
neighboring node, the merging cost, and the common boundary
length with the neighboring node. Given the way to update the
specific attributes and how to compute the merging costs, the
iterative procedure of a region-merging algorithm consists of
computing the merging costs between the adjacent nodes and
merging the best pairs of nodes using the LMBF heuristic. As
a consequence, a generic free-criterion region-merging library
has been developed in the frame of this work1 and will be soon
integrated as an external module of the Orfeo Toolbox image
processing software2.

III. PROPOSED SOLUTION

A. Stability Margin for Segmentation Algorithms and Its
Expression for Region-Merging Algorithms

1) Overview of the Definition of Stability: The goal of this
work is to ensure the equivalence of the result when apply-

1http://tully.ups-tlse.fr/lassallep/grm
2http://www.orfeo-toolbox.org/

Fig. 2. Cover stability property. The segment from the reference segmentation
is the union of segments from the tiled segmentation located on the tile edges.

ing a segmentation with and without tiling. As described in
Section II, one experimental way to prove this equivalence is to
use the Hoover metrics and check that RC = 1. The reference
segmentation is the segmentation of the whole image at once,
and the test segmentation is the tiled segmentation. There is
equivalence of the results, when each segment obtained from
the reference segmentation matches a segment from the test
segmentation. In [4], the procedure to ensure that this prop-
erty is fulfilled consists of stabilizing segmentation algorithms.
The authors define two stability properties called the “inner”
and “cover” properties. The inner stability property implies
that each segment inside a tile matches a segment from the
reference segmentation. The cover stability property implies
that segments located on the tile edges are fully included in
a segment from the reference segmentation. Fig. 2 illustrates
the cover stability property. More formally, let I denote an
image and S : I → S(I) represent a segmentation algorithm.
S(I) forms a partition of I into homogeneous disjoint segments
(R1, . . . , Rn), where Ri is one of these segments. T ⊂ I
denotes a tile, i.e., an image subset of I . A segment R′ from the
segmentation of T is represented by R′ ∈ S(T). For a segment
R ∈ S(I) and a tile T ⊂ I , we define SR(T) as follows:

SR(T) = {R′ ∈ S(T) \R′ ⊆ R} . (7)

SR(T) is the set of segments R′ ∈ S(T) that are fully included
in segment R ∈ S(I). With these notations, the authors in [4]
define a stable segmentation algorithm as follows:

Definition 1: Algorithm S is said to be stable if ∀R ∈
S(I) and ∀T ⊂ I , the following properties hold:

R ⊂ T ⇒ ∃R′ ∈ S(T) \R′ = R (8)

R ∩ T
= ∅ ⇒ R ∩ T =
⋃

R′∈SR(T)

R′. (9)

Equation (8) represents the inner stability property, and (9)
represents the cover stability property.

To make the mean-shift algorithm stable, the authors define
an additional margin for each tile to ensure equivalence with
the reference segmentation. Similarly, a margin will be defined
for the generic region-merging algorithm to make it stable. In
order to propose an expression for this margin, we first need to
study the impact of image tiling on region-merging algorithms
and determine the sources of the instability.

5478 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

Fig. 3. Impact of image tiling on a region-merging segmentation result.
(a2) Green nodes represent the nodes for which the set of edges is different
due to the tile division. (b1) Region-merging iteration has been performed on
the entire graph. (b2) Region-merging iteration has been performed on each
subgraph. Segments different from the ones in (b1) are red. The green segments
in (b2) are the segments for which the neighborhood is different.

2) Data-Driven Nature of Region-Merging Segmentation
Algorithms and Impact of Image Tiling: As described in
Section II, image tiling has an impact on the resulting segments.
The region-merging procedure can be seen as a succession of
operations on a graph. At the beginning of the segmentation
procedure, each node represents a segment of one pixel and has
four or eight edges depending on the choice of the neighbor
connectivity. During the different stages of the algorithm, the
graph is modified, as some pairs of segments are merged at
each iteration. Operations on a node at a certain iteration require
transforming and getting information from other nodes and
edges. A decision to merge two segments leads to the fusion
of two nodes in the graph. All the nodes have to be explored
at each iteration to determine whether they have to be merged
or not. This implies that a new iteration can be performed on
the graph if all the nodes were processed at the previous itera-
tion. Based on these characteristics, region-merging algorithms
belong to the irregular data-driven algorithms category [28].

Applying image tiling on an initial graph modifies the initial
set of edges for the nodes located on the borders of the tiles.
After having performed one iteration of the region-merging
procedure, these nodes might merge with different nodes from
the ones expected and lead to different resulting segments. As
a consequence, the neighborhood of other additional segments
will be different. This impact might be propagated to other
segments over the segmentation procedure. Fig. 3 illustrates the
impact of image tiling on a region-merging segmentation result.
The study of this impact of image tiling was first introduced in
[7], where the green segments in Fig. 3 were qualified as con-
tagious. Also, in [9], the authors explain that image tiling leads
to nonoptimal fusions of segments due to the absence of knowl-
edge of some segments, which belong to other tiles. Indeed, the
red segments in Fig. 3(b2) result from nonoptimal fusions.

Fig. 4. Stability margin for one iteration of the region-merging procedure.
(a) Represents the segment R. (b) Represents the list of adjacent segments of
R. The best adjacent segment of R is one of the green segments. (c) Represents
the union of the list of adjacent segments of the adjacent segments of R. This
union N(R) is necessary to fulfill the condition of mutuality.

We therefore define a stability margin for each tile to guaran-
tee that each segment inside the tile will not be contagious and
will not lead to a nonoptimal merge.

3) Expression of the Stability Margin for Region-Merging
Algorithms: For a given segment R, its best adjacent segment
will not be found farther from its list of adjacent segments.
Since the LMBF heuristic is used, the list of all the adjacent
segments of each adjacent segment of R is needed to fulfill
the condition of mutuality. Considering the union of all these
segments for each segment ensures the stability of the region-
merging segmentation to perform one iteration. This union is
composed of N(R) and is illustrated in Fig. 4. At the beginning
of the region-merging procedure, each segment is one pixel.
The stability margin to perform the first iteration is therefore
a crown of two pixels around each segment. Please note that
this stability margin is the same whether we use a four- or
eight-neighbor connectivity. To ensure the stability for the first
iteration of the region-merging procedure, it is sufficient to a
add a margin of two pixels to each tile. The size of the margin
depends on the number of iterations and can be determined
by recurrence. Let Mn be the size of the margin to perform
the first n iterations. The objective is to determine the value
of Mn+1. Let R be a segment after having performed the n
first stable iterations. To perform an additional stable iteration,
N(R) must be considered as explained previously. To ensure
the stability for this additional iteration, Mn must have been
considered for each segment contained in N(R). The upper
bound for the number of pixels contained in a segment after n
iterations is equal to 2n. Indeed, this upper bound is reached if
the segment merges at each iteration with a segment containing
the maximum number of pixels. According to Fig. 5, Mn+1 can
be expressed in function of Mn as follows:

Mn+1 = 2n+1 +Mn, with M0 = 0 (10)

which can be written as

Mn+1 = 2n+2 − 2. (11)

For example, the margin of stability to perform the two first
iterations is a crown of M2 = 6 pixels around each segment.
To ensure the stability for the two first iterations of the region-
merging procedure, it is sufficient to a add a margin of 6 pixels
to each tile.

LASSALLE et al.: SCALABLE TILE-BASED FRAMEWORK FOR REGION-MERGING SEGMENTATION 5479

Fig. 5. Determination of the size of the margin by recurrence. R is a segment
obtained after n iterations of the region-merging procedure. R′

1 is its adjacent
segment, and R′

2 is an adjacent segment of R′
1. R′

1 and R′
2 are included in

N(R) and are needed to ensure the stability for an additional iteration for R.
R and all the segments included in N(R) contain at maximum 2n pixels after
n iterations. A margin of size Mn has to be considered for all the segments in
N(R) to ensure the stability after n iterations. Mn+1 can be expressed as a
function of Mn as follows: Mn+1 = 2n+1 +Mn.

4) Definition of a Stable Segment and Removal of the
Unstable Segments: The initial segments from the margin
are processed by the region-merging algorithm to ensure the
stability of the segments inside the tile. However, as explained
in Section III-A2, these segments may be contagious or may
result from nonoptimal fusions. These segments must not be
taken into consideration and must be removed from the graph.
A segment is said to be stable if it contains at least one pixel
inside the tile, since a margin is considered for this pixel.

We consider an image I and a tile T ⊂ I . T is a rectangular
area defined by four bounds: the upper and lower rows denoted
by rmax and rmin and the upper and lower columns cmax and
cmin. A margin is added to T to perform n iterations. After the
segmentation of T over n iterations, we obtain a graph contain-
ing both stable and unstable segments. The bounding box of
the segments is first analyzed. A bounding box represents the
smallest rectangle enclosing the segment. It is characterized by
the upper left coordinates ux, uy, its width bbw, and its height
bbh. If the following condition is true:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ux ≥ cmin and

uy ≥ rmin and

ux + bbw ≤ cmax and

uy + bbh ≤ rmax

(12)

then the segment is fully included inside T and is stable. At the
opposite, if the following condition is true⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ux > cmax or

uy > rmax or

ux + bbw < cmin or

uy + bbh < rmin

(13)

then the segment is unstable and removed from the graph.
However, for a bounding box that overlaps the borders of T , no
decision can be taken. In this case, the list of the border pixels
of the segments is explored. The segment is stable if one of its
border pixels is inside the tile.

B. Tile-Based Framework for Region-Merging Segmentation
of Large Images

1) High-Level Overview: To simplify our discussion, we
initially walk through the main steps of the entire approach. In
the remainder of this paper, we consider a standard computer
with two types of memory: the Quick Limited Storage denoted
as QLS, which is typically the random access memory (RAM),
and the Slow Unlimited Storage denoted as SUS, which can
represent the hard disk drive. The objective of this section is
to exhibit how the framework works when the QLS limits the
region-merging algorithm to operate on a graph of maximum
N segments. The flow diagram is described in Fig. 6. The
new algorithm breaks up the process of region merging into
successive partial segmentations of the graphs of segments of
the tiles.

The first step consists of determining the size of the margin
for each tile, knowing the capacity of the QLS. Different
strategies are possible for choosing the size of the margin.
Increasing the margin implies a higher reduction of the num-
ber of segments since more iterations of the region-merging
procedure can be performed. However, this strategy implies
a higher number of tiles since their sizes are smaller. More
I/O operations are therefore necessary to load and store the
tiles on the SUS. Increasing the size of the tiles implies a
smaller size of the margin and, hence, a lower reduction of
the number of segments. This strategy implies more iterative
partial segmentations of the graphs of the tile. The problem of
finding the best tradeoff is not tackled in this paper but should
be addressed in the future.

The second step consists of the initial partial segmentation of
the tiles over n1 iterations. As a result of these segmentations,
graphs of segments are obtained and contain both stable and
unstable segments. Unstable segments must be removed from
these graphs, as explained in Section III-A4. These graphs are
then written to files and stored on the SUS. Section III-B2 will
explain in detail how these graphs are stored on the SUS.

The third step is a loop where successive partial segmen-
tations of the graphs are performed over n2 iterations. Cur-
rently, n2 = 1, but further improvements will be achieved to
make possible a higher number of iterations for each partial
segmentation. The loop stops when all the segments can be
stored on the QLS or when there are no remaining segments
to be merged for each graph. The body of the loop consists of

5480 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

Fig. 6. Flow diagram of the tile-based framework for region-merging segmentation algorithms.

adding a stability margin to each graph to ensure the stability
for n2 iterations. The graphs are segmented over n2 iterations
and, as described before, the unstable segments are removed,
and then, the graphs are stored on the SUS.

This third loop stops if the total number of segments is
smaller than N or if there are no remaining pairs of segments
to be merged. If the number of segments is still greater than N
but there are no remaining pairs of segments to be merged, the
procedure is complete and the graphs of the tiles are stored on
the SUS. If all the segments of the graphs can be stored on the
QLS, the last step consists of merging all the graphs to form one
graph of the segments of the image. If there are no remaining
pairs of segments to be merged, then the final graph is stored on

the SUS; otherwise, the segmentation is achieved on this graph
and stored on the SUS.

2) Storing and Loading the Graph: After the partial segmen-
tation of a tile, a graph of segments is obtained. An adjacency
list is used to represent the graph of segments, where each node
represents a segment and each edge represents a link between
two adjacent segments. In addition to specific attributes, a
node contains a list of outedges, where each outedge targets
a neighboring node. To store the graph on the SUS, a key is
used to uniquely identify each node. In a first file, each node is
written as follows:

(ki, a1, a2, . . . , ak)

LASSALLE et al.: SCALABLE TILE-BASED FRAMEWORK FOR REGION-MERGING SEGMENTATION 5481

Fig. 7. Graph of stable segments and the construction of its stability margin
for one iteration. (a) Represents the graph of stable segments loaded from
the SUS. (b) Highlights the border segments located on the tile borders.
(c) Represents the stability margin for one iteration for all the border segments,
which ensures that we are considering also this stability margin for all the
segments within the stable area. The stability margin corresponds to the second
neighboring layer N2(R) for each stable segment R of the graph.

where ki is the key of the ith node in the graph, and aj with
j ∈ N

∗ is one of its specific attributes. In a second file, for each
node, its list of adjacent nodes and the specific attributes of each
outedge is written as follows:

(ki, [ki1, e1, . . . , ek], . . . , [kie, e1, . . . , ek])

where kij is the key of the adjacent node of the ith in the graph,
and ej is one of the specific attributes of an outedge.

Loading a graph of segments for a new partial segmentation
consists of two steps:

1) building the adjacency list of the nodes from the first binary
file;

2) building the list of edges of each node from the second
binary file.

During the construction of the nodes, a hashtable is used to
associate, for each key, the pointer to the corresponding node.
During the creation of the edges, the pointer to the node can be
retrieved knowing its key using the hashtable. This operation is
achieved in constant time.

3) Addition of a Stability Margin to a Graph: To perform
a new partial segmentation on a graph over n2 iterations, we
have to consider a stability margin of value Mn2

for each
stable segment. Since n2 = 1, it results in adding N(R) for
each segment R of the graph, as explained in Section III-A3.
Some of these segments are already contained in the graph.
However, for the segments located on the borders of the graph,
some segments contained in N(R) are missing, as shown in
Fig. 7. Indeed, they are contained in the adjacent graphs of the
graph. When storing a graph on the SUS, another file is used
to store a subgraph containing only the segments located on
the borders and their sets of segment N(R). This subgraph will
be read to create the stability margins of the adjacent graphs.
Adding a stability margin to a graph results in merging the
graph with subgraphs. The way to merge graphs is described in
Section III-B4.

4) Merging the Graphs: Merging two or more graphs can
happen when a stability margin is added to a graph, as described
in the previous section, or when the graphs of the tiles are
merged to form the graph of segments of the input image.

Fig. 8(a) represents a pair of graphs to be merged. The
segments that overlap the common borders between the adja-

cent tiles are duplicated [see Fig. 8(b)]. Let Nd be a segment
and LNd be the list of its duplicated segments. The merging
operation consists of updating the list of the edges of Nd by
exploring the list of the edges of the nodes contained in LNd

[see Fig. 9(a)]. Once the edges of Nd are updated, the nodes
contained in LNd can be removed [see Fig. 9(b)].

Another required operation is to detect the segments that
contain pixels exactly on one side of the borders without over-
lapping. Their neighborhoods have to be updated by detecting
the adjacent segment on the other side of the borders. An edge
is then added between their corresponding nodes [see Fig. 8(c)].

IV. EXPERIMENTS

A. Experimental Verification of the Stability Margin

The first experiment aims at verifying the correctness of the
stability margin. We want to show that considering the stability
margin for a tile ensures that the region-merging segmentation
algorithm meets the condition of the stability properties de-
scribed in Section III-A1. To do so, we denote I as a 500 ×
500 pixel subset from a scene. We use two different scenes pro-
vided by two different optical satellites: Ikonos and Pléiades.
We use for each image the three homogeneity criteria described
in Section II-B1.

For each criterion, we apply the following procedure.

1) The segmentation of the whole image I is performed at
once. We call GT the segmentation result. We extract from
GT a tile of size 250 × 250 pixels. We call it ET .

2) We extract a tile from the image covering the same zone
as ET . We consider for this tile successive margins with
ascending values. The range of the values is between 0 and
250 pixels (whole image) with a step of 50. The successive
segmentation results of the tiles (S0, S50, . . . , S250) are
compared to ET using the Hoover metrics [6], which was
described previously in Section I.

For both images, Fig. 10 shows the evolution of RC ac-
cording to the margin value for a given homogeneity criterion
with specific segmentation parameters. One can see that, for
both cases, RC converges to 1 with increasing values of the
margin for any criterion. RC is equal to 1 when the margin
is equal to 250 pixels, which is expected, since it corresponds
to the whole image. The speed of convergence of RC depends
on the selected criterion and also on the image. According to
Fig. 10, we can observe that, for the FLS criterion and the
Baatz & Schäpe criterion, the correct detection score is equal
to 1, before the tile with its additional margin is equal to
the whole image. For example, for the FLS criterion and the
Ikonos scene, considering the tile with a margin of 100 pixels is
enough to limit the “contagious property” of being propagated
to the segments containing pixels within the tile. For the Baatz
& Schäpe criterion and the Ikonos scene, it is necessary to
consider a margin of 200 pixels to ensure the stability. For the
Euclidean distance criterion and the Ikonos scene, the stability
of the segments within the tile is never ensured until the tile
with its margin is equal to the whole image. When we compare
the evolutions of RC for both images, we can see that they
have the same relative order of convergence speeds between the

5482 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

Fig. 8. Aggregation of two graphs of segments. (a) Graphs to be aggregated. (b) Processing of duplicated segments. (c) Update of missing edges.

Fig. 9. Graph operation for duplicated segments.

criteria. However, for a given criterion and for different images,
the values of RC are not identical according to the values of
the margin. For instance, for the Baatz and Schäpe criterion,
a margin of 100 pixels is enough for the Pléiades image [see
green line in Fig. 10(b)], but it would not be enough for the
Ikonos image [see green line Fig. 10(a)]. Therefore, it appears
difficult to try to anticipate the correct value of the margin for
a new unknown image. That is the reason why we express a
generic stability margin for any particular criterion and scene,
which ensures the stability of the segments within the tiles.

The following experiment will check that our tile-based strat-
egy for segment-merging algorithms described in Section II-B1
ensures identical results to those obtained when the complete
image is segmented. To do so, I is divided into tiles of size
250 × 250 pixels. For each tile, we consider an additional
stability marginMn, where n is the number of iterations that we
anticipate. First, a segmentation of n iterations is performed on
each tile with n ∈ [1, 6]. Next, the intermediate graphs of seg-
ments are merged together, and the segmentation is achieved.
We call SMn

the segmentation result. SMn
is then compared to

GT using the Hoover metrics. For each criterion and for each
scene, a correct detection score equal to 1 is obtained.

B. Illustration of the Main Steps of the Tile-Based
Region-Merging Framework

We consider a 1000 × 1000 QuickBird scene and the Baatz
and Schäpe criterion [5] for our region-merging algorithm with
a spectral and shape weight of 0.7 and 0.3, respectively, and a
scale threshold of 150. We simulate a computer with 12 MB
of RAM. The first step consists of determining the size of the
tiles and the size of the margin. To do so, we have to know
the sizes of an initial node and edge in the graph. Each node
represents a region and contains several attributes to compute
the merging costs, as described in Section II-B1. Likewise, each

edge contains three attributes: the merging cost, the boundary
length, and a pointer to the neighboring nodes. With the features
of the simulated computer, the size of a node is 216 bytes,
and the size of an edge is 24 bytes. We use the four-neighbor
connectivity, which implies that, at the beginning, each node
has four edges. If N is the number of pixels in a tile, then the
required memory to store the corresponding graph is equal to
(216 + 4× 24)×N bytes. A size of 125 × 125 pixels for the
tile and a margin value of 30 pixels results in 38 025 pixels.
The memory required to store the initial graph of each tile with
its margin is 11 MB, which can fit in our computer. The image
is therefore divided into 64 tiles with their stability margins.
Fig. 11 illustrates the division strategy.

As described in Fig. 6, the next step consists of performing
the first partial segmentation of the tiles over 4 iterations
(M4 = 30). At the end of this step, the unstable segments
are removed from each graph, and the graphs of the tiles
are stored on the SUS. The accumulated memory to store
all the intermediate graphs is equal to 90 MB, which is still
greater than the available QLS, and there are remaining pairs
of segments to be merged in each graph. The next step consists
of entering in the main loop of the framework, which consists of
performing successive iterations on the graphs of the tiles, while
the memory to store all the segments of the image is greater than
12 MB, and there are remaining pairs of segments to be merged.

Twelve additional partial segmentations have been per-
formed on the graphs of the tiles to be able to store all the
segments of the image in the QLS. Before each partial segmen-
tation, a margin for one iteration has been added to each graph,
as described in Section III-B3. After a partial segmentation,
the unstable segments are removed, and the graph is stored on
the SUS, as described in Fig. 6, in the body of the main loop.
Fig. 12 shows the evolution of a graph of segments of a tile
over the successive partial segmentations. Only four states of
the stable graph of this tile are illustrated and correspond to
the first, fourth, seventh, and thirteenth partial segmentation,
respectively.

The final step consists of merging all the intermediate graphs
together to form the global graph of the image. Since there are
remaining segments to be merged, we perform and achieve the
segmentation on the global graph. Fig. 13(a) shows the labeled
segmented image. We notice the absence of the artifacts at the
tile boundaries. Furthermore, we compare this segmentation
result with the one obtained from the segmentation of the whole
image without tiling [see Fig. 13(b)] using the Hoover metrics
[6]. A correct detection score of 1 has been obtained, which
means that both segmentations are identical.

LASSALLE et al.: SCALABLE TILE-BASED FRAMEWORK FOR REGION-MERGING SEGMENTATION 5483

Fig. 10. Correct detection scores: Comparison of the test segmentations (S0, S50, . . . , S250) to ET using three different homogeneity criteria when performing
the step 2 of the procedure. (a) and (b) Evolution of the detection scores using two different images (Ikonos and Pléiades extracts). (a) Ikonos. (b) Pléiades.

Fig. 11. Division of the image scene of size 1000 × 1000 pixels into 64 tiles
of size 125 × 125 pixels: the tiles are delineated by continuous black borders
and the stability margins are delineated by the dashed black borders. The red
rectangle represents one of the tiles of the image and will be used in Fig. 12 to
show the evolution of its corresponding graph of segments over the procedure
of the framework described in Fig. 6.

C. Segmentation of a Full Pléiades Scene Using the
Tile-Based Region-Merging Framework

Here, we scale our tile-based region-merging framework
to a full Pléiades pan-sharpened scene of Melbourne city
in Australia. This image contains 32 768 × 16 384 pixels.
The segmentation was performed using the Baatz and Schäpe
homogeneity criterion [5]. The segmentation was performed
sequentially on an Intel Xeon with 12 GB of RAM. For the
first partial segmentation, the image was divided into 512 tiles
of 1024 × 1024 pixels with an additional stability margin
of 1022 pixels corresponding to 9 iterations. The first partial
segmentation was performed on the 512 tiles over 9 iterations.
The accumulated memory of all the intermediate graphs after
the first partial segmentations was equal to 31 GB, which was
larger than the RAM available. Twelve more iterations were
performed to be able to store the global graph of segments

Fig. 12. Evolution of a graph of a tile over the partial segmentations. (a) Tile
of the input image represented by a red rectangle in Fig. 11. (b) Graph of
stable segments of the tile after the first partial segmentation over 4 iterations.
(c) Graph of stable segments of the tile after the fourth partial segmentation.
(d) After the seventh partial segmentation. (e) After the last partial segmen-
tation. The growth of the segments can be observed over the iterations, and
segments located at the tile edges have the freedom to grow in the same way as
they would do if the input image was segmented without image tiling, due to
the stability margin.

in QLS. The graphs of segments were then merged, and the
segmentation was achieved. The whole sequential procedure
took approximately 12 h and 30 min as follows: 11 h for
the successive partial segmentations and 1 h and 30 min to
merge the intermediate graphs of segments and complete the
segmentation. Fig. 14 shows the input image and one enlarged
view of the output image. This enlarged view shows the contour
of the segments.

V. CONCLUSION

This paper has presented a solution to ensure equivalent
results for the segmentation of satellite images of arbitrary
size with tiling. It was experimentally shown that the region-
merging algorithms do not cope well when using image tiling.
The impact of image tiling has been studied for region-merging
algorithms, and the critical steps have been identified. The
concept of stability margin has been defined and expressed
quantitatively as a function of the number of iterations of

5484 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

Fig. 13. (a) Labeled segmented image after applying our tile-based region-
merging framework. No artifacts can be observed at the tile boundaries.
(b) Labeled segmented image obtained without image tiling but with the same
user-defined parameters for the Baatz & Schäpe criterion. Both results (a) and
(b) have been compared with the Hoover metrics: RC = 1, RA = 0, RF = 0,
and RM = 0. The equivalence of the result is proven. (For both images, the
same seed has been used to randomly color the segments in order to have a
perfect match.)

the region-merging procedure. Using the stability margin in a
tiling approach has allowed ensuring the equivalence of the
results between the segmentation with and without tiling. The
practicality of the tile-based framework for region-merging
algorithms has been illustrated by the segmentation of a full
entire Pléiades scene of billions of pixels in a computer with
limited storage memory.

However, additional work to improve the efficiency of this
framework, by minimizing the number of partial iterations and
the number of I/O operations, should be carried on. The first
improvement would consist of finding an optimal solution to
determine the size of the tiles and the stability margin. The

Fig. 14. (a) Full VHR Pléiades scene (32 768 × 16 384 pixels). The image was
divided into 32 × 16 tiles of 1024 × 1024 pixels for our tiled-based strategy.
(b) Partial views of the segmentation result. The segments are represented only
by their edges.

second improvement would consist of allowing more iterations
for each partial segmentation of the graphs. Additional study
may also include the portage of this framework to a parallel and
distributed environment to reduce the processing time. Finally,
it would be interesting to unify this solution, by extending it to
other families of segmentation algorithms.

ACKNOWLEDGMENT

P. Lassalle would like to thank P. N. Happ, G. A. O. P. Costa,
and R. Q. Feitosa for their introduction to the region-merging
algorithms developed in the open-source software InterImage.
All Pléiades images are a copyright of CNES (2012), Distribu-
tion Airbus DS/Spot Image.

REFERENCES

[1] T. Blaschke, “Object based image analysis for remote sensing,” ISPRS J.
Photogramm. Remote Sens., vol. 65, no. 1, pp. 2–16, Jan. 2010.

[2] J. Inglada and J. Michel, “Qualitative spatial reasoning for high-resolution
remote sensing image analysis,” IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 2, pp. 599–612, Feb. 2009.

[3] M. Vanegas, I. Bloch, and J. Inglada, “Alignment and paral-
lelism for the description of high-resolution remote sensing images,”
IEEE Trans. Geosci. Remote Sens., vol. 51, no. 6, pp. 3542–3557,
Jun. 2013.

[4] J. Michel, D. Youssefi, and M. Grizonnet, “Stable mean-shift algorithm
and its application to the segmentation of arbitrarily large remote sensing

LASSALLE et al.: SCALABLE TILE-BASED FRAMEWORK FOR REGION-MERGING SEGMENTATION 5485

images,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 952–964,
Feb. 2015.

[5] M. Baatz and A. Schäpe, “Multiresolution segmentation: An optimiza-
tion approach for high quality multi-scale image segmentation,” in
Angewandte Geographische Informationsverarbeitung XII. Heidelberg,
Germany: Wichmann, 2000, pp. 12–23.

[6] A. Hoover et al., “An experimental comparison of range image segmenta-
tion algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7,
pp. 673–689, Jul. 1996.

[7] S. Lee, “An unsupervised hierarchical clustering image segmentation
and an adaptive image reconstruction system for remote sensing,” Ph.D.
dissertation, Univ. Texas Austin, Austin, TX, USA, 1990.

[8] S. Lee, K.-H. Lee, and C. Kim, “Efficient multi-stage system for unsuper-
vised classification and its application of KOMPSAT-I imagery,” in Proc.
IEEE IGARSS, 2000, vol. 5, pp. 2173–2175.

[9] J. C. Tilton, Y. Tarabalka, P. M. Montesano, and E. Gofman, “Best
merge region-growing segmentation with integrated nonadjacent region
object aggregation,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11,
pp. 4454–4467, Nov. 2012.

[10] T. Körting, E. Castejon, and L. Fonseca, “The divide and segment
method for parallel image segmentation,” in Advanced Concepts for
Intelligent Vision Systems, ser. Lecture Notes in Computer Science,
J. Blanc-Talon, A. Kasinski, W. Philips, D. Popescu, and P. Scheunders,
Eds. Cham, Switzerland: Springer-Verlag, 2013, vol. 8192,
pp. 504–515.

[11] J. C. Tilton, G. Marchisio, K. Koperski, and M. Datcu, “Image information
mining utilizing hierarchical segmentation,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., 2002, pp. 1029–1031.

[12] J. Michel et al., “Open tools and methods for large scale segmenta-
tion of very high resolution satellite images,” in Proc. OGRS, 2012,
pp. 179–184.

[13] J. Schiewe, “Segmentation of high-resolution remotely sensed data-
concepts, applications and problems,” in Int. Arch. Photogramm. Remote
Sens. Spatial Inf. Sci., vol. 34, no. 4, pp. 380–385, 2002.

[14] G. Meinel and M. Neubert, “A comparison of segmentation programs
for high resolution remote sensing data,” Int. Arch. Photogramm. Remote
Sens., vol. 35, Pt. B, pp. 1097–1105, 2004.

[15] C. R. Brice and C. L. Fennema, “Scene analysis using regions,” Artif.
Intell., vol. 1, no. 3, pp. 205–226, 1970.

[16] R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 16, no. 6, pp. 641–647, Jun. 1994.

[17] F. Calderero and F. Marques, “Region merging techniques using infor-
mation theory statistical measures,” IEEE Trans. Image Process., vol. 19,
no. 6, pp. 1567–1586, Jun. 2010.

[18] L. S. Bins, L. M. G. Fonseca, G. J. Erthal, and F. M. Ii, “Satellite imagery
segmentation: A region growing approach,” in Proc. Simpósio Brasileiro
Sensoriamento Remoto, 1996, vol. 8, pp. 677–680.

[19] G. Espindola, G. Câmara, I. Reis, L. Bins, and A. Monteiro, “Parameter
selection for region-growing image segmentation algorithms using spatial
autocorrelation,” Int. J. Remote Sens., vol. 27, no. 14, pp. 3035–3040,
Jul. 2006.

[20] G. Costa et al., “Knowledge-based interpretation of remote sensing data
with the Interimage system: Major characteristics and recent develop-
ments,” in Proc. ISPRS, 2010, vol. 38, p. 4.

[21] C. Woodcock and V. Harward, “Nested-hierarchical scene models and
image segmentation,” Int. J. Remote Sens., vol. 13, no. 16, pp. 3167–3187,
Nov. 1992.

[22] S. Lee and C. Lee, “Unsupervised segmentation for hyperspectral images
using mean shift segmentation,” in Proc. SPIE Opt. Eng. Appl., 2010,
Art. ID. 781011.

[23] F. Calderero and F. Marques, “General region merging approaches based
on information theory statistical measures,” in Proc. 15th IEEE ICIP,
2008, pp. 3016–3019.

[24] D. J. Crisp, P. Perry, and N. J. Redding, “Fast segmentation of large
images,” in Proc. 26th Australasian Comput. Sci. Conf., 2003, vol. 16,
pp. 87–93.

[25] K. Segl, S. Roessner, U. Heiden, and H. Kaufmann, “Fusion of spectral
and shape features for identification of urban surface cover types using
reflective and thermal hyperspectral data,” ISPRS J. Photogramm. Remote
Sens., vol. 58, no. 1/2, pp. 99–112, Jun. 2003.

[26] H. G. Akcay and S. Aksoy, “Automatic detection of geospatial objects
using multiple hierarchical segmentations,” IEEE Trans. Geosci. Remote
Sens., vol. 46, no. 7, pp. 2097–2111, Jul. 2008.

[27] P. N. Happ, R. Q. Feitosa, C. Bentes, and R. Farias, “A region growing
segmentation algorithm for GPUs,” Boletim Ciências Geodésicas, vol. 19,
no. 2, pp. 208–226, 2013.

[28] K. Pingali et al., “The tao of parallelism in algorithms,” in Proc. PLDI,
2011, pp. 12–25.

Pierre Lassalle received the degree in informat-
ics, automation, and embedded systems engineering
from the École Nationale Supérieure des Techniques
Avancées, Brest, France, and the degree in computa-
tional science and intelligent systems from the Uni-
versity of the Basque Country, San Sebastian, Spain,
in 2012. He is currently working toward the Ph.D.
degree with the Centre National d’Études Spatiales
(French Space Agency) Toulouse, France, where he
is performing research on the scalability of image
processing algorithms for large remote sensing

images.

Jordi Inglada received the degree in telecom-
munications engineering from both the Universitat
Politècnica de Catalunya, Barcelona, Spain, and the
École Nationale Supérieure des Télécommunications
de Bretagne, Brest, France, in 1997 and the Ph.D.
degree in signal processing and telecommunications
from the Université de Rennes 1, Rennes, France,
in 2000.

He is currently with the Centre National d’Études
Spatiales (French Space Agency), Toulouse, France,
working in the field of remote sensing image pro-

cessing at the Centre d’Etudes Spatiales de la Biosphère (CESBIO) Laboratory.
He is in charge of the development of image processing algorithms for the
operational exploitation of Earth observation images, mainly in the field of
multitemporal image analysis for land use and cover change.

Julien Michel (M’14) received the degree in
telecommunications engineering from the École
Nationale Supérieure des Télécommunications de
Bretagne, Brest, France, in 2006.

From 2006 to 2010, he was with Communications
et Systèmes, Toulouse, France, working on studies
and developments in the field of remote sensing
image processing. He is currently with the Centre
National d’Études Spatiales (French Space Agency),
Toulouse, France, where he is in charge of research
and development on image processing algorithms for

remote sensing images.

Manuel Grizonnet received the degree in mathe-
matical modeling, vision, graphics, and simulation
engineering from the École Nationale Supérieure
d’Informatique et de Mathématiques Appliquées de
Grenoble, Grenoble, France, in 2007.

From 2007 to 2009, he was with BRGM (French
geological survey), Niamey, Niger, where he was a
Systems and Geological Information System (GIS)
Engineer in the framework of the SYSMIN project,
which aimed to give the Niger ways to promote
its mining potential by establishing a GIS. He is

currently with the Centre National d’Études Spatiales (French Space Agency),
Toulouse, France, where he is developing image processing algorithms and
software for the exploitation of Earth observation images.

Julien Malik received the master’s degree with a
specialization in signal and image processing from
the École Supérieure d’Electricité, Gif-sur-Yvette,
France, in 2004.

After different positions where he developed im-
age and signal processing algorithms in various con-
texts, since 2010, he has been with CS Systèmes
d’Information, Toulouse, France, where he is work-
ing on R&D studies and software development in
the field of remote sensing image processing. He is
involved with the development of a number of open-

source toolboxes for remote sensing imagery analysis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

