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Abstract—This paper deals with coherent (in the sense that both
amplitudes and relative phases of the polarimetric returns are
used to construct the decision statistic) multipolarization synthetic
aperture radar (SAR) change detection assuming the availability
of reference and test images collected from N multiple polarimet-
ric channels. At the design stage, the change detection problem is
formulated as a binary hypothesis testing problem, and the princi-
ple of invariance is used to come up with decision rules sharing
the constant false alarm rate property. The maximal invariant
statistic and the maximal invariant in the parameter space are
obtained. Hence, the optimum invariant test is devised proving
that a uniformly most powerful invariant detector does not exist.
Based on this, the class of suboptimum invariant receivers, which
also includes the generalized likelihood ratio test, is considered. At
the analysis stage, the performance of some tests, belonging to the
aforementioned class, is assessed and compared with the optimum
clairvoyant invariant detector. Finally, detection maps on real
high-resolution SAR data are computed showing the effectiveness
of the considered invariant decision structures.

Index Terms—Coherent change detection, invariant rules,
maximal invariant, multipolarization.

I. INTRODUCTION

A TECHNICAL challenge in synthetic aperture radar
(SAR) signal processing is change detection, namely, the

capability to identify temporal changes within a given scene
[1]–[3] starting from a pair of coregistered images representing
the area of interest, which is usually referred to as the reference
and test pair. Two main approaches, known as incoherent and
coherent, have been proposed in the open literature to process
the image pair. The former attempts to detect changes in the
mean power level of a given scene exploiting only the inten-
sity information from the available images (thus neglecting
phase information [4]–[6]): Differencing and ratioing are well-
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known techniques in this context [7]. The latter jointly use
both amplitude and phase from the reference and test data to
detect possible changes in the region of interest. In [4] and
[5], a thorough comparison between incoherent and coherent
change detection strategies, including the maximum-likelihood
estimate of the SAR coherence parameter, is performed based
on high-resolution [8] (0.3 m × 0.3 m) SAR images (the pixel
sample spacing is 0.2 m × 0.2 m). In [7], several techniques for
change detection have been presented and compared based on
their probability of error and on results obtained using repeat-
pass ERS-1 SAR data.

In [6], [9], and [10], the multipolarization signal model for
the SAR change detection problem is laid down, the detection
problem is formulated as a binary hypothesis test, and a deci-
sion rule based on the generalized likelihood ratio test (GLRT)
is developed. Moreover, a performance analysis [10] of the
GLRT is given in the form of receiver operating characteristics
(ROCs), namely, detection probability (Pd) versus false alarm
probability (Pfa), quantifying the benefits of multipolarization
information in SAR change detection. Finally, a detection
scheme based on canonical correlations analysis is applied to
scalar EMISAR data [11], [12], whereas in [13], a mutual-
information-based framework is developed to address coherent
similarities between multichannel SAR images.

Starting from the multipolarization data model developed
in [9] and [10], we propose a new and systematic framework
for change detection based on the theory of invariance in
hypothesis testing problems [14], [15]. This is a viable means
to force some desired properties to a decision statistic at the
design stage and has already been successfully applied in
some different radar detection problems [16]–[18]. Otherwise
stated, the principle of invariance allows for focus on decision
rules that exhibit some natural symmetries implying impor-
tant practical properties such as the constant false alarm rate
(CFAR) behavior. Moreover, the use of invariance leads to a
data reduction because all invariant tests can be expressed in
terms of a statistic, called maximal invariant, which organizes
the original data into equivalence classes. Furthermore, the
parameter space is usually compressed after reduction by in-
variance, and the dependence on the original set of parameters
becomes embodied into a maximal invariant in the parameter
space (induced maximal invariant). With reference to the multi-
polarization SAR change detection problem, we first determine
a maximal invariant statistic in terms of the eigenvalues of a
data-dependent matrix constructed using both test and reference
images. Then, we design the most powerful invariant (MPI)
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receiver, as the Neyman–Pearson (NP) detector computed from
the maximal invariant statistic, and show that no uniformly MPI
(UMPI) test exists, namely, the optimum invariant detector is
not implementable. Hence, we focus on suboptimum invariant
receivers based on different functions of the maximal invari-
ant such as arithmetic mean, harmonic mean, and maximum
and minimum entries. Remarkably, the GLRT in [9] and [10]
belongs to the proposed class of receivers. At the analysis
stage, we assess the performance of the considered invariant
decision rules in correspondence of a two-channel polarization
diversity providing detection probability contours, for a given
false alarm level, versus the induced maximal invariant, which
turns out to be bidimensional. We also conduct performance
comparisons with the benchmark MPI test showing that some
analyzed receivers can outperform the GLRT and achieve a
detection probability close to that ensured by the clairvoyant
MPI structure. Moreover, we consider ROC curves and assess
the impact of the polarimetric information on the detection
performance.

Finally, to validate the behavior of the considered tests on
real SAR images, we use a high-resolution change detection
data set, available from the Air Force Research Laboratory
(AFRL) [8] and collected from an X-band SAR. The conducted
analysis highlights the detectors’ capability to successfully
operate in real environments; some of these new detectors have
the interesting feature of being able to directly discriminate
between car arrivals and departures without any additional radar
cross section (RCS) comparison.

This paper is organized as follows. In Section II, we deal
with the formulation of the multipolarization SAR change
detection problem, whereas in Section III, we address maximal
invariant and induced maximal invariant design. In Section IV,
we devise the MPI test and show that a UMPI detector does
not exist for the present problem. Thus, we consider the design
of suboptimum invariant decision rules. In Sections V and VI,
we assess the performance of the introduced invariant tests,
respectively, on simulated and on real multipolarization SAR
images. Finally, in Section VII, we draw conclusions and
outline some possible future research tracks.

A. Notation

We adopt the notation of using boldface for vectors and
matrices. The transpose and conjugate transpose operators are
denoted, respectively, by the symbols (·)T and (·)†. tr(·) and
det(·) are, respectively, the trace and the determinant of the
square matrix argument. I and 0 denote, respectively, the
identity matrix and the matrix with zero entries (their size is
determined from the context). Diag(a) indicates the diagonal
matrix whose ith diagonal element is the ith entry of a. The
curled inequality symbol � is used to denote the generalized
matrix inequality: For any Hermitian matrix A, A � 0 means
that A is a positive definite matrix. The general linear group
of degree N over the field of complex numbers, denoted by
GL(N), is the set of N ×N nonsingular matrices together with
the operation of ordinary matrix multiplication. Finally, H++

N

denotes the set of N ×N Hermitian positive definite matrices.

Fig. 1. Construction of the datacube.

II. PROBLEM FORMULATION

A multipolarization SAR sensor measures for each pixel of
the image under test N ∈ {2, 3} complex returns, collected
from different polarimetric channels (for instance, HH and
VV for N = 2; HH, VV, and HV with reference to N = 3).
The N returns from the same pixel are stacked to form the
vector X(l,m), where l = 1, . . . , L and m = 1, . . . ,M (L and
M represent the vertical and horizontal size of the image,
respectively). Therefore, the sensor provides a 3-D data stack
X of size M × L×N , which is referred to in the following as
a datacube and is illustrated in Fig. 1.

For SAR change detection applications, we suppose that
two datacubes X (reference data) and Y (test data) of the
same geographic area are available; they are collected from two
different sensor passes and are accurately pixel aligned (coreg-
istrated). We focus on the problem of detecting the presence
of possible changes in a rectangular neighborhood A, with size
K = W1 ×W2 ≥ N , of a given pixel. To this end, we denote
by RX (RY ) the matrix whose columns are the vectors of the
polarimetric returns from the pixels of X (Y ), which fall in the
region A and SX = RXR†

X (SY = RY R
†
Y ).

The matrices RX and RY are modeled as statistically inde-
pendent random matrices. Moreover, the columns of RX (RY )
are assumed statistically independent and identically distributed
random vectors drawn from a complex circular zero-mean
Gaussian distribution with a positive definite covariance matrix
ΣX (ΣY ). Under the aforementioned settings, the change
detection problem in the region A can be formulated in terms
of the following binary hypothesis test:

{
H0 : ΣX = ΣY

H1 : ΣX �= ΣY

(1)

where the null hypothesis H0 of change absence is tested versus
the alternative1 H1.

1This testing problem is also well known in statistical literature with refer-
ence to real observations [14, Ch. 8].
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Exploiting the Gaussian assumption, we can write the joint
probability density function (pdf) of RX and RY as

fRX ,RY
(RX ,RY |H1,ΣX ,ΣY )

=
1

π2NK det(ΣXΣY )K
exp

{
−tr

(
Σ−1

X SX +Σ−1
Y SY

)}
.

(2)

Using the Fisher–Neyman factorization theorem [19], we can
claim that a sufficient statistic for (1) is represented by the two
sample Grammian matrices SX and SY , which are statisti-
cally independent and follow a complex Wishart distribution,
i.e., [20]

fSX
(SX |H1,ΣX)

=
cW

det(ΣX)K
exp

{
−tr

(
Σ−1

X SX

)}
det(SX)K−N , SX �0

(3)

fSY
(SY |H1,ΣY )

=
cW

det(ΣY )K
exp

{
−tr

(
Σ−1

Y SY

)}
det(SY )

K−N , SY �0

(4)

with cW as a normalization constant. From the sufficient statis-
tic, we can evaluate the optimum NP detector as the likelihood
ratio test (LRT), i.e.,

fSX ,SY
(SX ,SY |H1,ΣX ,ΣY )

fSX ,SY
(SX ,SY |H0,ΣX)

=
fSX

(SX |H1,ΣX)fSY
(SY |H1,ΣY )

fSX
(SX |H0,ΣX)fSY

(SY |H0,ΣX)

H1

≷
H0

T0,A

where the first equality stems from the statistical independence
between SX and SY ; T0,A is the detecton threshold set to en-
sure a given Pfa value. Substituting the pdfs of SX and SY in
the LRT, after standard algebra and statistical equivalences (also
absorbing irrelevant data-independent terms in the threshold),
it can be recast as

tr
[(
Σ−1

X −Σ−1
Y

)
SY

]H1

≷
H0

T0 (5)

where T0 is the suitable modification of the original detection
threshold. Evidently, test (5) is not uniformly most powerful,
and consequently, it is not practically implementable because it
requires knowledge (clairvoyant detector) of both ΣX and ΣY ,
which, in realistic applications, are usually unknown.

III. DATA REDUCTION AND INVARIANCE ISSUES

Both hypotheses under test are composite or, in other words,
H0 and H1 are equivalent to a partition of the parameter space
Θ into the two disjoint sets

Θ0 =
{
ΣX = ΣY , (ΣX ,ΣY ) ∈ H++

N ×H++
N

}
Θ1 =

{
ΣX �= ΣY , (ΣX ,ΣY ) ∈ H++

N ×H++
N

}
. (6)

This formulation emphasizes that the individual values of the
nuisance parameters are irrelevant: One must only discern to
which hypothesis they pertain, namely, whether the covariances
are equal or not. This suggests that we can cluster the data
considering transformations that leave the following unaltered:

a) the two composite hypotheses, namely, the partition of the
parameter space;

b) the families of distributions under the two hypotheses.

This goal can be achieved through the principle of invariance
[15]. According to such principle, we look for transformations
that preserve the formal structure of the hypothesis testing
problem and then for decision rules invariant to them. Such a
principle also acts as a data reduction technique leading to a
reduced observation space of significantly lower dimensionality
than the original one.

It is not difficult to prove that our testing problem is invariant
under the group of transformations G acting on the sufficient
statistic as

G=
{
g : SX →BSXB† , SY →BSY B

† , B∈GL(N)
}
.

(7)

In fact, the families of distributions are preserved because if
SX (SY ) is Wishart distributed, BSXB† (BSY B

†) is also
Wishart with the same scalar parameters and matrix parameter
BΣXB† (BΣY B

†), where B ∈ GL(N). Moreover, the orig-
inal partition of the parameter space is left unaltered since if
ΣX �= ΣY , then BΣXB† �= BΣY B

†, and if ΣX = ΣY , then
BΣXB† = BΣY B

†.

A. Maximal Invariant Design

The invariance property induces a partition of the data space
into orbits (or equivalence classes) where, over each orbit,
every point is related to every other through a transformation
that is a member of the group G. Any statistic that identifies
different orbits in a one-to-one way significantly reduces the
total amount of data necessary for solving the hypothesis testing
problem and constitutes the compressed data set to be used
in the design of any invariant detector. This kind of statistics
is called maximal invariants since they are constant over each
orbit (invariance) while assuming different values on different
orbits (maximality).

Formally, a statistic T(SX ,SY ) is said to be a maximal
invariant with respect to the group of transformations G if and
only if

• Invariance: T(SX ,SY ) = T[g(SX ,SY )], ∀ g ∈ G.
• Maximality: T(SX1

,SY1
) = T(SX2

,SY2
) implies that

∃ g ∈ G such that (SX2
,SY2

) = g(SX1
,SY1

).

Notice that there are many maximal invariant statistics, but
they are equivalent in that they yield statistically equivalent
detectors. Moreover, all invariant tests can be expressed as a
function of the maximal invariant statistic [14], [21], which, for
the problem of interest, is provided by the following.
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Proposition 1: A maximal invariant statistic for problem
(1) with respect to the group of transformations (7) is the
N -dimensional vector of the eigenvalues λ1, . . . , λN of

SXS−1
Y . (8)

Proof: The invariance of λ1, . . . , λN follows because the
eigenvalues of BSXB†(BSY B

†)−1 = BSXS−1
Y B−1 are the

same as those of SXS−1
Y . As to the maximality, we have to

prove that if SX,1S
−1
Y,1 and SX,2S

−1
Y,2 share the same eigen-

values, then there exists a nonsingular matrix B such that
SX,1 = BSX,2B

† and SY,1 = BSY,2B
†. To this end, de-

noting by Λ̄ = Diag([λ1, . . . , λN ]T ) and exploiting Theorem
[22, Corollary 4.6.12, p. 250], we can claim that there exist two
nonsingular matrices B1 and B2 such that

B1SX,1B
†
1 = Λ̄ , B1SY,1B

†
1 = I

B2SX,2B
†
2 = Λ̄ , B2SY,2B

†
2 = I .

Hence

SX,1 = B−1
1 B2SX,2B

†
2(B

−1
1 )† = BSX,2B

†

SY,1 = B−1
1 B2SY,2B

†
2(B

−1
1 )† = BSY,2B

†

with B = B−1
1 B2, and the proof is thus completed.

Interestingly, the principle of invariance realizes a signifi-
cant data reduction: The maximal invariant statistic is a real
N -dimensional vector, whereas the original sufficient statistic
is composed of the two N ×N Grammian matrices SX and
SY . For instance, with reference to three polarimetric channels,
the original sufficient statistic is composed of 18 real entries,
whereas in the compressed domain (i.e., after reduction by
invariance), the maximal invariant is just 3-D.

B. Induced Maximal Invariant Design

Data transformation induces parameter transformation,
which leaves unaltered the two composite hypotheses. In other
words, by the principle of invariance, the parameter space is
also partitioned into orbits and, usually, involves a reduced
set of parameters. The relevant parameters are embodied into
any induced maximal invariant, namely, any function of the
parameters that is constant over each orbit of the parameter
space (invariance) but assumes different values over different
orbits (maximality).

For the case at hand, an induced maximal invariant is com-
posed of the eigenvalues δ = [δ1, . . . , δN ]T of the matrix

ΣXΣ−1
Y . (9)

The proof of this claim can be done following the same steps
as in the proof of Proposition 1 and is omitted for the sake of
compactness.

The previous claim highlights that the principle of invariance
yields a significant reduction of the number of parameters: In
fact, the induced maximal invariant is an N -dimensional vector

while the original parameter space was composed of the two
covariance matrices ΣX and ΣY .

We explicitly observe that in the reduced parameter space,
the partition corresponding to the two composite hypothe-
ses of test (1) is Ξ0 = {1N}, relative to ΣX = ΣY , and
Ξ1 = {1N}, relative to ΣX �= ΣY , where {1N} is the set of
N -dimensional column vectors with at least one entry different
from 1. The structure of Ξ0, which now corresponds to a simple
H0 hypothesis, clearly shows that all invariant receivers that
process a maximal invariant statistic through a transformation
independent of δ1, . . . , δN , achieve the CFAR property.

IV. DESIGN OF THE OPTIMUM AND SUBOPTIMUM

INVARIANT DETECTORS

This section is devoted to the design of the optimum and sub-
optimum invariant detectors. Section IV-A deals with the design
of the MPI detector for the problem of interest and the existence
of a UMPI test. Since no UMPI detector exists, Section IV-B
introduces some suboptimum invariant architectures.

A. Design of the MPI Detector

Based on the NP criterion, the MPI test can be obtained as
the LRT based on any maximal invariant [15], [23], which, as
already pointed out, provides sufficient information for con-
structing any invariant decision rule. It is thus necessary, for
further developments, to introduce the pdf of the devised max-
imal invariant under both the H0 and the H1 hypotheses [20]

fΛ(Λ|H1,Δ) = cN,K det(Δ)−K
1F̃0(2K;−Δ−1,Λ)

× det(Λ)K−N
N∏
j=1

∏
i<j

(λi − λj)
2 (10)

fΛ(Λ|H0) = fΛ(Λ|H1, I) = cN,K

× det(I+Λ)−2K

× det(Λ)K−N
N∏
j=1

∏
i<j

(λi−λj)
2 (11)

where2 Λ = Diag([λ1, λ2, . . . , λN ]T ) with λ1 ≥ λ2 ≥ · · · ≥
λN > 0, Δ = Diag(δ), 1F̃0(·; ·, ·) denotes the hypergeometric
function of matrix argument [20, eq. (88)], and cN,K is a
normalization constant.

Hence, the LRT can be written as

fΛ(Λ|H1,Δ)

fΛ(Λ|H0)
=

1F̃0(2K;−Δ−1,Λ)

det(I +Λ)−2K

H1

≷
H0

T (12)

where T denotes the detection threshold, set to ensure a given
Pfa level.

2With a slight notation abuse, we continue to indicate with λi, i = 1, . . . , N ,
the ordered (in descending order) eigenvalues.
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In order to proceed further, we focus on the case N = 2 and
exploit expression [25, eq. (51)] to recast 1F̃0(2K;−Δ−1,Λ)
as a rational function, i.e.,

1F̃0(2K;−Δ−1,Λ)

=

c2 det

⎡
⎢⎣
(
1 + λ1

δ1

)1−2K (
1 + λ1

δ2

)1−2K

(
1 + λ2

δ1

)1−2K (
1 + λ2

δ2

)1−2K

⎤
⎥⎦

(λ1 − λ2)
(
− 1

δ1
+ 1

δ2

) , δi �= δj

(13)

with c2 as a constant with respect to λi and δi.
Moreover, for δ1 = δ2 = δ, the splitting formula [20, eq.

(92)] yields

1F̃0(2K;−Δ−1,Λ) = det

(
I +

Λ

δ

)−2K

, δi = δj = δ .

(14)

Otherwise stated, we have (15), shown at the bottom of
the page.

As a consequence, after standard statistical equivalences, the
MPI test can be recast as[

(1 + λ1)

(δ1 + λ1)

(1 + λ2)

(δ2 + λ2)

]2K [
(δ1 + λ1) (δ2 + λ2)

λ1 − λ2

]
+

−
[
(1 + λ1)

(δ2 + λ1)

(1 + λ2)

(δ1 + λ2)

]2K [
(δ2 + λ1) (δ1 + λ2)

λ1 − λ2

]

× sign(δ1 − δ2)
H1

≷
H0

TA , δ1 �= δ2 (16)

(1 + λ1) (1 + λ2)

(δ + λ1) (δ + λ2)

H1

≷
H0

TB , δ1 = δ2 = δ (17)

with TA and TB suitable modifications of the original detection
threshold in (12).

The derived expression of the MPI test clearly highlights
that it cannot, in general, be implemented unless the induced
maximal invariant is known (clairvoyant detector): Unfortu-
nately, such hypothesis is not realistic, particularly for the SAR
change detection problem. In other words, the MPI detector,
which provides the best performance for a given Δ�, is not,
in general, optimum for different values of Δ, namely, no
UMPI detector exists. Nevertheless, the MPI detector is still
noteworthy since its performance upper bounds those of any
other invariant receiver, operating under the same signal and
disturbance models and, hence, can be used to assess the loss of
any implementable, although suboptimal, invariant test. Before

concluding, we highlight that the case N = 3 can be dealt with
a similar technique (the derivations are given in Appendix A).

B. Maximal-Invariant-Based Detectors

The lack of a UMPI test suggests an investigatigation of
invariant decision rules based upon different strategies. How-
ever, there is no criterion for choosing a priori a receiver
instead of another. An intuitive rule to select invariant tests
for our problem could be based on the following asymptotic
observation. For large values of K, the eigenvalues of S−1

X SY

tend to δi, i = 1, . . . , N ; hence, decision rules

h(λ1, . . . , λN )
H1

≷
H0

T (18)

1) are very effective in discriminating deviations δi 	 1,
when h(·, . . . , ·) is an increasing function of the argu-
ments. However, they perform poor when δi are smaller
than 1.

2) are very effective in discriminating deviations δi 
 1,
when h(·, . . . , ·) is a decreasing function of the argu-
ments. Nevertheless, they perform poor when δi is greater
than 1.

3) in principle could achieve good detection levels for
both δi 	 1 and δi 
 1, when h(·, . . . , ·) complies with
h((1/λ1), . . . , (1/λN )) = h(λ1, . . . , λN ).

On the other hand, one cannot analyze all possible reasonable
detectors; hence, in the following, we focus on six decision
rules, which, based on extensive numerical analysis, are seen
to achieve satisfactory detection performance.

1) GLRT: This approach is equivalent to replacing the un-
known parameters in the likelihood ratio with their maximum-
likelihood estimates, under each hypothesis [26]. Interestingly,
under very mild technical assumptions, the GLRT is invariant
[27]. For the present problem, it has been proposed in [9] and
[10]3 and is given by

max
ΣX

max
ΣY

fSX ,SY
(SX ,SY |H1,ΣX ,ΣY )

max
ΣX

fSX ,SY
(SX ,SY |H0,ΣX)

H1

≷
H0

T1 (19)

with T1 as the detection threshold. After optimizations and
monotonic transformations, (19) can be shown to be statistically
equivalent to

N∏
i=1

(1 + λi)
2

λi

H1

≷
H0

T1 (20)

3With reference to real observations, it is derived in [14, Ch. 8].

1F̃0(2K;−Δ−1,Λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2

[(
1+

λ1
δ1

)1−2K(
1+

λ2
δ2

)1−2K
−
(
1+

λ1
δ2

)1−2K(
1+

λ2
δ1

)1−2K
]

(λ1−λ2)
(
− 1

δ1
+ 1

δ2

) δi �= δj

(
1 + λ1

δ

)−2K (
1 + λ2

δ

)−2K
δ1 = δ2 = δ

(15)
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where the same symbol T1 has been used to denote the modified
detection threshold.

Interestingly, the GLRT complies with condition 3 that was
given at the beginning of the section, namely, we expect the
GLRT to be capable of achieving good detection levels both
when δi 	 1 and δi 
 1.

2) Arithmetic- and Harmonic-Mean-Based Detectors: These
decision rules are, respectively, given by

N∑
i=1

λi

H1

≷
H0

T2 (21)

N∑
i=1

1

λi

H1

≷
H0

T3 (22)

where T2 and T3 are the detection thresholds.
The former complies with condition 1, whereas the latter

complies with condition 2. As a consequence, (21)4 is suitable
for detecting deviations δi 	 1 while (22) for δi 
 1.

From (21) and (22), it is also possible to construct another
decision rule satisfying condition 3, merely summing up the
decision statistics, i.e.,

N∑
i=1

(
1

λi
+ λi

)
H1

≷
H0

T4 (23)

with T4 as the detection threshold. Before concluding this
paragraph, we highlight that (21) can be also obtained sub-
stituting in the optimum LRT detector (5) the sample covari-
ance matrices (1/K)SX and (1/K)SY in place of ΣX and
ΣY , respectively. Otherwise stated, the arithmetic-mean-based
detector can be interpreted as an adaptive implementation of
the LRT.

3) Maximum and Minimum Eigenvalue-Based Detectors:
These tests are, respectively, based on the following
comparisons: (

λ1 +
1

λN

)
H1

≷
H0

T5 (24)

max

(
λ1 ,

1

λN

)
H1

≷
H0

T6 (25)

with T5 and T6 as the decision thresholds. An intuitive expla-
nation to the decision rules is based on the following argu-
ments: The former term, i.e., λ1, dominates for large deviations
δi 	 1, whereas the latter term, i.e., 1/λN , if δi 
 1. Hence,
(24) and (25) are supposed to perform well both for δi 	 1 and
δi 
 1.

V. PERFORMANCE ANALYSIS ON SIMULATED DATA

This section presents the performance analysis via computer
simulated data of the detectors introduced in Section IV. It
is organized in two subsections. The first analyzes Pd, for

4This detector is also known as the Hotelling–Lawley trace and has been
discussed for change detection purposes in [28].

a given Pfa, versus the induced maximal invariant, which
represents the set of relevant parameters ruling the Pd’s be-
havior (otherwise stated, different pairs of covariance matrices
(ΣX ,ΣY ) sharing the same induced maximal invariant δ lead
to the same detection performance). The second shows standard
ROCs for a given value of δ. Finally, the impact of the number
of polarimetric channels used to perform change detection is
studied.

A. Detection Probability Versus the Induced
Maximal Invariant

The analysis is conducted in terms of Pd for a given
Pfa level, assuming zero-mean complex circular multivariate
Gaussian observations with equal (distinct) covariance matrices
under H0 (H1). For comparison purposes, the MPI test is used
as a benchmark to the performance of any feasible invariant
receiver. Finally, a square inspection window is considered,
namely, W1 = W2 = W .

The case of two polarizations is chosen because for N = 2,
the induced maximal invariant, which rules the performance
of any invariant detector, is bidimensional. This means that
contour plots of Pd versus the components of the induced max-
imal invariant δ1 and δ2 completely characterize the detection
performance of receivers (20)–(25). Specifically, the curves
can be interpreted as follows. Given a pair of true covariance
matrices (ΣX ,ΣY ), compute the bidimensional induced max-
imal invariant δ and, from the countours, read the value of Pd

corresponding to a given Pfa level.
In the present analysis, Monte Carlo simulation is used to set

the detection thresholds assuming 100/Pfa independent runs
and Pfa = 10−4. Moreover, 5000 independent trials are used
to estimate Pd. Fig. 2 shows the contours corresponding to
W = 3. It highlights that receivers complying with condition 3
in Section IV-B are capable of detecting deviations δi ei-
ther 	 1 or δi 
 1. Moreover, (23), (24), and (25) achieve
a comparable detection performance level, namely, Pd ≥ 0.9
for δi �∈ [10−1.3 , 101.3], i = 1, 2, whereas the same level of
performance is achieved by (20) for δi �∈ [10−1.36 , 101.36],
i = 1, 2. A different behavior is shown by tests (21) and
(22); the former operates with a satisfactory detection perfor-
mance when δi �∈ [0 , 101.3], i = 1, 2, whereas the latter when
(δ1, δ2) ∈ ]0 , 10−1.3]2. This is a useful feature as, shown
on real data, tests (21) and (22) can be used for postdetec-
tion classification, namely, to discriminate between δi 	 1
and δi 
 1.

In Fig. 3, the performance of the considered invariant tests is
compared with the benchmark MPI receiver. For this test, W =
3 and four different cuts of the detection probability surface (Pd

versus δ1 and δ2) are considered: δ2 = δ1, δ2 = 0.75δ1, δ2 =
0.50δ1, and δ2 = 0.25δ1. The curves highlight that tests (21)
and (22), respectively, optimized to the specific situation δ 	 1
(21) and δ 
 1 (22) slightly outperform the other detection
rules; additionally, their performance is near the optimum curve
in the region δ1 > 10 (21) and δ1 < 0.1 (22). However, their Pd

is close to zero when δ1 < 10 (21) and δ1 > 0.1 (22). All the
remaining receivers follow the same performance behavior as
the benchmark curve.
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Fig. 2. Pd contours versus log δ1 and log δ2 for N = 2 and W = 3. (a) Detector (20):
∏N

i=1
((1 + λi)

2/λi). (b) Detector (21):
∑N

i=1
λi. (c) Detector (22):∑N

i=1
(1/λi). (d) Detector (23):

∑N

i=1
((1/λi) + λi). (e) Detector (24): (λ1 + (1/λN )). (f) Detector (25): max(λ1 , (1/λN )).

The case W = 5 is not reported for conciseness; however,
it highlights that increasing W leads to better detection
performances. Moreover, the performance gap between the
considered invariant detectors and the MPI test is smaller
than that observed for W = 3. This was expected and can be

explained observing that a greater number of homogeneous
data vectors have been used to construct the Grammians SX

and SY whose scaled versions (1/K scale factor) are unbi-
ased and consistent estimates of the covariance matrices ΣX

and ΣY .
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Fig. 3. Pd versus log δ1 for N = 2 and W = 3. Detector (20):
∏N

i=1
((1 + λi)

2/λi); detector (21):
∑N

i=1
λi; detector (22):

∑N

i=1
(1/λi); detector (23):∑N

i=1
((1/λi) + λi); detector (24): (λ1 + (1/λN )); detector (25): max(λ1 , (1/λN )). (a) δ1 = δ2. (b) δ1 = 0.75δ2. (c) δ1 = 0.5δ2. (d) δ1 = 0.25δ2.

B. Standard ROC Analysis

The analysis is conducted in terms of ROC curves (namely,
Pd versus Pfa) for a fixed value of the induced maximal
invariant δ = [1/2, 1/2, 1/2]T , corresponding to the pair of
covariance matrices exploited in [10]. Of course, any other
covariance pair with the same value of δ leads to the same
ROCs, whereas a different value of δ leads to different ROCs.
For comparison purposes, the benchmark ROC of the clair-
voyant MPI detector and that of the detector proposed in [10]
are also plotted. The detector proposed in [10] is an adaptive
implementation of the LRT, whose expression in terms of the
maximal invariant statistic is

N∑
i=1

(
1

λi
− ln

1

λi

)
H1

≷
H0

TH . (26)

In order to set the detection threshold, Monte Carlo simu-
lations are used assuming 100/Pfa independent runs. In the
simulations, 5000 independent trials were used to estimate Pd.

Fig. 4 shows the ROCs of the considered receivers for both two5

and three polarimetric channels, i.e., W = 3 and W = 5.
In all the analyzed cases, the ROC highlights that the

harmonic-mean-based detector (22) outperforms the counter-
parts, and the loss with respect to the benchmark curve is
acceptable for almost all the parameter values chosen in the
simulation. The GLRT (20) and the detector (23) achieves
almost the same performance levels and come third and are
ranked just after detector (26). Considering the arithmetic-
mean-based detector, its Pd for the given value of δ is com-
pletely unsatisfactory, which is not surprising and is actually
anticipated by the theory, since the decision statistic belongs
to the class 1) of Section IV-B. Summarizing, the simulation
curves evidently show that the GLRT (20) is often outperformed
by the counterparts, and as predicted by the theory, there is not
a detector that uniformly outperforms the others.

5For the covariance pairs in [10], the HH, VV, and HV polarimetric channels
are perfectly equivalent because the induced maximal invariant exhibits equal
components.
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Fig. 4. Pd versus Pfa. Detector (20):
∏N

i=1
((1 + λi)

2/λi); detector (21):
∑N

i=1
λi; detector (22):

∑N

i=1
(1/λi); detector (23):

∑N

i=1
((1/λi) + λi);

detector (24): (λ1 + (1/λN )); detector (25): max(λ1, (1/λN )); detector (26):
∑N

i=1
((1/λi)− ln(1/λi)). (a) N = 2, W = 3. (b) N = 2, W = 5.

(c) N = 3, W = 3. (d) N = 3, W = 5.

The effects on the performance of the number of processed
polarimetric channels are studied in Fig. 5. For conciseness, the
analysis is limited to the ROC curves of detectors (20), (22),
(25), and (26), which are reported for W = 5, N = 3, N = 2,
and N = 1. Based on footnote 4, the curves for N = 1 can be
either interpreted as the ROC of the HH, VV, or HV channel.
It is also worth mentioning that for N = 1, no UMPI detector
exists. In fact, for N = 1, the MPI receiver

SX

SY
sign(δ − 1)

H1

≷
H0

TA,1

requires knowledge of the induced maximal invariant δ =
ΣX/ΣY .

The analysis of the curves in Fig. 5 shows that the detection
performance for a given Pfa level improves as N increases.
For example, with reference to detector (20) and a Pfa of 10−3,
a Pd of 0.18 is achieved for N = 1, whereas for N = 2 and
N = 3, the Pd results are 0.27 and 0.32, respectively. This
is in accordance with the intuitive observation that the higher
the polarimetric information about the scene, the better the
performance.

So far, all the numerical analyses performed in this sec-
tion were based on the induced maximal invariant value δ =
[1/2, 1/2, 1/2]T . Thus, in order to provide an average behavior
of the ROC curves for the considered detectors, the following
simulation is conducted.

1) 500 random values6 of the induced maximal invariant are
selected [modeling the entries of δ as independent and
identically distributed uniform random variables within
the intervals (0, 1), (1, 2), and (0, 2)]. The corresponding
three simulation setups will be referred to in the following
as case 1, case 2, and case 3.

2) The ROC curve of a given detector is evaluated in corre-
spondence of each induced maximal invariant realization.

3) For each detector, the previously obtained 500 ROC
curves are averaged for a specific simulation setup
(i.e., case 1, 2, or 3).

6The seed of the rand MATLAB function is set to the initial state so as to
guarantee the reproducibility of the curves.
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Fig. 5. Pd versus Pfa for W = 5. (a) Detector (20):
∏N

i=1
((1 + λi)

2/λi). (b) Detector (22):
∑N

i=1
(1/λi). (c) Detector (25): max(λ1 , (1/λN )).

(d) Detector (26):
∑N

i=1
((1/λi)− ln(1/λi)).

The results are displayed in Fig. 6 where, for conciseness,
only the full-polarization case is shown. As expected, when the
induced maximal invariant is simulated according to case 1, the
ROC curves agree with those shown in Fig. 4 with detector (22)
performing better than the counterparts and (21) providing the
poorest performance.

On the contrary, when case 2 is considered, a different
behavior of the ROC curves is observed. In particular, in the
hierarchy, detectors (21) and (22) switched their positions com-
pared with the previous case (this agrees with the theoretical
considerations at the beginning of Section V-B). Finally, when
case 3 is simulated, the ROC curves result in between the
two previous situations. This can be explained observing case
3; the performance can be obtained as the average of that in
cases 1 and 2. Summarizing this last analysis confirms that there
is not a detector able to able to uniformly outperform the others.
This implies that a battery of detectors could be considered
with a suitable aggregation logic or some a priori knowledge
(if any) about the characteristics of the operating polarimetric
environment could be exploited to select the most suitable
decision rule. Otherwise stated, based on the operating scenario

(urban, sea, and foliage) and the targets (car, tank, and boats) of
tactical interest for change detection, it is possible to exploit a
priori models for the polarimetric covariance matrices, which
allow to gain some information about the expected induced
maximal invariant. Based on this last vector, the most suitable
detector can be selected within the class of proposed invariant
rules (for instance, using the plots in Fig. 2 if N = 2).

VI. TESTING ON REAL DATA

Here, the performance analysis of the algorithms proposed
in Section IV is presented. The analysis is performed using real
X-band data; the data set used is the Coherent Change Detection
Challenge data set acquired by the AFRL [8]. The airborne
SAR used to acquire the data set employed a coherent receiver
with 640-MHz bandwidth and dual-polarized mode. The data
are in the form of focused complex images with a range and
cross-range resolution of 0.3 m. The overall data set provides
ten complex images for each of the three available polarizations
(HH, VV, and HV), acquired on the same day. The original
image size is 4501 × 4501 pixels, and the images have been
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Fig. 6. Pd versus Pfa. Detector (20):
∏N

i=1
((1 + λi)

2/λi); detector (21):
∑N

i=1
λi; detector (22):

∑N

i=1
(1/λi); detector (23):

∑N

i=1
((1/λi) + λi);

detector (24): (λ1 + (1/λN )); detector (25): max(λ1 , (1/λN )); detector (26):
∑N

i=1
((1/λi)− ln(1/λi)). (a) N = 3, W = 3, case 1. (b) N = 3, W = 5,

case 1. (c) N = 3, W = 3, case 2. (d) N = 3, W = 5, case 2. (e) N = 3, W = 3, case 3. (f) N = 3, W = 5, case 3.

coherently aligned to a single reference (per polarization) with
the help of Digital Elevation Map information [8].

For our analysis, we focus on two acquisitions from the
entire data set. Unfortunately, the ground truths of the data are

not available (e.g., the actual changes between two different
acquisitions); hence, the selection of two passes providing the
opportunity to generate a sufficiently accurate ground truth is
required. Hence, two passes satisfying this requirement have
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Fig. 7. Reference (a) and test (b) images gathered in HH mode.

been identified: the acquisition named “FP0124” is used as
reference pass, whereas the acquisition “FP0121” is used as
a test pass. From the two passes, the area with the higher
activity (changes) between the passes has been selected; this
area is represented by a subimage of 1000 × 1000 pixels
(i.e., L = M = 1000) and is composed of several parking
lots that are occupied by numerous parked (i.e., stationary)
vehicles. Fig. 7 shows the reference and test subimages for the
HH mode.

For this particular scenario, the changes between the ref-
erence and test images (denoted by X and Y , respectively),
occurred during the time interval between the two acquisitions,
can be distinguished in two cases as follows.

• A vehicle is present in X but is not present in Y , i.e.,
the vehicle has departed from its parking space (pixels
relative to this kind of event will be referred to in the
following as departures).

• A vehicle is not present in X but is present in Y , i.e.,
the vehicle has arrived in an empty parking space (pixels
relative to this kind of event will be referred to in the
following as arrivals).

Using the cases defined above, a total of 34 changes between X
and Y can be visually identified (by flickering the two images).
In the analysis, the straight line crossing the test image has not
been considered, as its nature does not represent an arrival.
However, as it is visible in the test image but not visible in
the reference image, we expect it to be detected as an arrival.
The obtained ground truth is shown in Fig. 8, where the black
regions represent the departures, and the white regions indicate
the arrivals. In particular, denoting by K the set of pixels that
correspond to changes, the ground truth can be represented as a
matrix G whose entries are given by

G(l,m) =

{
1 if (l,m) ∈ K l = 1, . . . , L

0 otherwise m = 1, . . . ,M .
(27)

In Fig. 9(a), the ground truth mask G(l,m) is shown. Al-
though the acquisitions were performed during the same day
and the images were registered, the returns from a scatterer
contribute differently to neighbor pixels, for example, a slightly
different aspect angle can produce a different amount of energy
spillover. These relative differences in the imaged data can

Fig. 8. Ground truth superimposed to the reference image.

Fig. 9. Ground truth without (a) and with (b) the addition of guard cells.

lead to false alarms in the change detection results. In order
to prevent false alarm caused by pixel contamination by target
returns, we consider a guard area around each arrival–departure.
This allows the definition of an extended ground truth [see
Fig. 9(b)] used in the following to compare the performance
of the considered detection algorithms.

In order to assess the performance of the detectors, both the
number of detected changes and the change detection maps
are presented. For the ith receiver, the corresponding map of
changes Ci is a L×M matrix whose (l,m)th entry is the
ith decision statistic considering the N ×N sample Grammian
matrix SXl,m

(SYl,m
) evaluated considering a square neigh-

bourhood7with size W ×W of the pixel (l,m) of X (Y ).

7We notice that, in order to obtain Ci of size L×M , we include a frame of
ε pixel width of both reference and test images with ε = (W − 1)/2, in order
to be able to compute the statistics on the image borders. By doing so, W must
be odd.
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TABLE I
NUMBER OF CORRECT DETECTIONS IN THE EXTENDED GROUND TRUTH. ALL THE COMPARISONS HAVE BEEN DONE USING THE SAME Pfa LEVEL,

NAMELY, THE NUMBER OF THRESHOLD CROSSINGS IN THE COMPLEMENT OF THE GROUND TRUTH IS EXACTLY THE SAME FOR ALL THE DETECTORS.
THE BEST DETECTOR, FOR THE CONSIDERED DATA SET AND Pfa LEVEL, IS THUS THE ONE ENSURING THE HIGHEST NUMBER OF

DETECTIONS WITHIN THE GROUND TRUTH REGION (NUMBER OF PIXELS IN THE GROUND TRUTH REGION

WHERE THE DECISION STATISTIC IS OVER THE THRESHOLD)

The detection map corresponding to Ci is then defined as

Di(l,m) =

⎧⎪⎨
⎪⎩
1, if Ci(l,m) > Ti l = 1, . . . , L

0, otherwise m = 1, . . . ,M

(28)

where Ti denotes the detection threshold. In the analysis pre-
sented in this section, the thresholds are set to ensure Pfa =
10−3 in the complement of the extended ground truth area,
namely, in the region where no changes occur (there are no
true positives). This means that, for each detector, after com-
puting the decision statistics (for each pixel belonging to the
complement of the extended ground truth), the threshold has
been selected in order that

10−3 × total number of available statistics (trials)

are greater than the threshold. This ensures that all the com-
parisons refer to the same Pfa level, namely, the number of
threshold crossings in the complement of the extended ground
truth is exactly the same for all the analyzed detectors.

Finally, considered are the cases of N = 1, N = 2, and
N = 3, which correspond, respectively, to processing the single
polarimetric channel (HH, VV, or HV), to jointly considering a
polarization pair (HH-VV, HH-HV, or VV-HV), or to jointly
considering all the available channels (HH, VV, and HV). In
particular, for each detector, starting from Di, and denoting
by KG the set of the pixels that correspond to changes in the

extended ground truth area, performances are given in terms of
the number of detections belonging to KG, i.e., considering the
cardinality of the set

Di = {Di(l,m) : Di(l,m) ∈ KG, }

where G represents the number of guard cells used to generate
the extended ground truth map. In this analysis, G = 5 is se-
lected, which means that around each set of pixels representing
a change, a 5-pixel frame is included.

The number of detections for each receiver corresponding
to an actual change present in the extended ground truth is
summarized in Table I. As expected, the common trend is that
the performance improves by increasing W . Moreover, as to the
effects of polarization, the following remarks are in order.

• Processing either VV or HV channel leads, in general, to
better performances than processing the HH polarization;
the cross-polarized returns provide the highest number of
correct detections for single-channel processing (the sole
exception is receiver (26) for W = 5; in this case, the VV
channel leads to the best choice). The high discrimination
capability of the cross-polarized returns can be explained
observing that in the presence of a car target, there are di-
hedrals that significantly depolarize the incident radiation.
On the contrary, the depolarization effect is much limited
in the absence of a car since the parking area is much
more similar to a flat plane. Moreover, the intuitive reason
for better performances achievable with VV polarization
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Fig. 10. Change detection maps for W = 5 and N = 3. (a) Detector (20):
∏N

i=1
((1 + λi)

2/λi). (b) Detector (21):
∑N

i=1
λi. (c) Detector (22):∑N

i=1
(1/λi). (d) Detector (23):

∑N

i=1
((1/λi) + λi). (e) Detector (24): (λ1 + (1/λN )). (f) Detector (25): max(λ1 , (1/λN )).

compared with those obtained with HH polarization re-
sides in the dependence of the polarization return on the
specific change considered (absence or presence of the car
object in the image) and on its geometry (height extension
and acquisition geometry).

• With reference to two polarimetric channels, jointly pro-
cessing the pair VV-HV seems the best choice for almost
all the considered decision rules (with exceptions repre-
sented by detectors (21), for W = 5, for which the HH-
VV pair is the most suitable choice, and detector (26), for
W = 9, for which polarization diversity does not seem to
provide detection improvements).

• A suitable two-channel polarization diversity can outper-
form the single-channel processing (the sole exception is
detector (26) for W = 9).

• Processing three polarimetric channels does not always
improve the results obtained using two polarizations; the
possible improvement depends both on parameter W and
on the specific decision rule. In particular, for W = 9, the
use of polarization diversity of order two with the pair
VV-HV appears more convenient (the sole exception is
detector (21) whose correct detections increases exploit-
ing the full polarimetric information).

The maps obtained for the case with W = 5 and N = 3
for the detectors (20)–(25) are shown in Fig. 10. Based on
them as well as on the results in Table I, it can be observed
that detector (25) ensures the best performance for W = 5,
whereas detector (20) outperforms the counterparts for W =
9. Moreover, for W = 3, additional results (not reported in
the table for conciseness) highlights that the best performance
is obtained exploiting detector (25) processing with the pair
VV-HV.

Of particular interest are tests (21) and (22): From the
corresponding detection maps, it is easy to recognize that the
former identifies the departures, whereas the latter identifies the
arrivals. This behavior is also clearly visible in the maps shown
in Fig. 11. In fact, for detector (21), the departures present
higher values, and the arrivals present lower values, whereas
for detector (22), the dual behavior is obtained. Additionally,
although detector (25) is outperformed by detectors (20) and
(23), it allows us to discriminate between the departures and
the arrivals based on the argument of max in (25). In particular,
if the first argument in (25) is selected, the change corresponds
to a departure, whereas it corresponds to an arrival if the second
argument is selected. By considering the additional information
coming from the maximum argument in (25), it is thus possible
to discriminate the departures from the arrivals detected by the
receiver (25); in Fig. 12(b), this enhanced detection map is
shown together with the ground truth.

A. Assessing the Impact of an Aggregation Procedure

Analyzed here are the effects of an aggregation strategy after
single-pixel detection so as to eliminate isolated false alarms
and confirm true detections, which, due to the typical car size
and system resolution, appear quite clustered (see the detection
maps in Fig. 10). More precisely, a window of size 5 × 5 slides
along the horizontal and the vertical dimensions of the detection
maps (which, as already highlighted are binary images: “0” no
detection, “1” detection). Then, for a given pixel localized at the
center of the moving window and labeled with “1,” a detection
is associated if the number of “1,” in the window is greater that
a certain integer “fill parameter” (denoted by F and complying
with 1 ≤ F ≤ 25).



3308 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 6, JUNE 2015

Fig. 11. Maps of changes in decibels for W = 5 and N = 3. (a) Detector (20):
∏N

i=1
((1 + λi)

2/λi). (b) Detector (21):
∑N

i=1
λi. (c) Detector (22):∑N

i=1
(1/λi). (d) Detector (23):

∑N

i=1
((1/λi) + λi). (e) Detector (24): (λ1 + (1/λN )). (f) Detector (25): max(λ1 , (1/λN )).

Fig. 12. Ground truth and enhanced detection map considering W = 5 and N = 3 for detector (25): max(λ1 , (1/λN )). On both images in black and white
are shown the departures and the arrivals, respectively. (a) Ground Truth. (b) Detector (25).

This kind of logics looks like n-of-m aggregation techniques
[24, Ch. 3] and can be interpreted as a postdetection binary
integration within the reference window. As to the pixels on
the image edge (namely, those laying on the first/last two rows

or columns), no aggregation is performed because they never
fall at the center of the moving window. Otherwise stated, it
is simply confirmed the “0” or “1” value in the original detec-
tion map.
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Fig. 13. (a) Number of correct detections in the extended ground truth and (b) number of false alarms in the complement of the extended ground truth versus

F . Detector (20):
∏N

i=1
((1 + λi)

2/λi); detector (23):
∑N

i=1
((1/λi) + λi); detector (25): max(λ1 , (1/λN )); detector (26):

∑N

i=1
((1/λi)− ln(1/λi)).

(a) Correct detections. (b) False alarms.

The case of three polarimetric channels is considered, and
the effect of the fill parameter is studied in Fig. 13 for detectors
(20), (23), (25), and (26).

The conducted deleted analysis highlights that Pd is not very
sensitive to the fill parameter when it ranges between 5% and
40% of the window size. A similar result was also found in
[10] with reference to single-channel change detection. Interest-
ingly, there exists a range of values for parameter F (precisely
1 ≤ F ≤ 10), where Pd is almost flat, whereas Pfa decreases
as F increases. This suggests that a fill parameter value between
8 and 10 can be reasonably used in the aggregation procedure,
reducing the number of false alarms while keeping (almost)
constant the number of true positives.

VII. CONCLUSION

Multipolarization SAR change detection has been considered
in this paper. The problem has been formulated as a binary
hypothesis test, and the principle of invariance has been applied
to design decision rules exhibiting a special symmetry, which is
a sufficient condition to ensure the CFAR property. A maximal
invariant statistic is found, and the optimum invariant detector
has been computed showing that it is not UMPI and, as a
consequence, not practically implementable. Hence, some sub-
optimum invariant tests, whose decision statistics are given in
terms of the obtained maximal invariant, have been introduced
and assessed both on simulated data and on real high-resolution
SAR images. The conducted analysis has shown that some of
them represent a viable mean to deal with the change detec-
tion problem. An important result relates to the performance
obtained considering the VV-HV polarization. This particular
choice (for the considered real data set) often resulted in
superior performance compared with all the other single and
multipolarization cases. Moreover, it is also possible to exploit
suitable invariant tests for postdetection classification purposes,
particularly, from the available real data, to discriminate be-
tween car arrivals and departures in the parking area with-
out any additional RCS comparison. Possible future research
tracks will consider the extension of the framework relaxing
the Gaussian requirement for the data as well as the analysis
on other data sets acquired by a different system, possibly at

different resolutions (different performance behaviors could be
observed on different data sets). Moreover, in order to deal
with possible amplitude and phase calibration errors, future
investigations will deal with the design of decision rules robust
to miscalibration effects. The idea is to achieve this goal by
imposing other invariances at the price of some detection losses.
Finally, it would be interesting to investigate the joint use of
multifrequency and multipolarization data to further improve
the effect of diversity.

APPENDIX

Here, the MPI detector is derived with reference to the case
of N = 3 polarimetric channels. To this end, it is necessary to
distinguish among three cases

• Case 1: δ1 �= δ2 �= δ3. Using [25], eq. (51), 1F̃0(2K;
−Δ−1,Λ) can be recast as a rational function, i.e.,

1F̃0(2K;−Δ−1,Λ) =

c3 det

[(
1 +

λj

δi

)2−2K
]
i,j=1,...,3

3∏
j=1

∏
i<j

(
− 1

δi
+

1

δj

)
(λi − λj)

(29)

with c3 as a constant with respect to λi and δi. Thus, the
MPI detector becomes

det

[(
1 +

λj

δi

)2−2K
]
i,j=1,...,3

3∏
j=1

(1 + λj)
−2K

∏
i<j

(
− 1

δi
+

1

δj

)
(λi − λj)

H1

≷
H0

TA,3 .

(30)

• Case 2: δ1 = δ2 �= δ3 or δ1 �= δ2 = δ3 or δ1 = δ3 �= δ2.
Let us focus on δ1 = δ2 �= δ3 (the other two cases are
equivalent to the considered one). Denoting by δ = δ1 =
δ2 and exploiting [29, eq. (106)], the equality chain (31),
(32), and (33), shown at the top of the next page, holds
true. As a consequence, the MPI test becomes (34), shown
at the top of the next page.
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1F̃0(2K;−Δ−1,Λ) (31)

=
c3

3∏
j=1

∏
i<j

(λi − λj)

lim
x1 → − 1

δ
x2 → − 1

δ

det

⎡
⎢⎢⎢⎢⎣
(1− λ1x1)

2−2K (1− λ1x2)
2−2K

(
1 + λ1

δ3

)2−2K

(1− λ2x1)
2−2K (1− λ2x2)

2−2K
(
1 + λ2

δ3

)2−2K

(1− λ3x1)
2−2K (1− λ3x2)

2−2K
(
1 + λ3

δ3

)2−2K

⎤
⎥⎥⎥⎥⎦

(x2 − x1)
(
−x1 − 1

δ3

)(
−x2 − 1

δ3

) (32)

= c3

det

⎡
⎢⎢⎢⎢⎣
=

(
1 + λ1

δ

)2−2K −λ1(2− 2K)
(
1 + λ1

δ

)1−2K
(
1 + λ1

δ3

)2−2K

(
1 + λ2

δ

)2−2K −λ2(2− 2K)
(
1 + λ2

δ

)1−2K
(
1 + λ2

δ3

)2−2K

(
1 + λ3

δ

)2−2K −λ3(2− 2K)
(
1 + λ3

δ

)1−2K
(
1 + λ3

δ3

)2−2K

⎤
⎥⎥⎥⎥⎦

(
1
δ − 1

δ3

)2
3∏

j=1

∏
i<j

(λi − λj)

(33)

det

⎡
⎢⎢⎢⎢⎣
(
1 + λ1

δ

)2−2K −λ1(2− 2K)
(
1 + λ1

δ

)1−2K
(
1 + λ1

δ3

)2−2K

(
1 + λ2

δ

)2−2K −λ2(2− 2K)
(
1 + λ2

δ

)1−2K
(
1 + λ2

δ3

)2−2K

(
1 + λ3

δ

)2−2K −λ3(2− 2K)
(
1 + λ3

δ

)1−2K
(
1 + λ3

δ3

)2−2K

⎤
⎥⎥⎥⎥⎦

3∏
j=1

(1 + λj)
−2K

∏
i<j

(λi − λj)

H1

≷
H0

TB,3 (34)

• Case 3: δ1 = δ2 = δ3. Using the splitting formula
[20, eq. (92)] yields

1F̃0(2K;−Δ−1,Λ)=det

(
I+

Λ

δ

)−2K

, δ1=δ2=δ3=δ .

(35)

Hence, after standard equivalences, the MPI test (12)
becomes

3∏
j=1

(
1 + λj

δ + λj

)
H1

≷
H0

TC,3 . (36)
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