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Abstract—Hidden Markov models (HMMs) have previously
been successfully applied to subsurface threat detection using
ground penetrating radar (GPR) data. However, parameter es-
timation in most HMM-based landmine detection approaches is
difficult since object locations are typically well known for the
2-D coordinates on the Earth’s surface but are not well known
for object depths underneath the ground/time of arrival in a
GPR A-scan. As a result, in a standard expectation maximization
HMM (EM-HMM), all depths corresponding to a particular alarm
location may be labeled as target sequences although the charac-
teristics of data from different depths are substantially different.
In this paper, an alternate HMM approach is developed using
a multiple-instance learning (MIL) framework that considers an
unordered set of HMM sequences at a particular alarm location,
where the set of sequences is defined as positive if at least one of
the sequences is a target sequence; otherwise, the set is defined
as negative. Using the MIL framework, a collection of these sets
(bags), along with their labels is used to train the target and
nontarget HMMs simultaneously. The model parameters are in-
ferred using variational Bayes, making the model tractable and
computationally efficient. Experimental results on two synthetic
and two landmine data sets show that the proposed approach
performs better than a standard EM-HMM.

Index Terms—Ground penetrating radar (GPR), hidden
Markov model (HMM), landmine detection, multiple-instance
learning (MIL), variational Bayes (VB).

I. INTRODUCTION

LANDMINES pose a serious threat to soldiers and civilians
worldwide and also provide major challenges to agri-

culture, infrastructure and road development in post-conflict
regions [1]. In order to demine the affected areas, several
techniques have been developed to detect subsurface threats.
Since electromagnetic induction (EMI) sensors can only detect
metal mines, a variety of other techniques are being explored,
most of which exploit the electromagnetic characteristics of
the mines or the mine casing; for example, ground penetrating
radar (GPR), infrared/hyperspectral methods, acoustic/seismic
methods, etc. [2]. GPR can detect nonmetal or low-metal con-
tent subsurface targets but naive processing of GPR also flags
anomalies such as roots, rocks, potholes, and other clutter ob-
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jects as potential threats. To reduce false alarms, current GPR-
based landmine detection systems first identify potential threat
locations using a computationally efficient technique known as
a prescreening algorithm [3]. These prescreener alarms are then
further discriminated into target and nontarget classes using
more sophisticated methods [4]–[10].

One of the more successful techniques for GPR anomaly
discrimination uses hidden Markov models (HMMs) to char-
acterize 2-D GPR data over multiple depth bins at a partic-
ular alarm location as sequences of time samples [11]–[14].
This technique is motivated by the typical hyperbolic shape
of landmines in 2-D GPR data, which can be represented by
an HMM sequence of time samples as shown in Fig. 1. The
parameter estimation procedures in most HMM approaches are
affected by the unknown alarm depth locations in the training
set of 3-D GPR data. The prescreener alarm locations are
known in 2-D coordinates on the Earth’s surface, but not for
individual target depths. Due to the absence of depth labels,
in a standard expectation maximization HMM (EM-HMM),
sequences at depth bins both below and above a target are
all labeled as targets despite being substantially different in
their characteristics. The uncertainty in the sequence labels with
depth complicates learning the HMM parameters, potentially
degrading the classifier’s performance. Obtaining alarm labels
at individual depths requires hand labeling, which is extremely
time consuming and potentially error prone. While new re-
search efforts are in progress to automate an efficient labeling
process [15], this work proposes an alternate approach based on
a multiple-instance learning (MIL) framework to incorporate
the label uncertainty into the classifier training process. In the
MIL-based approach, a set of sequences at a particular alarm
location is considered a bag. A bag is labeled positive if at least
one of its sequences is a positive sequence; otherwise, the bag
is labeled negative. This work integrates HMMs into a MIL
framework and develops a new approach called the multiple-
instance hidden Markov model (MiHMM).

A variety of HMM approaches have been developed for
threat detection using GPR [11]–[14] and other technologies
[16]–[18]. In [11], gradient-based features characterizing the
edge strengths in diagonal and antidiagonal directions in 2-D
GPR data were used to learn HMMs with discrete and continu-
ous observation models. The performance of [11] was improved
by discriminately training an HMM using different techniques
[12], [13]. Since the features in [11] are constrained to charac-
terize only the diagonal and antidiagonal edges, more general-
izable features were constructed in [14] for time-domain GPR
data by implementing Gabor filters on 2-D GPR data. Despite
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Fig. 1. From left to right, (a) a typical hyperbolic response of a buried
landmine in 2-D GPR data, (b) the data divided into multiple depth bins,
where each depth bin is a sequence of down track samples, and (c) a sequence
represented as an HMM sequence whose states correspond to background and
three edges—rising, flat, and falling.

advances made to the set of features applied to HMM-based
landmine detection, none of the above approaches have consid-
ered the label uncertainty of the sequences due to the multiple-
instance nature of landmine data, although all approaches have
noted that this label uncertainty is a concerning issue.

MIL has been widely applied in different domains, includ-
ing landmine detection. A vast majority of these efforts have
been related to content-based image retrieval, image classifica-
tion, and object recognition problems. Many MIL approaches
have been inspired by the Diverse Density approach [19]–
[22], maximum-margin classifiers [23], [24], instance selection
methods [25], [26], and boosting [27]. More recent applications
of MIL are in object tracking [28], [29]. MIL methods have
also been recently applied in the subsurface target detection
and have been shown to perform better than their non-MIL
counterparts. A random set framework for MIL (RSFMIL) [30]
and multiple-instance Relevance Vector Machines (MIRVM)
[31] were applied to detect landmines using remotely sensed
hyperspectral images in [32].

Most of the existing MIL approaches are unsuitable for
time-series data and do not generalize well across different
applications. Recently, a MIL framework has been used in
HMM-based landmine detection [33], which implements Di-
verse Density (DD) [19] on time series data. Although their pre-
liminary work shows improvement over a standard EM-HMM,
the DD itself suffers from limitations that have been addressed
in subsequent efforts [24] and [34]. In this paper, our previous
nonparametric Bayesian multiple-instance learning (NPBMIL)
approach [35] is extended to incorporate time-varying GPR
data by learning HMMs in a MIL framework (MiHMM). The
proposed approach is generalizable to different applications by
using an appropriate observation model, and in this work, we
consider both discrete (multinomial) and continuous (Gaussian)
features. The proposed method uses variational Bayes (VB) to
estimate the model parameters, making parameter inference fast
and computationally efficient. The performance of the proposed
MiHMM method is compared against NPBMIL and a standard
EM-HMM using feature developed in [11] as well as a new
set of features generated using a very successful computer
vision technique called the histogram of oriented gradients
(HOG) [36].

The remainder of this work is organized as follows. Section II
describes the two different MiHMM approaches and the param-

eter inference for both. Section III describes the simulated data
sets and two landmine data sets used in this work and compares
the performance of the proposed approach with a standard EM-
HMM and NPBMIL. Finally, Section IV concludes this paper
and discusses directions for potential future work.

II. MULTIPLE-INSTANCE HIDDEN MARKOV MODELS

In the MIL framework, data is represented by a collection
of bag/label pairs, {Xn, Yn}NN=1. A bag, Xn, consists of a set
of instance/label pairs, Xn={xni, yni}Ini=1, i∈{1, . . . , Ini},
n∈{1, . . . , N}, where N denotes the total number of bags and
In denotes the total number of instances in the nth bag. For
any bag, Xn, only the bag label, Yn, is observed, whereas its
instance labels, {yni}Ini=1, are unobserved. In the context of
sequential data, each instance, xni, can be represented by a
sequence of time samples, {xni,t}Tni

t=1, t∈{1, . . . , Tni}, where
Tni is the total number of time samples in the ith instance in the
nth bag. For a binary MIL problem, the latent instance labels
influence the bag labels as follows: If the time samples in an
instance, xni, i∈{1, . . . , In}, are generated from probability
densities p(xni|yni=1), then the bag label, Yn, is 1; otherwise
Yn is 0.

As described earlier, the HMM approaches developed for
GPR-based landmine detection [11], [13], [14] do not incor-
porate the inherent uncertainty in the instance labels. In the
absence of instance labels, a standard EM-HMM represents all
instances in multiple depths at a particular spatial location with
their corresponding bag label. Consequently, instances below
and above a target instance are labeled as targets although their
characteristics might be substantially different from targets. In
an attempt to localize the regions corresponding to the target,
Gaussian Markov random fields (GMRFs) have been used to
segment the information-bearing region of the GPR image from
the background of the image [15]. However, image segmenta-
tion can be a very time consuming procedure. Moreover, the
image segmentation procedure does not incorporate the time-
varying characteristics of landmine response, which should be
closely coupled in the HMM learning process.

In order to overcome these limitations, this work proposes
an HMM approach based on a MIL framework (MiHMM), in
which bags of instances are drawn from a hierarchical mixture
of two HMMs. Time samples in at least one of the instances in a
Y = 1 bag are drawn from probability densities p(xni,t|yni =
1), and time samples in all of the instances in a Y = 0 bag
are generated from probability densities p(xni|yni = 0). In
contrast to the previous HMM approaches, MiHMM learns the
mixture of HMMs simultaneously.

A. Multiple-Instance Hidden Markov Models

The HMM described in [11] forms a model that can be
used to represent sequences from two different hypotheses
p(xni|yni = 0) and p(xni|yni = 1). Using the HMM as a
building block, we construct a generative model for time-series
data in a MIL scenario. For a binary MIL problem, it is assumed
that the time samples in any instance in a negative bag (Yn =
0) are sequentially generated from p(xni,t|zni,t, yni = 0),
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whereas the time samples in any instance in a positive bag
(Yn = 1) are generated from a hierarchical mixture of two
HMMs as follows: First the hidden instance label, yni, is drawn
from a multinomial distribution with mixing proportions, η, and
based on yni, the time samples in the instance are sequentially
generated from either p(xni|yni = 0) or p(xni|yni = 1).

A latent variable ζni assigns one of the two HMMs to the
instance xni as follows:

ζni

{
∼ Mult(η),η ∼ Dir(α0) if Yn = 1
= 0 if Yn = 0

where Yn = 1 denotes the bag is positive, Yn = 0 denotes the
bag is negative, and η = {η0, η1} denote the mixing propor-
tions of the two HMMs for an instance in a Y = 1 bag.

Let Hm = {Θm
k ,Πm

k ,Am} denote the parameters of the
probability densities, initial state probabilities, and state tran-
sition probabilities of the mth HMM, m ∈ {0, 1}. Let zmni,t be
the discrete multinomial latent variable that describes which
component density in the mth HMM is responsible for gener-
ating the corresponding observation, xni,t. The data generation
process can be explained as follows:

zmni,1|Πm ∼Mult(Πm) (1)

zmi,t|
{
zmi,t−1 = k,Am

k•
}
∼Mult (Am

k•) , k ∈ {1, . . . ,Km},
t ∈ {1, . . . , Ti} (2)

xni,t|zmni,t ∼
Km∏
k=1

p (xni,t|Θm
k )z

m
ni,t (3)

Xn|{H0,H1} ∼
In∏
i=1

∏
m={0,1}

p(xni|Hm)ζni . (4)

The uncertainty in the parameters can be expressed using
conjugate priors

Πm|Λm
0 ∼Dir (Λm

0 ) (5)

Am
k•|am0• ∼Dir (am0•) ,A

m
k• = [Am

k1, . . . , A
m
kK ] ,

am0• = [am01, . . . , a
m
0K ] (6)

Θm
k |hm

0 ∼ p (Θm
k |hm

0 ) (7)

η|α0 ∼Dir(α0). (8)

Fig. 2 shows a graphical model for the MiHMM model and
differs from the HMM model in [11] in two important aspects:
(1) there are two HMMs in Fig. 2, and (2) a latent variable, ζni

is introduced that assigns an instance in a Y = 1 bag to one of
the two HMMs. The dashed plates, denoting the exponential
family component densities, can be replaced by one of the
two specific densities, i.e., multinomial (MN) and multivariate
normal (MVN).

1) MN: In the discrete landmine features developed in [11],
each time sample is represented by one of the 16 discrete ob-
servations, which can be modeled by a multinomial probability
density. Consider a MN probability density with dimensionality
D parameterized by a probability vector Θm

k = pm
k such that

xni,t|pm
k ∼ Mult(pm

k ). For a MN probability density, xni,t =

Fig. 2. MiHMM1 graphical model. The latent variable ζni assigns one
of the HMMs to the instance xni. Given a Yn = 1 bag, the HMMs mix
with proportion η. Given an HMM, the latent variable zmni,t assigns one of

the mixture components, parameterized by {Θm
k }K

k=1
, to the sample xni,t.

Excluding the first state, all other successive states in a sequence are determined
by the state transition probabilities Am. The first state is determined by the
initial state mixing proportion Πm. This model is modified to have a shared
observation model in MiHMM2, whose graphical model is shown in Fig. 3.

[xni,t1, . . . , xni,tD]′, where xni,td denotes the count of the dth
outcome and pmkd denotes the probability of that outcome. A
special case of MN probability density, where each sample has
exactly one outcome, can be used to model the time samples in
the discrete landmine data set. The conjugate prior for pm

k is
the Dirichlet density

pm
k |Ωm

0 ∼ Dir (Ωm
0 ) . (9)

2) MVN: In the HOG landmine features, described in
Section III-B2, each time sample is described by a 9-D feature
vector. Intuitively, this feature vector gives a weighted distribu-
tion of edge orientations within a particular region in a 2-D GPR
image, which can be modeled by a multivariate normal (MVN)
probability density. A MVN density with dimensionality D is
defined by a [D × 1] mean vector and a [D ×D] covariance
matrix. Let Θm

k = {μm
k ,Γm

k } denote the parameters of the
kth component in the mth HMM mixture model, where μm

k

denotes the mean and Γm
k denotes the precision such that

xni,t|{μm
k ,Γm

k } ∼ N (μm
k , {Γm

k }−1). The conjugate prior for
the joint density of μm

k and Γm
k is the Normal-Wishart density

as follows:

Γm
k | {Φm

0 , νm0 } ∼Wish
(
νm0 , {Φm

0 }−1
)

(10)

μm
k | {Γm

k ,ρm
0 , βm

0 } ∼N
(
ρm
0 , {βm

0 Γm
i }−1

)
. (11)

B. Parameter Inference

Based on the data generation process described in
Section II-A, a joint probability density of the time samples
and the model parameters can be obtained. Due to the model
complexity, the computation of the posterior densities involves
an intractable integration. This work utilizes variational Bayes
(VB) to approximate the intractable integration by maximizing
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a lower bound [37]. To achieve this goal, VB assumes param-
eterized posterior densities of the parameters can be factor-
ized into conditionally independent groups of parameters. For
MiHMM, the assumed conditional independence is as follows:

q ({ζn, zn,Π,A,Θ}|X)

=

In∏
i=1

∏
m={0,1}

q(ζnm|X)

Km∏
k=1

[q (zmni,Π,A|X) q (Θm
k |X)] .

(12)

The parameters of the assumed posterior densities can be op-
timized to approximate the true posterior densities by iterating
a set of closed-form coupled update equations. The parameters
of these coupled equations can be solved iteratively until the
change in the negative free energy (NFE) is less than a small
value, such as 10−10. The set of coupled equations for the
MiHMM model, which assumes standard conjugate posterior
densities, are detailed in the supplementary materials.1 These
equations require several VB moments, denoted by 〈•〉, and
the variational average likelihood, 〈log p(xni,t|Θm

k )〉q(Θm
k
), for

each observation model analyzed in this work, both of which
are given in the supplementary materials.

Let φM
mni = q(ζmni) denote the responsibility of the mth

HMM for the instance xni; and given the mth HMM, let φm
ni,t

denote the responsibility of the kth state for the time sample
xni,t, and let ξ(zni,t|zni,t−1) correspond to the conditional
posterior probability q(zni,t−1, zni,t|X) for each of the K ×K
transition possibilities for (zni,t−1, zni,t) for the time sample
xni,t. The quantities φm

ni,t and ξ(zni,t|zni,t−1) are estimated
using the forward-backward algorithm [38]. The responsibility
φM
mni is defined as follows:

φM
mni = q(ζni = m) =

̂φM
mni

φ̂M
1ni + φ̂M

2ni

(13)

̂φM
mni = exp

{
Tni∑
t=1

〈log p(xni,t|Θm)〉q(Θm)+〈log ηm〉q(ηm)

}
.

(14)

After estimating φM
mni, φ

m
ni,t, and ξ(zni,t|zni,t−1), the posterior

densities for the parameters of component k for the HMM m,
q(Θm

k ), can be estimated, which are detailed for the two ob-
servation models considered in this work in the supplementary
materials.

C. MiHMM With a Shared Observation Model

The MiHMM model developed in the previous section as-
sumes that targets and false alarms in GPR data are generated
from two separate HMMs with different parameters. Since
the background portions of both target and nontarget data are
similar, we can allow the background state to be shared across

1This paper has supplementary downloadable material available at http://
ieeexplore.ieee.org, provided by the authors. This includes a pdf document
detailing the parameter inference and the prediction of the proposed model.
The material is 318 kB in size.

Fig. 3. MiHMM2 graphical model. The latent variable ζni assigns one
of the HMMs to the instance xni. Given a Yn = 1 bag, the HMMs mix
with proportion η. Given an HMM, the latent variable zmni,t assigns one of

the mixture components, parameterized by {Θk}Kk=1, to the sample xni,t.
Excluding the first state, all other successive states in a sequence are determined
by the state transition probabilities Am. The first state is determined by the
initial state mixing proportion Πm. This difference between the models in
Figs. 2 and 3 is that there is a single shared observation model in Fig. 3.

the two HMMs by modeling the data with two separate HMMs
that share the same observation model but have unique initial
state mixing and state transition probabilities. Motivated by this
insight, the MiHMM model is modified by allowing the two
HMMs to share a single observation model. Henceforth, the
two types of MiHMMs will be referred to as MiHMM1 and
MiHMM2, denoting different and shared observation models,
respectively.

Assuming a shared observation model requires only few
minor modifications in the method described in Section II-A
and B. The parameters of the mth HMM are denoted by Hm =
{Θ,Πm,Am}, where the shared probability densities are pa-
rameterized in terms of Θ and hyper parameter h, replacing
the HMM specific parameter Θm and hyper parameter hm in
Section II-A and B. As a consequence of the shared component
densities, the two separate responsibilities, φm

ni,t,m ∈ {0, 1},
obtained from the forward-backward algorithm in two separate
HMMs are combined into a single responsibility, φni,t, as
follows:

φni,t

∑
m∈{0,1}

φM
mniφ

m
ni,t. (15)

The posterior density estimations are detailed for the two ob-
servation models in the supplementary materials. The graphical
model of MiHMM2 in Fig. 3 is similar to that of MiHMM1 in
Fig. 2 except that there is only one observation model in Fig. 3,
which is shared by both HMMs.

Having estimated the parameters of the posterior densities
of the MiHMM model, a new bag Xn, can be classified using
a likelihood ratio test calculated using the posterior predictive
densities of the model parameters, which is detailed in the
supplementary materials. Section III evaluates the efficacy of
the proposed MiHMM approaches with the standard EM-HMM
on various data sets.
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III. EXPERIMENTAL ANALYSIS ON MIHMM DATA SETS

The proposed MiHMM approaches are evaluated against
the standard EM-HMM and the NPBMIL approach on two
synthetic data sets and two landmine data sets. Motivated by the
two landmine data sets, the two synthetic data sets are generated
based on the two specific component densities, i.e., MN and
MVN. In addition to comparing the receiver operating charac-
teristics (ROC) performance of these algorithms on different
data sets using 10-fold cross-validation, the following sections
also analyze the parameters learned by these algorithms and
the H1 instances in a positive bag inferred by the proposed
approach. For training the standard EM-HMM model, all in-
stances in a positive bag were considered H1 instances and used
for training. This corresponds to a lack of information regarding
the actual target location in depth. Of course, if the true target
location is known, then that information can be incorporated
into the HMM training. Several approaches exist to attempt to
estimate the object depth; however, a comparison of these is
beyond the scope of this paper.

A. Synthetic Data sets

For each synthetic data set, there are 200 negative bags,
200 positive bags, 15 time samples per instance, 10 instances
per bag, and one H1 instance per positive bag.

1) Multinomial Synthetic Data: In the MN data set, time
samples in both H0 and H1 HMMs are generated from one
of the four multinomial components. The HMMs have differ-
ent transition probabilities, {A0,A1}, and initial state mixing
probabilities, {Π0,Π1}. The four multinomial components are
motivated by the four-state representation of a typical land-
mine signature in time-domain GPR data. Each multinomial
component is a [16 × 1] probability vector, pk, k∈{1, . . . , 4},
drawn from a uniform Dirichlet distribution. The transition prob-
abilities are defined as follows: For k∈{1, . . . , 4}, {A0

k•}=
{[.7, 0, 0, .3], [.3, .7, 0, 0], [0, .3, .7, 0], [0, 0, .3, .7]} and{A1

k•}=
{[.7, .3, 0, 0], [0, .7, .3, 0], [0, 0, .7, .3], [.3, 0, 0, .7]}. The initial
state mixing probabilities, {Π0,Π1}, are uniform. The choice
of the number of time samples per instance and the dimension
of the multinomial probability vector are motivated by the
discrete landmine data described in Section III-B1. Fig. 4(a)
shows that the MiHMMs outperform the standard EM-HMM
by accurately modeling the H1 HMM. Between the two
MiHMMs, MiHMM2 does slightly better than MiHMM1 be-
cause although the data was generated assuming a single
observation model, only MiHMM2 assumes a single shared
observation model. MiHMM1 is required to estimate additional
parameters with the same amount of data, resulting in a slight
performance loss. It is also not surprising to see NPBMIL per-
form poorly because although the data was generated using an
underlying Markov model, NPBMIL cannot adequately model
the sequential nature of the data.

2) Multivariate Normal Synthetic Data: The MVN syn-
thetic data set is motivated by the HOG landmine data described
in Section III-B2. Similar to Section III-A1, in the MVN syn-
thetic data set, time samples in both H0 and H1 HMMs are gen-
erated from a GMM composed of four components, represented

Fig. 4. ROC performance comparison of NPBMIL, standard EM-HMM,
MiHMM1 (different observation models), and MiHMM2 (shared observation
model) on (a) Multinomial and (b) Multivariate Normal synthetic data sets.

by the means and covariances, {μk,Σk}, k ∈ {1, . . . , 4}. The
means are located at [1,1], [−1, 1], [1,−1], and [−1,−1] and
all Gaussians have unit covariances. The transition probabil-
ities and the initial state mixing probabilities are similar to
Section III-A1. Similar to the results in Section III-A1, the ROC
performance in Fig. 4(b) shows that HMM-based approaches
outperform NPBMIL and MiHMMs outperform the standard
EM-HMM.

B. Landmine Data sets

This work implements the proposed MiHMM approaches for
GPR-based landmine detection using two landmine data sets
and evaluates their efficacy against the standard EM-HMM.

1) Discrete Features: The discrete features were obtained
by extracting gradient features from the time-domain GPR data
using the software provided by the authors of [11]. These
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Fig. 5. ROC performance comparison of NPBMIL, standard EM-HMM,
MiHMM1 (different observation models), and MiHMM2 (shared observation
model) on (a) landmine discrete data [11] (b) landmine HOG data.

features describe the gradient information in the diagonal and
antidiagonal edges. The HMM features extracted from multiple
depth bins of a [downtrack × depth] GPR data at an alarm
location can be considered a bag of instances. Each bag is
composed of 22 instances and each instance is composed of
15 samples, where each sample is represented by one of the 16
possible discrete observations. A collection of bags along with
the ground truth of buried threats in training data provide a data
set suitable for multiple-instance learning, mainly because the
depth locations of the buried targets cannot be easily obtained.

In this paper, the discrete HMM features are extracted from
a total of 864 alarms, consisting of 574 targets. The ROC
comparison in Fig. 5(a) demonstrates that MiHMMs outper-
form the standard EM-HMM. Since the discrete features were
specifically generated to model the GPR data sequentially,
it is not surprising that HMM-based approaches outperform
NPBMIL on discrete features.

2) HOG Features: The histogram of oriented (HOG) fea-
tures [36] are extracted from time-domain GPR data. Origi-
nally developed as a feature extraction technique for pedestrian
detection [36], HOG features have been extensively used as
a promising feature descriptor in many other computer vision
applications [39], and recently for GPR-based landmine detec-
tion [40], [41]. HOG features represent distribution of pixel-
wise gradients that are aggregated over a region of pixels,
known as cells, and smoothed over groups of cells, known as
blocks [36]. Intuitively, these features describe relative changes
in image regions. Similar to Section III-B1, the HOG features
extracted from multiple depth bins of a [downtrack × depth]
slice of GPR data can be considered a bag of instances. For the
HOG features, each bag is composed of 12 instances, and each
instance, corresponding to an HMM sequence, is composed of
20 observation samples, where each sample is represented by a
HOG-block [36], as shown in Fig. 6.

Similar to the discrete features in Section III-B1, the HOG
features are also extracted from a total of 864 alarms, consisting
of 574 targets. Once again, the ROC comparison in Fig. 5(b)
exhibits the improvement of the MiHMM approaches over
the standard EM-HMM, however for the HOG features, the
NPBMIL approach outperforms all HMM techniques. Since
the HOG features were generated to represent 2-D patches of
GPR data without incorporating any sequential information,
it is not unreasonable for NPBMIL to outperform the HMM-
based approaches on HOG features.

The MiHMM approaches also provide the mixing proportion
of H1 and H0 instances in a positive bag and can also infer the
H1 instances in a positive bag. Fig. 6(a) and (b) shows examples
of 2-D GPR data with buried target and false alarm, respectively
along with their corresponding HOG features per instance, and
the probability of each instance to be a H1 instance. In Fig. 6(a),
the HOG features in depth bins 5–8 represent typical rising and
falling edges of a buried landmine, and clearly, these depth bins
have very high probability of being a H1 instance. In contrast,
all depth bins in a false alarm example in Fig. 6(b) have very
low probability of being a H1 instance.

C. Discussion

For the results presented in Section III-A and B, the number
of mixture components was optimized for all approaches. While
the choice of the number of components affects the perfor-
mance of all approaches, the performance is fairly robust for
a wide range of values, showing that a coarse optimization is
sufficient in most cases. In terms of computational complex-
ity, the MiHMMs take approximately twice as long to train
compared with the standard EM-HMM. While the standard
EM-HMM divides the training data into two different sets to
train two HMMs separately, the MiHMMs train a hierarchical
mixture of two HMMs simultaneously so that the MiHMMs
require more memory during training than the standard EM-
HMM. Among the two MiHMMs, MiHMM2 is faster than
MiHMM1 because MiHMM2 has fewer parameters to be es-
timated. The experiments with synthetic data sets exhibit that
the MiHMMs are capable of learning a more accurate model
for H1 instances, and as a result, the MiHMMs are more robust
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Fig. 6. Examples of 2-D GPR data with (a) buried target and (b) false
alarm along with their corresponding HOG descriptors per instance and the
probability of each instance to be a H1 instance. The output Pr(H1|instance)
illustrate that the proposed model is capable of identifying the positive instances
in the bag, since the Pr(H1|instance) is large at the same depth regions where
the target is present.

when there are fewer H1 instances in a positive bag. The
standard EM-HMM approach is not able to learn an accurate
H1 model and instead acts mostly as an anomaly detector.
However, in data sets with a large number of H1 instances per
positive bag, the standard EM-HMM may perform comparably
to the MiHMMs. The MiHMMs can also infer the probability
of a H1 instance in a positive bag. As mentioned in [42],
a MIL approach is most beneficial when it is necessary to
learn the H1 instances in addition to classifying the positive
bags from negative bags. For example, in the drug activity
problem [43], it may be beneficial to draw examples of positive
molecules and for subsurface threat detection, the depth infor-

mation of the target can provide valuable insight to the threat
removal system. In addition, the MiHMM approaches are easily
generalizable to different data sets by using an appropriate
observation model.

1) MiHMM1 Versus MiHMM2: Between the two
MiHMMs, the choice of the model should be motivated
by the data. MiHMM2 is more suitable in the landmine
detection data sets implemented in this work because we
expect the background portions of the data in both H1 and
H0 instances to be similar. The MiHMM2 model enables
these background states to be shared across the H1 and H0
data sets, which reduces the total number of parameters, and
enables more robust parameter estimation. Since there are
fewer parameters to estimate in the MiHMM2 model, we
expect it to outperform the MiHMM1 model when the amount
of training data is limited. As expected, as shown in Fig. 4(a)
and (b), in the synthetic data sets, with very few data points,
the performance improvement of MiHMM2 over MiHMM1 is
more substantial than in the actual landmine data. However,
for applications where it is unreasonable to learn a set of
shared states between the two hypotheses, MiHMM1 should
be preferred.

IV. CONCLUSION AND FUTURE WORK

This work has outlined a generative model for binary clas-
sification of multiple-instance time-series data. The proposed
MiHMM approaches extend a standard HMM approach to
an HMM in a MIL framework that inherently incorporates
the ambiguity in the individual sample labels. The proposed
MiHMM approaches are evaluated against a standard EM-
HMM approach on synthetic and landmine detection data sets.
Results indicate that the proposed approach performs better
than the standard EM-HMM technique by modeling the label
uncertainty of the MIL nature of the data. The proposed pa-
rameter learning method for the MiHMM is based on varia-
tional Bayesian methods, which are fast and computationally
efficient. For future work, it may be beneficial to explore the
possibility of performing Markov Chain Monte Carlo (MCMC)
inference to obtain better parameter estimates at the expense
of additional computation and online VB to further limit the
memory requirements of the algorithm. Since the target and
the nontarget HMMs in the standard EM-HMM approach were
trained independently, whereas a hierarchical mixture of the
two HMMs was trained simultaneously in the proposed ap-
proach, it will be interesting to compare the proposed approach
with a discriminately trained HMM. Furthermore, it will also
be interesting to compare the performance of the proposed
approach on hyperspectral data of the same target site.
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