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Abstract—An algorithm for surface soil moisture estimation
using L-band radar observations is introduced. The formula-
tion envelops a wide range of land surface conditions based on
three limiting cases defined in terms of end-members: smooth
bare soil, rough bare soil, and a maximum vegetation covered
soil. Parameterizations for these end-members are obtained using
forward electromagnetic scattering models. Modulation due to
soil surface roughness and overlying vegetation scattering effects
between end-members are accounted using the radar vegetation
index and the newly introduced radar roughness index. Hence, the
retrieval algorithm developed here does not depend on ancillary
vegetation or roughness information. The algorithm is tested with
ground-based truck-mounted bare soil observations and observa-
tions from several airborne field campaigns that represent a wide
range of surface conditions.

Index Terms—Radar roughness (RR), radar soil moisture,
radar vegetation.

I. INTRODUCTION

THE microwave remote sensing of the Earth surface and
specifically the retrieval of surface soil moisture content

performed with passive sensors have been demonstrated to be
more robust than those performed with active sensors. The
scattering and attenuation due to the vegetation cover and sur-
face roughness effects strongly influence the active signal when
compared to the passive signal. However, the lower spatial res-
olutions of spaceborne passive sensors limit their applicability
to many applications. Active sensors like spaceborne radars
provide observations at higher spatial resolutions. However,
difficulties in quantifying scattering effects pose challenges for
soil moisture estimation using active measurements. In this pa-
per, we develop a robust radar-only soil moisture algorithm. The
algorithm is designed to work with L-band radar measurements.

In order to make the algorithm computationally efficient for
soil moisture estimation, all possible efforts are made to keep
the formulation independent of the ancillary information source
on vegetation and surface roughness. Furthermore, ancillary
information on vegetation and roughness often depends on
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empirical parameterizations using optical sensor data (e.g.,
vegetation indices and land-use classification). The ancillary
information is itself a source of error. The proposed algorithm is
applicable with the sensing configuration of the upcoming Soil
Moisture Active Passive (SMAP) mission [1].

A major challenge in accurately retrieving soil moisture from
spaceborne radar observations is that the number of observa-
tions from a particular radar sensor is less than the unknown
surface parameters. These parameters include multiple scales
of roughness and potentially several vegetation characteristics.
In order to address these issues, several approaches have been
developed using a combination of theory and empiricism based
on ground-based, airborne, and spaceborne radar observations,
e.g., [2]–[8]. In these approaches, assumptions are made regard-
ing scattering from different vegetation components and from
different scaled surface roughness. One assumption that is usu-
ally made to overcome the difficulty in adequately accounting
for the scattering effect from vegetation is to treat vegetation
as a uniform medium of some specified height with randomly
oriented scatterers [2], [9], [10]. However, these theoretical
representations can be ill-posed inverse problems due to the
large number of unknown canopy variables. This has led to the
use of semiempirical and empirical approaches. However, these
models are usually site specific and therefore have a limited
applicability outside of the conditions included in the data sets
used in their development.

One approach to reducing the dimensionality of the problem
is to characterize roughness and vegetation information using
ancillary data sources. However, it is difficult to account for the
spatial or temporal changes in these variables using ancillary
data sources. Furthermore, errors in the ancillary sources could
result in soil moisture estimation error.

An alternate approach to estimating the surface roughness
and vegetation using the radar measurements themselves, in
lieu of information from ancillary sources, is to use a time-
series approach [8], [11]–[14]. In the time-series approach,
both the vegetation and roughness [8], [11], [13] or only the
roughness [14] is considered to remain stationary over a specific
time window, during which soil moisture is assumed to be the
only sources of variability in the signal. The challenge for the
time-series approach is to identify measurements made within
specific time windows inside which model components other
than soil moisture could be considered constants.

Another approach to reducing the impact of surface rough-
ness and vegetation in the retrieval of surface moisture status
is to retrieve a soil moisture index that is relative between
residual and saturation soil moisture levels. The residual and
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saturation soil moisture levels correspond to the minimum and
maximum backscatter values, respectively [15]. These maxi-
mum and minimum backscatter values, however, may vary with
time with changing vegetation and roughness conditions. The
errors with finding the maximum and minimum backscatter
values corresponding to the residual and saturation volumetric
soil water content, respectively, add uncertainty. This approach
also results in a relative soil saturation index and not volumetric
soil moisture content.

Table I is a summary of these and other approaches devel-
oped for radar-based soil moisture and roughness estimation.
These approaches, including those developed for frequencies
other than the L-band, often allow soil moisture estimation only
with the availability of ancillary data on roughness or other fac-
tors (reported as a column in Table I) [8], [10], [14], [16]–[25].
Zribi et al. [21] use the Z-parameter to parameterize roughness,
Baghdadi et al. [22] suggest parameterization for correlation
length, Paloscia et al. [20] introduced neural network and
compares the performance with the other empirical methods,
and Mattia et al. [18] and Lievens and Verhoest [24] modified
roughness parameters to improve soil moisture estimates. Many
of the algorithms use the integral equation model (IEM) and the
Michigan Microwave Canopy Scattering (MIMICS) as building
blocks or use outputs from these numerical models for algo-
rithm training. Both these forward models require information
on surface roughness and vegetation structure that is derived
from ancillary information. The present approach is intended
to investigate pathways for radar-based soil moisture retrieval
that specifically does not require vegetation and roughness
ancillary data. Furthermore, we seek an algorithm that could be
considered for bare soils as well as vegetated areas in particular
for testing new observations from the SMAP mission.

Several different algorithms are being considered for surface
soil moisture estimation using SMAP radar measurements [8],
[13], [15], [26]. Most of these methods use iterative algo-
rithms to estimate soil moisture by minimizing differences
between the computed and the observed backscatter (σ). Such
approaches can be computationally challenging when applied
to radar observations over continental scales with a 3-km spatial
resolution. This problem can be overcome using a lookup
table approach or “data cube” as demonstrated in [8], [14].
A data cube is a 3-D lookup table for σ computed using
forward backscatter models for a wide range of the most
significant three parameters: the roughness given as ks where
s = rms (root mean square) height and k = 2π/wavelength,
the vegetation water content (VWC), and the real part of the
dielectric constant (ε). The lookup table for bare soils has only
two dimensions, ks and ε [8]. The application of a lookup
table in estimating soil moisture in snapshot and time-series
mode is demonstrated in [14] for bare soil surfaces and [8] for
vegetated surfaces. Data cubes have also been developed for
a number of vegetated surface classes. The classes correspond
to vegetation types, and for each, VWC is used as a proxy
representation of all the vegetation properties for a given type of
vegetation. Additional details on data cubes could be found in
[8]. The accuracy of data-cube retrievals depends highly on how
accurate the roughness and vegetation effects are accounted in
ancillary data sources that determine ks and VWC.

In this paper, we use only radar observations at different
polarizations to estimate vegetation and roughness effects. This
is a research algorithm, and it is not intended to be part of
the suite of science data products for the forthcoming SMAP
mission.

The generalized formulation of the new algorithm is intro-
duced in Section II. In Section III, this generalized formulation
is evaluated at the limiting cases given by three end-members,
defined as follows: 1) end-member I or smooth bare soils;
2) end-member II or rough bare soils; and 3) end-member III
maximum vegetation surface. In order to make this approach
independent of ancillary data requirements, we use the radar
vegetation index (RV I) to account for vegetation effects [13]
and scale between end-members. Initial studies of RV I show
that it is related to microwave vegetation opacity (τ) [27],
[28] and water content of the plant canopy. Roughness effects
are incorporated using a new radar roughness index (RRI)
introduced in Section IV that is also used to scale between end-
members depending on the roughness conditions. In Section V,
equations developed for limiting cases in terms of end-members
are combined using RV I to obtain a generalized soil mois-
ture estimation algorithm. In Section VI, the algorithm is
tested using experimental observations. For this, ground-based
POLARSCATTER bare soil data [29] and the Passive and Ac-
tive L- and S-band (PALS) data obtained during the field cam-
paigns of SGP99, SMEX02, CLASIC07, and SMAPVEX08
reported in [30] and SMAPVEX12 presented in [31] are used.

II. BASIC FORMULATION

Backscatter observations over land principally depend on soil
moisture, surface roughness, vegetation structure and the in-
teraction between soil and vegetation. Modeling the scattering
mechanisms comprehensively at a high spatial resolution over
continental scales is computationally challenging [8], [29]. In
this section, simple formulations are presented to represent ap-
proximate solutions for the complex electromagnetic scattering
problem.

Based upon prior studies [2], [4], [29], a nonlinear formu-
lation is necessary for bare soils in order to represent the
backscatter dependence on surface volumetric soil moisture
(mv) [m3 m−3], whereas the linear formulation is found to
adequately account for this dependence over vegetated areas
[2], [11], [12]. Therefore, to account for the nonlinear and the
linear dependence of σ on mv in a single equation, we propose
a generalized representation as

σV V [dB] = Sensitivity ∗mλ
v + Intercept. (1)

The vertical polarization is expected to have higher sensitivity
to soil moisture than the horizontal polarization [2], [13], [29],
and therefore, we have considered vertical polarization to rep-
resent backscatter (σV V ) in terms of mv in (1). Sensitivity and
Intercept are functions of soil surface roughness and vegetation.
They are discussed separately in Section II-A and B. The power
term λ accounts for soil moisture dependence and is a function
of vegetation level. For vegetated surfaces with a closed canopy,
the λ = 1 linear formulation is used in [11], [12], and [32].
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TABLE I
HERITAGE SURFACE SOIL MOISTURE RADAR RETRIEVAL ALGORITHMS

Nonlinear (specifically λ < 1) dependence is used for bare soil
and sparsely vegetated surfaces. The power term λ is discussed
in Section II-C.

A. Sensitivity

Sensitivity to soil moisture, defined as the measure of change
in σ with change in mv , is denoted as Δσ/Δmv [32]. With
linear formulations, it represents the slope of the regression line

[13]. In this paper, we define the term Sensitivity to account for
the soil moisture sensitivity at any given level of vegetation and
roughness in the simplified form of (1).

Sensitivity is reported to be independent of roughness [7],
but observations presented in Fig. 7 of [33], [35], and some
recent studies, e.g., Fig. 5(b) of [34], show that the roughness
also affects Sensitivity in addition to Intercept. In this paper, we
incorporated the roughness dependence in both Intercept and
Sensitivity.
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Fig. 1. Conceptual representation of Sensitivity in (1) with end-members
enveloping possible sensitivities of backscatter to soil moisture. Sensitivity
decreases with increasing vegetation (for nonforest moderate vegetation).
Sensitivity increases with roughness for bare and sparsely vegetated surfaces.

Observations acquired over bare soils, such as data sets
presented in Fig. 7 of [33], Fig. 5(b) of [34], and [35], show that
the roughness increases Sensitivity. Moreover, in the presence
of moderate vegetation, the Sensitivity could depend on surface
roughness [32]. In this paper, to develop a general radar soil
moisture algorithm at L-band, we have considered the increase
in Sensitivity with roughness, and its formulation is discussed
in Section III-B.

At off-nadir angles, with increasing amount of vegetation,
Sensitivity monotonically decreases [3], [26]. For higher level
of vegetation cover, the observed backscatter is primarily a
function of vegetation cover (see [2, Ch. 21.5]). However, due
to higher penetration of microwaves at L-band into the canopy,
ground contribution is expected for vegetated surfaces with
moderate vegetation, i.e., less than about 5-kg m−2 water con-
tent typical of agricultural fields, grasslands, and savannas [8].

In this paper, to address the Sensitivity in the form of (1),
a conceptual diagram is introduced to represent Sensitivity
variations from low to high vegetation and from smooth to
rough bare soils [32]. The conceptual diagram is shown in
Fig. 1. We define three end-members to envelop the maximum
possible values that Sensitivity could take in (1). These end-
members are defined as: 1) end-member I or smooth bare soil;
2) end-member II or rough bare soil; and 3) end-member III or
maximum vegetation. The same end-members are also used to
envelop possible Intercept values of (1).

B. Intercept

A conceptual representation of Intercept is shown in Fig. 2
[32]. Intercept is the backscatter value expected for dry soils.
Over bare soils and under low vegetation condition, the
Intercept defined in (1) is mainly a function of surface rough-
ness, and as vegetation level increases, it becomes mainly a
function of vegetation cover [2], [32]. Fig. 2 also depicts the
same three end-members as those discussed for Sensitivity in
Fig. 1. Moreover, based on [8] and [36], the Intercept could also
depend on the type of vegetation based on the kind of scattering
mechanism involved. In this paper, we do not account for these

Fig. 2. Conceptual representation of Intercept in (1) with end-members
enveloping possible sensitivities of backscatter to soil moisture.

canopy structural effects. This will result in higher soil moisture
retrieval errors, but it will be independent of errors in ancillary
data on canopy structure. There are tradeoffs in error, and in this
paper, we explore the approach of least reliance on ancillary
information.

C. λ: Soil Moisture Functional Dependence

In (1), λ accounts for the relationship between σ and mv

and it is a function of vegetation. Observations show that rate
of backscatter change due to changing mv is higher when the
soil moisture is approximately 0.2 m3m−3 or lower and the rate
is lower for soil moisture between this value and saturation
[2]–[6]. To account for this trend, most of these bare soil surface
models consider the nonlinear dependence of σ on mv . Based
on these models, λ could be shown approximately equal to
0.3. In this paper, we show that λ = 0.3 based on bare soil
backscatter numerical simulations (see Section III-A). Over
vegetated areas, the σ dependence on mv is closer to linear
[11]. Numerical simulations shown in Fig. 7(c) of [32] indicate
a transition from nonlinear dependence (σ on mv) in the case
of bare soils to a linear dependence as the vegetation increases.
Numerically, the power parameter λ of this dependence ranges
from about 0.3 to 1.0, depending on the vegetation cover. In
Section IV-A, we introduce the radar vegetation index (RV I)
developed in [13] and [37]. The RV I is a normalized cross-
polarization radar backscatter and approaches 1.0 for dense
vegetation. It is bounded at zero for bare soils. The scale ranges
of σ and RV I are similar and indicate the level of vegetation.
We use RV I to account for the vegetation effect on λ, as will
be shown in Section IV.

III. EVALUATION OF THREE END-MEMBERS

Three end-members, i.e., end-member I or smooth bare soils,
end-member II or rough bare soils, and end-member III or max-
imum vegetation cover, are defined to envelop the extremum
expected values of Sensitivity and Intercept (see Figs. 1 and 2).
Most surfaces are in between the end-members. In this section,
we evaluate each of these end-members and establish quantita-
tive values for them. We based our evaluations on numerical
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Fig. 3. Simulated σV V for bare soil data-cube values for ks = 0.14 to 0.16
(smooth bare soil surfaces) are plotted with the fit of (2). The fit represents
end-member I. The data cube is based on numerical Maxwell solution in [29].

radar scattering model results available in the form of data
cubes. The numerical simulations for bare soil surfaces with
a range of roughness conditions are derived from [29]. These
simulations solve the Maxwell equations in three dimensions
and form reliable data for estimating the bare soil parameters
for the retrieval algorithm. The dielectric constant model [38] is
used where applicable to convert the dielectric constant to soil
moisture. Furthermore, since SMAP observations will be made
at a 40◦ incidence angle, the data-cube approach is available at
a fixed incidence angle of 40◦ [8]. In this section, the possible
values of Sensitivity and Intercept for three end-members are
computed at 40◦ incidence using data cubes.

A. End-Member I: Smooth Bare Soils

Over smooth bare soils where roughness is not a primary
influence, the observed backscatter could be considered to
mainly depend on soil moisture. Therefore, based on (1), σ in
terms of mv for the smooth bare soil could be given as

σss
V V [dB] = Ss ∗mλ

v + σs
V V (2)

where σs
V V is defined as the minimum vertically polarized

backscatter value expected for smooth bare soils and Ss is
the Sensitivity of the backscatter to mv . Both are functions of
soil clay fraction clf . The dependence of Ss and σs

V V on soil
texture is described in Appendix A. Over bare soils, smooth
surfaces are defined using an upper limit of 0.6-cm rms height
[8], [14]. Using the L-band wavelength k, the limit corresponds
to ks = 0.16. For bare soil data cube, the lower roughness limit
is considered as 0.14. Fig. 3 shows the backscatter simulated for
ks values from 0.14 to 0.16, i.e., smooth conditions. Equation
(1) fits the numerical Maxwell equation solutions [29] as shown
in Fig. 3. This figure shows the case for soil texture with a
clay fraction of 20%. This clay fraction is chosen since it is
associated with loamy soil that comprises about 50% of the
global soil category [30].

B. End-Member II: Rough Bare Soils

The soil surface roughness is usually defined in terms of
rms height s and the correlation length l [4], [7]. Prior studies

have shown that the IEM is suitable to account for a wide
range of roughness conditions [4], [39]. The IEM could be
modified using a general power law spectrum to relate s and
l components [40], and therefore, the effect of s and l was
shown to be comprehensively defined using a single term [41].
A similar study has also explored the relation between s and
l using the IEM model [10], [42]. These studies noted a higher
sensitivity of backscatter to s as compared to that of l. Recently,
the impact of the correlation length is studied using the ratio
l/s by Kim et al. [14] using the numerical solution for the
bare surface scattering. In that study, the four values of l/s(=
4, 7, 10, and 15) are considered (see [14, Fig. 8]). When dual
co-polarized backscatter data are used for the retrieval, the
impact of incorrect knowledge in l/s on the mv retrieval is less
than 0.015 m3m−3 [14]. In this paper, the roughness effect is
considered using only s and ignoring the effect of l. This is a
simplification and a potential source of error.

In order to account for the roughness effect in (1), the
influence of roughness on both the Sensitivity and Intercept
components must be considered (see Figs. 1 and 2). For bare
soils, Sensitivity is usually considered almost independent of
roughness, and the roughness effect is solely incorporated in
the Intercept [14], [29], [39]. However, observations presented
in Fig. 7 of [33], [35], and some latest studies, e.g., Fig. 5(b)
of [34], show that the roughness also affects Sensitivity in
addition to Intercept. In this paper, we incorporate the impact
of roughness on Intercept as well as on Sensitivity. Therefore,
for rough bare soil surfaces, we write (1) as

σrs
V V [dB] = Sr(ks) ∗mλ

v + g(ks) (3)

where Sr is the rough surface Sensitivity and g represents the
rough surface Intercept both as a function of ks. We require
that, as ks tends to 0, the Sr(ks) and g(ks) tend toward smooth
soil parameters Ss and σs

V V , respectively, defined earlier in (2).
Hence, we could write Sr in terms of smooth soil Sensitivity as

Sr(ks) = Ss ∗ {1 + f(ks)} (4)

where f(ks) represents some function of ks that should tend to
zero as ks tends to zero. Based on several approaches, such as
[6], [26], [29], and [44], the logarithmic function with base 10
is shown to be a suitable function to adequately account for the
dependence of σ on ks at a given mv . In this paper, we used the
log10 function to define f(ks) in (4) as

Sr(ks) = Ss ∗ {1 + log10(1 + ks)} (5)

and the Intercept g as function ks can be simply written as

g(ks) = σs
V V +C ∗ log10(1 + ks) (6)

where the C parameter accounts for the roughness effect in dry
soil condition, i.e., when mv tends to zero. Substituting (5) and
(6) in (3)

σrs
V V [dB] = Ss ∗ {1 + log10(1 + ks)}

∗mλ
v + σs

V V +C ∗ log10(1 + ks). (7)
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Fig. 4. σV V simulated for bare soils using (7) compared with numerical
Maxwell solution [29] for all possible values of s from 0.5 to 4.5 cm.

Using bare soil data cube (derived from the numerical solutions
to Maxwell equations [29]) for ks ranging from 0.14 (smooth)
to 1.4 (rough) (the range considered in bare soil data cube) [14],
C is estimated as C = 13.6.

For example, for soil texture corresponding to a typical clay
fraction of 20%, Sr defined in (5) ranges from 23.00 to 31.75,
and g given in (6) ranges from −34.50 to −29.33 for ks varying
from 0.14 to 1.4 (corresponding to s from 0.5 cm to 4.5 cm).
These ranges of modulation in Sensitivity and Intercept could be
used to account for the sensitivity dependence on roughness for
low vegetation [32] and some bare soil observations presented
in [33]. In this paper, end-members I and II are associated with
bare soils, and therefore, we evaluate (7) using the theoretical
model available to us in the form of the numerical solution
of Maxwell equations [29], as shown in Fig. 4. In this figure,
the σV V values estimated using (7) are compared with those
obtained from the bare soil data cube based on [29]. The
new formulation fits the data cubes within the accuracy of
rmse(root mean square error) = 1.2 dB and a correlation of
0.97. It should be noted that Fig. 4 does not present statistical
samples, so the correlation and rmse are just the indicators
of agreement between newly developed formulations and the
numerical scattering solution available to us in the form of bare
soil data cube.

C. End-Member III: Maximum Vegetation

Recently, significant efforts have been made to model the
backscatter observed over different types of vegetation using
electromagnetic scattering theory [8], [36]. The range of the
backscatter variation over vegetated areas depends on both the
type or architecture of vegetation and VWC level [8]. In this
paper, the relationship between σ and mv under maximum
possible vegetation condition follows (1):

σV V [dB] = γ ∗mλ
v + σvf

V V (8)

for end-member III. Here, γ and σvf
V V are Sensitivity and the

Intercept of the maximum vegetation scattering conditions.
Maximum vegetation is defined as a canopy cover that dom-
inates the radar backscatter and reduces sensitivity to soil

Fig. 5. σV V dependence on mv for VWC = 3 kg m−2. Under these
conditions, the surface roughness has dampened effect on σV V .

TABLE II
EQUATION (8) PARAMETERS AT VWC = 5 kg m−2 REPRESENTING

MAXIMUM VEGETATION CONDITIONS

moisture, hence the convergence to a point (end-member III in
Figs. 1 and 2). This level is generally considered to be moderate
woody vegetation (closed canopy bushes and trees) and mature
crops. The vegetation water content under these conditions is
3 to 5 kg m−2. The conditions of strong double-bounce scatter-
ing were excluded in this study because, there, the soil moisture
is still a dominant factor. The magnitude of mv contribution in
the observed backscatter under vegetated condition depends on
scattering among soil and vegetation components. The values
of γ and σvf

V V depend on the type of vegetation [8], [36]. The
parameters of (8) for different vegetation types are estimated
using vegetation data cubes reported in [8]. The vegetation data
cubes include 12 individual vegetation classes that are based
on the International Geosphere-Biosphere Program (IGBP)
classification schemes. The additional cropland classification
database was incorporated to further specify the IGBP crop
layer into four major crops: wheat, corn, rice, and soybean [8].
As discussed earlier based on Figs. 1 and 2, the soil surface
contribution decreases with increasing vegetation level (again
except for the double-bounce regimes that are beyond the scope
of this paper). At around VWC = 3 kg m−2, the modulation
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Fig. 6. Vegetated end-member III Sensitivity and Intercept parameters for different surface types. Nominal vegetation parameters selected are γ = 17 and
σvf
V V = −14.0.

in the observed backscatter due to varying roughness could be
considerably lower than that due to varying mv; an example
of corn is shown in Fig. 5. The linear formulation of (8) fits
well at this level with rmse = 0.74 dB and a correlation of
0.94. It should be noted that Fig. 5 does not present statistical
samples, so the correlation and rmse are just the indicator of
agreement between linear approximation and data cube simu-
lation at VWC = 3 kg m−2. Above this VWC, as vegetation
level approached the expected maximum level, i.e., VWC =
5 kg m−2, the backscatter may slightly decrease with increasing
roughness [8], causing slightly higher scatter around the linear
fit, resulting in rmse = 1.46 dB and a correlation of 0.83. For
most of the nonwoody vegetation, the maximum VWC level
is considered to be 5 kg m−2 (see [8, Table I]). Therefore, to
obtain the parameterization of (8) for all available data cubes,
we set VWC = 5 kg m−2. Table II lists the parameters of (8) at
VWC = 5 kg m−2. Additionally, as reported in [8], for woody
vegetation, VWC may be well above 5 kg m−2. Therefore,
Table II also presents validation (8) with data cube simulations
for VWC > 5 kg m−2. For grass, Sensitivity is low. The grass
canopy may act as an attenuation layer minimizing sensitivity
to soil surface, whereas for croplands or shrubs, sensitivity
is comparatively high due to higher order scattering between
soil and vegetation components [8]. Some errors are expected
because (8) assumes insensitivity at ∼5 kg m−2 VWC, but data
cubes include the double-bounce processes that are dominant at
5 kg m−2 (for corn).

In order to minimize the reliance on uncertain land classifica-
tion ancillary data and minimize the dependence on the vegeta-
tion data cubes, we select nominal parameters for end-member
III [see (8)]. The nominal parameters are applied globally in
order to allow radar-only retrievals without ancillary land-use
and canopy structure information. The level of vegetation is
still accounted for in the retrieval algorithm (see Section IV-A).
Fig. 6 shows the vegetation data cube estimates for γ and σvf

V V .
Also, shown are the nominal global parameters.

IV. VEGETATION LEVEL AND ROUGHNESS LEVEL INDICES

In this section, vegetation and roughness effects on Sensi-
tivity and Intercept within the regions bounded by the three
end-members (see Figs. 1 and 2) are addressed. Even though

the roughness and vegetation parameters for a particular land
surface may be known based on ancillary data, it is usually
difficult to accurately account for and monitor changes in
these variables over time. Ideally, roughness and vegetation
information derived from the same radar instrument should be
used. In this paper, we use RV I for vegetation and introduce
a new (RRI). These two radar-derived indices are used to
modulate the Sensitivity and Intercept parameters for conditions
in between the three end-members.

A. RV I

The RV I defined in [13] characterizes the vegetation volume
scattering as a normalized index as

RV I =
8 · σHV

σHH + σV V + 2 · σHV
. (9)

The RV I is expected to be indicative of the magnitude of scat-
tering by vegetation, and its value saturates at the unity when
radar return power is dominated by vegetation volume scat-
tering. When the volume scattering by vegetation dominates,
σHH = σV V = 3 · σHV [13], [37], resulting in RV I = 1.
A previous study [27] has shown a correlation of up to
0.9 between RV I and vegetation microwave optical depth τ .
Moreover, a study in [28] compared the RV I at X-, C-, and
L-bands for the rice and the soybean canopy. That study also
demonstrates that the L-band RV I has the potential to account
for the vegetation dielectric effect. In this paper, RV I is used to
quantify and account for the level of the vegetation scattering.

B. RRI

It is difficult to accurately account for the surface roughness
effects over a sensor footprint and to separate soil surface
roughness effects from vegetation roughness effects in the
backscatter. Ancillary information on roughness at the global
scale and on roughness temporal variability is indirect and
unreliable. Therefore, information derived from the same sen-
sor, such as RV I discussed for vegetation, could be a more
reliable source. Earlier studies have shown the sensitivity of
copolarized backscatter ratio to s [5], [10], [44]. Here, we define



NARVEKAR et al.: SOIL MOISTURE RETRIEVAL USING L-BAND RADAR OBSERVATIONS 3499

Fig. 7. RRI simulated from bare soil data cube at clf of 0% and 100% versus ks. The color scale represents the mv value in m3m−3. The lines represent the
third-degree polynomial fit.

a new modified ratio considering parameters associated with
end-member I (smooth bare soils)

RRI =
σHH − σs

HH

σV V − σs
V V

(10)

where σV V and σHH represent observations and σs
V V and σs

HH

are the constant minimum bare soil backscatter values. σs
V V

and σs
HH are estimated based on the electromagnetic approach

shown earlier for (2) and are provided as a function of soil
texture in Appendix A. Fig. 7 shows the RRI plotted with
ks for two different soil textures corresponding to extreme
levels of clay fraction of 0% and 100%. There appears to be
a systematic relationship between the simulated RRI and ks.
The third-degree polynomial function is used to characterize
the relationship between the RRI given in (10) and ks as
shown with the line fit in Fig. 7. Since there is no significant
effect of clay fraction on RRI , we consider a polynomial fit at
clf = 0.2, given as

RRI = 0.3034ks3 − 0.9203ks2 + 0.9989ks+ 0.3910. (11)

This clay fraction is the most common (modal) soil classifica-
tion [30] across global nonfrozen land regions. The accuracy
of these estimates based on RRI is tested using ground-based
POLARSCATTER bare soil observations discussed hereinafter
in Section VI.

V. GENERALIZED RADAR ALGORITHM

A weighting approach is used to merge the bare soil and
vegetation formulations developed in Section III based on
RV I as

σV V [dB] = RV I ∗ σv
V V + (1−RV I) ∗ σrs

V V . (12)

Substituting for σrs
V V and σv

V V from (7) and (8) and rearranging
in the form of (1) result in

σV V [dB]= (RV I ∗ γ+(1−RV I)∗{1+log10(1+ks)} ∗ Ss)

∗mλ
v+(1−RV I) ∗ (σs

V V +C ∗ (log10(1 + ks))

+RV I ∗ σvf
V V . (13)

The retrieval model parameters are Ss, σs
V V , γ, σvf

V V , and C.
They are associated with the end-members and described
in Section III and in Appendix A. As discussed earlier in
Section II-C, based on the simulations presented in Fig. 7(c)
of [32], the power term λ (indicator of vegetation level) takes
values in the range of 0.3–1.0 to account for vegetation level
from thin to dense. This range is also associated with RV I ,
which is also an indicator of vegetation level as reported in [13]
and [28]. Therefore, λ in terms of RV I is simply given as

λ = RV I, for RV I > 0.3 and λ = 0.3, for RV I <= 0.3.
(14)

Based on (13), the backscatter nonlinearly depends on mv for
bare soils, and as the vegetation level increases, this equation
approaches linear formulation. This approach is compatible
with the earlier study reported in [32].

The ks in (13) is estimated using RRI which is formulated
for bare soils. Its application to moderate vegetation conditions
is likely to reduce algorithm performance (shown in the fol-
lowing section). However, as the vegetation level increases, the
bare soil contribution in (13) decreases. Therefore, the observed
level of rmse in ks estimates under vegetation condition could
affect mv and they are estimated to be rmse < 0.01 m3m−3.
The performance of the algorithm using different field cam-
paign observations is discussed in the next section.

VI. EVALUATION USING FIELD CAMPAIGN OBSERVATIONS

To demonstrate the performance of the algorithm, the L-band
radar observations acquired during several field campaigns and
covering a wide range of vegetation and roughness conditions
are used. These include the bare soil ground-based observations
acquired in Michigan and airborne observations acquired from
the series of heritage L-band PALS experiments from 1999 to
2008 reported in [30] and more recent PALS data acquired dur-
ing SMAPVEX12 [31]. The quality of estimated mv is tested
against in situ observed mv using rmse, bias, and bias-removed
rmse. The bias-removed rmse or unbiased rmse (ub_rmse) [46]



3500 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 6, JUNE 2015

Fig. 8. Algorithm tests using Michigan bare soil field measurements for mv and ks. Table III lists the statistics of the comparison.

TABLE III
RESULTS FOR GROUND-BASED BARE SOIL OBSERVATIONS FROM MICHIGAN

accounts for the random error in the data, and it is equivalent to
isolating the standard deviation in the error when the bias is
removed. We report both unbiased rmse and bias, which are
constituting elements of the total rmse but indicate different
types of error.

A. Michigan Ground-Based Observations

Bare soil observations made with a truck-mounted instru-
ment called POLARSCATTER are used to test the treatment of
bare soil conditions in the retrieval algorithm. These observa-
tions were made in agricultural fields near Ypsilanti, Michigan,
and rereported in [29]. The comparisons of the field observa-
tions and the proposed algorithm for bare soils are shown in
Fig. 8. The results are compared for data cube-based parameters
and optimized parameters (see Table III). The soil moisture
rmse by using optimized parameters is 0.065 m3 m−3 with
a correlation of 0.72. The Sensitivity S0 is higher than our
a priori value. Such differences in sensitivities were also ob-
served in earlier studies [13]. These differences are also ob-
served when using PALS observations, and they are discussed
later. A unique feature of the retrieval algorithm introduced here
is that the estimation is snapshot with no ancillary roughness
information required. The ks estimation is a part of the retrieval

process, which is used for mv estimation. There were only
34 points, most of which were on the 1:1 line for all roughness
levels (see Fig. 8). The quality of ks estimates using (11) is
also shown in Fig. 8. A low rmse = 0.13 and a correlation of
0.95 show the reliability of using RRI for accounting the
roughness effect.

B. PALS Airborne Field Experiments

The PALS instrument is an airborne sensor flown during
various field campaigns since 1999. In this paper, we use PALS
data and in situ soil moisture observations acquired during
SGP99, SMEX02, CLASIC07, and SMEPVEX08 reported in
[30] and SMAPVEX12 reported in [31]. The PALS had flown
on board different aircrafts and had different antenna setups
during different field campaigns [27], [30]. Therefore, data
acquisition methods differ from campaign to campaign, but the
operational characteristics, such as frequencies, polarizations,
and the look angle (∼40◦), are the same for all campaigns
[27], [30].

During SGP99, the PALS data were acquired over a study
area of 7 × 41 km across the Little Washita watershed in
Oklahoma in 1999 [11]. The experiment area is dominated
by grass cover [30]. Again, during CLASIC07, data were
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TABLE IV
RESULTS FOR PALS AIRBORNE OBSERVATIONS FROM DIFFERENT FIELD CAMPAIGNS

acquired over study areas of 6×52 km across Little Washita and
3×28 km at Fort Cobb in Oklahoma in 2007 [47]. During
CLASIC07, the area under observation includes cropland, with
the winter wheat as the dominating crop [30]. During SMEX02,
data were acquired at the Walnut Creek watershed in Iowa in
2002, primarily an agricultural region with corn and soybean
being the dominant crops [12]. The SMAPVEX08 was car-
ried out at Choptank in Maryland in 2008, which is a mixed
agriculture field with corn (senescence stage), soybean, and
forest [30]. The SMAPVEX12 field experiment was carried out
in Canada. The experiment domain mainly included diverse
agricultural fields [31]. During that experiment, at least ten
surface types were observed by the PALS, including soybean,
corn, wheat, winter wheat, oat, canola, corn/granola, beans,
forage, and pasture. The topography for all the areas was not
significantly variable. The primary soil texture of all the fields,
except SMAPVEX12, falls under the loamy soil category, and
the clay fraction for all the fields is mostly below 25% [30]. The
land surface conditions observed during SMAPVEX12 were
more diverse in terms of soil texture and VWC level when
compared to other PALS experiments.

The soil texture over the SMAPVEX12 domain can reach
a 70% clay fraction, and the vegetation cover for most of the
crop fields had higher levels of VWC, exceeding 3 kg m−2.
During the PALS field campaigns, wide dynamic ranges of
in situ soil moisture are observed, except for CLASIC07 and
SMAPVEX08. For those two experiments, most of the in situ
soil moisture values were moist (above 0.2 m3 m−3) with little
dynamic range.

PALS observations for SGP99 and SMEX02 were resampled
at ∼0.4 km, and for CLASIC07 and SMAPVEX08, observa-
tions were resampled at ∼0.6 km and ∼1.8 km, respectively
[30]. The SMAPVEX12 data were not available for [30]. For

this paper, PALS data acquired during SMAPVEX12 and re-
sampled at a 1.6-km grid matching with in situ soil moisture
observations are used.

C. Calibration Bias in PALS

We detect biases between the backscatter observations
acquired from the feed-horn antenna (during SGP99 and
SMEX02) and from the patch array antenna (during SMEX02
and SMAPVEX08). Unlike radiometer observations, radar ob-
servations could not be calibrated using vicarious targets like
water bodies. The field of view of the instrument covers a
large region, and corner reflectors cannot be used for radar
calibration. In this paper, biases associated with radar PALS
observations are estimated based on differences observed be-
tween ranges of backscatter data over the same land cover
type during different field campaigns and in reference with TB

observations. The difference between the ranges of backscatter
observed from the feed horn and patch array are studied with
grass pixels for SGP99 and CLASIC07 and with corn pixels
for SMEX02 and SMPAVEX08. These experiment domains
consist of similar soil texture and mostly loamy soil [30].
Differences observed between the mean values of two distribu-
tions are ΔσHH = 3.23 dB, ΔσV V = 4.50 dB, and ΔσHV =
4.66 dB, where Δσ = patch − horn. Therefore, we considered
a bias correction of +4.5 dB in σV V , +3.23 dB in σHH , and
+4.66 dB in σHV for SGP99 and SMEX02 observations.

D. Results With PALS Observations

A newly developed algorithm is applied separately for each
field campaign. Table IV summarizes the results obtained for
PALS field campaigns with nominal model parameters and
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Fig. 9. Retrieved soil moisture compared with in situ soil moisture for SGP99, SMEX02, and CLASIC07 at Little Washita and Fort Cobb and SMAPVEX08
using optimized parameters. The statistics reported in Table IV include both nominal and optimized parameters.

optimized model parameters. The nominal parameters are re-
ported in Fig. 8. Optimized parameters are estimated for each
field campaign. The comparison of the two is an indicator of the
maximum error expected by fixing the retrieval model parame-
ter values for global application. Although the field experiment
domains do not cover the diversity of global vegetation, the
comparison should be an indicator of the expected error.

Figs. 9 and 10 show the scatterplots comparing estimated and
in situ mv . Optimized parameters result in large improvements
in rmse for the SMAPVEX12 cases and large improvements in
bias for the SGP99 and CLASIC07 cases. For the bare soil com-
ponent of the algorithm, the optimized Sensitivity S0 is higher,
and the Intercept σs0

V V is lower for the optimized parameters
when compared to the nominal (see Table IV). The exception
is SMAPVEX12. Similar differences between the observed
and the nominal sensitivity of backscatter to soil moisture are
discussed in [13]. The radar responses, particularly at lower
frequencies such as L-band, are impacted by subsurface effects
[48]. Under some conditions, the observed backscatter may

be lower than the theoretically predicted backscatter [49]. The
bare soil data cube used to estimate model parameters for this
paper does not incorporate subsurface effects. Furthermore, the
lower roughness limit for estimating the bare soil component
is ks = 0.14, the smallest value used in the bare soil data cube.
For SMAPVEX12, the ks values lower than 0.14 were observed
as apparent in Fig. 10. This may be an additional reason for the
lower value of optimized σs0

V V for this experiment.
The differences between optimized and nominal vegetation

parameters are small for the field experiments except for
SMAPVEX12 (see Table IV). The intercept value is in the
range for shrubs or mixed forest (vegetation types discussed in
[8]) and shown in Fig. 6. These vegetation types are expected
to have higher levels of VWC, and therefore, the backscatter
observed may be higher when compared to vegetation with
low VWC. SMAPVEX12 contained crop fields with high VWC
which contribute to a higher Intercept.

For CLASIC07, the rmse = 0.097 m3m−3 observed is con-
siderably higher compared to other experiments (see Fig. 9).
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Fig. 10. Retrieved soil moisture is compared with in situ soil moisture for SMAPVEX12. The rmse and bias statistics are reported in Table IV. The different
marker types distinguish different levels of clay fraction.

This is comparable with the average rmse observed for
CLASIC07 in a previous algorithm study with PALS radar
observations (∼0.1 m3m−3 [47]). The higher rmses observed
are related to experimental conditions. During CLASIC07,
there was standing water in some of the fields. Higher scatter for
such crop fields may be expected since vegetation in standing
water may act as a strong reflector. The contours in Fig. 9
each enclose about 90 data pairs. They generally encompass
the 1:1. For SMAPVEX08, the observed dynamic range of
soil moisture was smaller. The rmse = 0.057 m3m−3 results
from the comparisons of the retrieval and the ground truth.
The results for SMAPVEX08 are based on 199 data pairs. The
agreement is an indicator of the potential of the radar-only
model to estimate mv under diverse land surface conditions.

The results shown for SMAPVEX12 in Fig. 10 and Table IV
are for the highest number of ground truth matched data points
(numbering 433) compared to other field experiments. The
ub_rmse with nominal parameters is larger than those obtained
for the earlier field experiments. The land surface conditions
during SMAPVEX12 were diverse in terms of soil texture,
range of crop types, and VWC levels, when compared to
earlier PALS experiments. The soil texture observed for the
SMAPVEX12 domain consists of clay percentage ranging on
the order of 4% to 70%. Therefore, uncertainties in accounting
correctly for the soil texture condition over a 1.6 × 1.6 km
area may be one reason. To study the effect of clay fraction
on retrieval, two levels are shown in Fig. 10, clf <= 0.4
and clf > 0.4 considering optimized parameters. The rmse for
mv estimates is 0.051 m3m−3 for clf < 0.4. However, for
higher levels of clf (i.e., clf > 0.4), the rmse increases to
0.073 m3m−3. The unusually high clay content may be a
contributing factor to the error.

Finally, the potential of RRI in accounting for ks effect
also under vegetated conditions is demonstrated in Fig. 10. The
in situ ks observations vary between 0.1 and 0.5, and the
estimated ks varies between 0.2 and 0.6. The estimated rmse is

0.14 which includes a bias of +0.07. A regression line is added
to the plot to show the relation between the measured estimated
ks and in situ observations. Mainly, points with clf <= 0.4
show some overestimation compared to in situ; otherwise, there
is a considerable agreement between the ks estimates and
in situ.

VII. SUMMARY

A new algorithm for surface soil moisture mapping using
L-band radar observations is developed that is designed not to
require ancillary information on surface roughness and vegeta-
tion. A simple formulation based on heritage and established
relationships is used to represent backscatter dependence on
soil moisture for limiting cases defined by three end-members:
1) end-member I or smooth bare soils; 2) end-member II or
rough soils; and 3) end-member III or maximum vegetation
cover. These end-members are used to envelop backscatter
expected for intermediate land use and land cover. In order
to make the approach independent of ancillary data, we use
the (RV I) formed from radar measurements alone to account
for the variable vegetation effect. We introduce a new (RRI)
also formed from radar observations alone to account for vari-
able roughness effects. The RV I and RRI scale the model
parameters between the end-members. They only depend on
radar backscatter observations and do not require ancillary data
on vegetation and roughness. Clay fraction has a large effect,
and its effects are taken into account (Appendix A). Using
this algorithm, the mv can be estimated in a computationally
efficient manner for generating a near real-time soil moisture
product.

The observational data sets used for testing the algorithm
included the bare soil ground-based observations acquired from
truck-mounted radar and airborne observations acquired by
PALS during SGP99, SMEX02, CLASIC07, SMAPVEX08,
and SMAPVEX12. The nondimensional surface roughness ks
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Fig. 11. Sensitivity (Ss) and Intercept (σs
PP ) (VV and HH) values computed for different clay fraction.

metric using RRI shows agreement for bare soils and a clear
sensitivity for in situ ks also under dense vegetation condi-
tions. For SGP99, SMAPVEX08, and SMAPVEX12 (for clay
fraction <= 0.4), the rmses were below 0.06 m3 m−3, which
is within the quality target set for the SMAP radar-only mv

product. The SMAPVEX12 data allowed the testing of the
newly developed algorithm for a wide variety of croplands
with a high level of VWC. Due to very diverse land surface
conditions observed for SMAPVEX12, results observed for
this domain are expected to have higher level of errors. The
potential of the model in soil moisture estimation application is
demonstrated by comparing nominal (global) parameterizations
and optimized parameters for each field campaign. The algo-
rithm introduced in this paper is designed to allow retrievals
of surface soil moisture without any ancillary information on
vegetation and roughness, two critical and problematic effects
on radar backscatter. Ancillary information on these two effects
is not directly indicative of L-band radar backscatter behavior.
Therefore, they are a major source of uncertainty. In using
simple relationships and global (nominal) parameters, there
is a tradeoff in errors due to simplifications and errors due
to reliance on indirect ancillary information. Several earlier
approaches, including those developed for frequencies other
than L-band, have reported to have soil moisture estimation
accuracy comparable to those found in this paper. However,
the impact of the advantages of SMAP-like radar compared
with other radar sensors (such as the more sensitive L-band,
more frequent revisit, and regular spatial sampling for global
coverage) has not been explored yet. This paper introduces a
research approach, and therefore, it is not intended to compare
the accuracy level of other radar soil moisture models.

In its present form, the radar-only approach presented in
this paper is deficient in several ways. It does not accurately
account for effects such as terrain and vegetation morphol-
ogy. The present model is intentionally simplified to begin
the exploration of the path forward to radar measurement-
only surface soil moisture retrieval using new L-band radar
observations, such as SMAP. Given the complexity of surface
effects and interactions, larger errors are expected in surface

soil moisture retrievals when compared to L-band radiometer-
based retrievals. The relative advantage of radar is resolution
at the cost of accuracy but may still may be advantageous for
many applications.

APPENDIX A
SOIL TEXTURE EFFECT ON MODEL PARAMETERS

In this appendix, the treatment of the soil texture effect on
the model parameters is outlined. The data cube based on [29]
is used to develop a parameterization [8], [14]. The data cubes
have the soil dielectric constant ε as a dimension. The algorithm
developed in this paper is in terms of volumetric soil moisture
mv . We use the Mironov dielectric model [38] to convert ε to
mv . The Mironov model uses information on clay fraction (clf)
to account for soil texture effect.

Fig. 11 shows the effect of soil texture (captured by clf ) on
Sensitivity (Ss) and Intercept (σs

PP ) for VV or HH polariza-
tions and for bare soils. We use quadratic equations to account
for the effects shown in Fig. 11. The resulting fits are

Ss(clf) = − 6.36 ∗ clf2 + 13.05 ∗ clf + S0

σs
V V (clf) = 3.67 ∗ clf2 − 11.70 ∗ clf + σs0

V V

σs
HH(clf) = 1.64 ∗ clf2 − 5.71 ∗ clf + σs0

HH (A1)

where S0 = 20.64, σs0
V V = −32.30, and σs0

HH = −29.32.
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