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A Bayesian Method for Upsizing Single Disdrometer
Drop Size Counts for Rain Physics Studies

and Areal Applications
A. R. Jameson

Abstract—A time or spatial series of drop counts is but one
realization of a multiple stochastic process. In this paper, a method
is presented that extracts more of the information contained in
the time series of 1-min Joss–Waldvogel disdrometer counts in
rain than a simple analysis of the magnitudes of the counts would
provide. This is done by greatly increasing the size of a data set
using a Bayesian analysis of drop count measurements in 17 size
bins. Using the empirical copula statistical technique of proba-
bility density function transformations, a 1391-min time series of
drop counts was expanded to the equivalent of 40 000 min. This
dramatic increase in sample size permits a deeper characterization
of the rain. Using this single disdrometer, it also allows one to
translate these counts into a 200 × 200 grid filled at each point
with drop size distributions of mean drop concentrations consis-
tent with the observed statistical properties of the rain. Such a
field can be used for remote sensing studies of the effect of partial
beam filling and for algorithm development. Moreover, since there
is nothing unique to this set of drop counts, this approach can be
applied to any other set of count data, including snow and clouds.

Index Terms—Algorithms, atmospheric measurements, esti-
mation, meteorology, multiplication, radar applications, rain,
random media, remote sensing, statistics.

I. INTRODUCTION

THE purpose of this paper is to more fully exploit the
information contained in a time series of observations

from a single disdrometer by expanding the size of the observed
set of data without any assumptions of a parametric form of
the size distributions or of their spatial/temporal structure.
There are two reasons for wanting to do this. One is to better
understand the physics of the precipitation (illustrated toward
the end of this paper), and the other is to enable the application
of point measurements using a disdrometer to the interpretation
of observations by a remote sensing device over an area. Both
aspects are important to geoscience remote sensing.

First, however, it must be realized that, for every drop size,
each measurement in the time series represents one correlated
draw from a distribution of drop counts associated with a mean
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value drawn from a distribution of mean values. To get a handle
on the distribution of these mean values, a Bayesian analysis of
the counts at each drop-bin size is used to define the probability
density function (pdf) of the mean values for each size bin. In
addition we, of course, observe the autocorrelation function for
each size bin, well described by the exponential function for
these observations. It is shown next that with these two sets of
information, we can expand the size of the data set in a manner
consistent with the observations of the counts and the observed
autocorrelation functions.

Such an expansion of the size of a data set serves two
purposes. First, it reduces or eliminates the spurious effects of
a small sample size in the characterization of the rain [11].
This will be illustrated next. Second, the data set can be used
to simulate a giant grid of instantaneous measurements by
instruments at each grid point.

There are other approaches for filling a grid with point
estimates of drop size distributions (DSDs) and their associ-
ated integral properties. However, these are not equivalent to
increasing the size of a data set of counts, because they either
assume specific parametric forms for the DSDs [18] or they
go directly to the simulations of the bulk parameters [4], [14].
They are also not instantaneous, so that these approaches
have the unfortunate consequence of filtering the data either
in time and/or space so that such approaches obscure the
direct interpretation in terms of rain physics. We wish to avoid
that here.

However, that is not meant to imply that such approaches do
not serve a purpose, such as assigning plausible DSDs to a field
of radar observations, for example. While such assignments
may not be correct because of underlying assumptions, it is
something that cannot be done using the approach defined
in this paper. However, the objective of this paper is to use
measurements from a single instrument without any additional
information from other observations such as in [18]. That is,
one cannot compare the results from the method presented here
to a field of observations, because to do so, one would need a
technique to invert an observed data field to recover the base
field of random numbers appropriate to an observed data field.
There is no known method for doing that. Hence, one must be
satisfied that this technique preserves the important statistical
information (pdfs ands correlations) for other purposes and not
for the purpose of comparing to a field of observations. If one
wishes to compare directly to a field of observations, one needs
to use one of the approaches aforementioned instead.
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In this paper, a method is presented for upscaling a time
series of 1-min disdrometer observations, which were collected
during a convective/stratiform rain event. This differs from
previous work [6], in which a spatial series of ice cloud ob-
servations along a flight path were directly upscaled to large-
scale domains. In this paper, a time series must be converted
to have a spatial interpretation. Such a time series, however,
is really just one realization of a multiple statistical process.
That is, the observed counts may be considered to be random
draws from random (but correlated) mean values. There is, then,
a great deal of information contained within the time series
aside from just the magnitude of the counts themselves. For
example, correlations in counts give scale information out to
1/2 the observation interval, whereas Bayesian analyses provide
information about the mean values of counts contributing to
the observations. As follows, a method is developed to access
some of this additional information. This approach not only
provides detailed size distributions at each grid point, useful for
probing remote sensing physics, but these distributions can be
also integrated to yield “point” estimates of upscaled quantities,
such as the rainfall rate (R), radar reflectivity factor (Z), the
total number of particles (Ctot), and the mean drop size (D)
(equivalent to the slope of an exponential fit to the distribution).

The approach used here is presented in the next section,
followed by a brief description of the set of disdrometer ob-
servations used as the example. Some results are presented in
the final section.

II. THEORY AND METHOD APPLIED TO A SET OF DATA

Here, we first focus strictly on the application of Bayesian
statistics to counting. As argued in detail in [5], for each
observed count of particles of a specified size, the application
of the Bayesian approach under the assumption of Poisson
counting statistics leads to the distribution of mean values
of counts per unit observation interval, C, for particles of a
specified size given by

P (C|n,D) ∝ Cn

n!
e−C (1)

where n is the observed number of counts, C is the mean
value of the distribution of counts per unit observational interval
and the vertical bar denotes conditioning. (As discussed in
[5, p. 2015] and [19, pp. 15–20], the Poissonian assumption
is not critical here and, for example, as calculations using a
Gaussian distribution showed.) Every time there is a new count,
there is a new distribution defined by (1). As shown in [5], for a
particular particle size, the secret of the success of the Bayesian
approach, then comes from overlaying each of these P (C|n)
for each observation of n. That is

P (C|D) =

∑T
i=1

Cni

ni!
P (ni|D)e−C

∑Cmax

C=0

∑T
i=1

Cni

ni!
P (ni|D)e−C

(2)

where T is the total number of observations, P (ni|D) is the
probability of observing n particles of size D at the ith obser-
vation, and the denominator is a normalizer of the distribution.
The most frequent C then naturally emerge as the most likely
values surrounded by the entire pdf of C. This significantly

differs from histograms, which only show the frequency dis-
tribution of observed counts N often at low resolution (coarse
bins) in order to achieve enough samples with an outcome
that is heavily dependent upon the one realization sampled
and the total number of samples. P (C), on the other hand, is
the observed pdf of the mean values, which can emerge quite
rapidly from the observations. This is particularly useful in the
discussion of DSDs, which describe the mean concentrations as
a function of drop diameter.

However, the temporal/spatial description of rain involves
more than just P (C). In particular, the occurrences of raindrops
are correlated among drops of the same size, as well among
drops of different sizes. The correlation among drops of the
same size is described by the appropriate correlation function
as observed and as described further next. In this paper, the
cross correlation among drops of different sizes is not directly
considered but instead arises naturally by applying the autocor-
relation function for each different drop size to the same field
of random numbers as described and demonstrated next. This
correlation among counts can be interpreted as a description of
the meteorological “structure,” which, in turn, is a reflection of
whatever physical processes produced it. A knowledge of the
meteorology is not required to use the correlation information
and for this technique to work. On the contrary, as shown below,
it may, at times, shed light on some of the meteorology.

Furthermore, P (C) only provides a measure of means when
the counts exist. However, in general, there may be extended
periods during an interval when drops of a particular size are
not observed. This is particularly true for the larger drops.
Hence, one must also know the fractional time, i.e., F , for
which the counts are zero, and this varies for each size bin.
This is calculated as the fraction of the observational interval,
in which no counts are observed. For example, if there are ten
1-min observations containing no drops of a given size out of
100 min of observations, then F is 10%. Thus, how can one
combine all of these considerations in a rational manner?

Perhaps, it is easiest first to present a set of measurements and
then to apply the approach. Here, we consider a 23-h rain event
observed using a Joss–Waldvogel impact disdrometer having
1-min temporal resolution. These data were supplied by Prof.
Carl Ulbrich (retired) at Clemson University at Spartanburg,
SC during a summer rain event most likely in 2005. To get
a meteorological feel of this event, the rainfall rates, i.e., R,
were calculated for each of the 1-min samples as illustrated in
Fig. 1. Obviously, R, varied considerably during the event with
an overall average value of just under 2 mm h−1 and a peak
of just over 30 mm h−1. However, since the purpose of this
paper is to demonstrate a technique, we assume that this event
is approximately stationary.

For each of the 17 drop size bins (centered at 0.35, 0.45,
0.55, 0.65, 0.77, 0.92, 1.11, 1.33, 1.50, 1.66, 1.91, 2.26, 2.58,
2.87, 3.20, 3.54, and 3.92 mm diameters), the 1/e correlations
lengths (where e is the Euler number) and the fractional empty
time were calculated. These are illustrated in Fig. 2(a). As
might be expected, the sparseness of drops generally increases
with increasing drop size. The correlation lengths, however,
vary considerably with the longest associated with the approxi-
mately 1 mm sized drops.
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Fig. 1. Temporal history of 1-min rainfall rate calculated using the observed
Joss–Waldvogel disdrometer observations used in this paper.

The distributions P (C) of the mean values C are then
computed for each drop size using (2) and using the empirical
copula transformation technique (see [1], [2], [16] and as briefly
described in [12, App. B] with regard to radar signals.). Basi-
cally, in the copula technique, one forms the accumulated pdf
of the random variable that one wishes to correlate. One then
takes a string of unit variance, zero-mean correlated variables
having the desired correlation function (often Gaussian or ex-
ponential). The accumulated pdf of the desired variable is then
used to invert these correlated variables to become a correlated
string of the desired variable. However, before doing this, it is
first necessary to generate a correlated 2-D field of uniformly
distributed random real numbers over [0,1] having the charac-
teristic correlation appropriate to each drop size. In this paper,
we arbitrarily assume that each minute corresponds to 250-m
spatial translation because of the wind. (This assumption is not
vital. Other assumptions are, of course, possible and if wind
measurements were available, such translations would become
more meaningful. However, this work is an exercise demon-
strating a method, not a purposeful analysis of meteorological
data.) We then envision a 50 km × 50-km square grid having
40 000 points. An exponential correlation function having the
correct correlation length as given in Fig. 2(a) is then imposed
on a grid of zero mean, unit variance uniformly distributed
random numbers (the base field of random numbers) Because
the correlation function (transformed to be a spatial correlation
function under the assumption of a steady wind speed afore-
mentioned) contains all length scales from 250 m to more than
348 km, the natural variability over all those scales is automat-
ically included in the simulation, as long as the data remain
statistically homogeneous. The correlation is then reproduced
at each drop size separately using the so-called root matrix
method (e.g., [13] as discussed in [8, pp. 3924 and 3925] for a
1-D field). For a 2-D field, one uses a given correlation function
to form the covariance matrix, Kρ, which is a symmetric
matrix of the same dimension as the input data field, such that

Fig. 2. (a) Observed 1/e correlation lengths and fraction of null counts as a
function of drop size, (b) example of the cross-correlation function of drop
counts as observed and that from the 2-D simulation as discussed in the text, and
(c) a comparison of the input and output frequencies of counts at one drop size.
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Kρ(i, j) = ρ(0) and Kρ(i, j) = Kρ(j, i) for the off-diagonal
elements. One then computes S, the square root matrix of this
covariance matrix (e.g., [3]). For a zero mean, unit variance
input data matrix, D, the matrix SDST yields the correlated
field where ST is the transpose matrix of S (also see [8,
pp. 3924–3925]). The resulting field of numbers, however,
must then be renormalized because of distortions to the pdf
introduced by this process. This is accomplished by taking the
empirical pdf of these values and then applying the copula
method, so that we finally end up with a list or “vector,” Z,
of [0,1] uniformly distributed of properly correlated random
numbers for each drop size. This vector is then used in the
copula transformation described next.

Remember that the Bayesian P (C) previously derived only
applies to nonzero counts. Hence, this P (C) is first adjusted so
that the number of zero counts agrees with the empty fraction
in Fig. 2(a) and the P (C) remains normalized. That is, the
frequency of null counts is added to P (C) and the frequencies
of all other counts are adjusted so that P (C) integrates to unity.
Hence, for example, if the null counts happened to be 50%
of the observations, the remaining P (C) would be halved. Of
course, null counts are correlated just as any other count, which
is why there are empty regions in the figures that follow. It is
then used in the copula method to transform Z into a vector of
integer C values satisfying P (C). Finally, this vector is then
unstacked to form the 200 × 200 grid of values. This is done
for each size bin to yield 50 km × 50 km fields. This provides
“true” (in the sense of using mean values) DSDs having the
correct correlation (in the sense that they reproduce the expo-
nential fit to the observed correlation function as previously
discussed), as well as the correct pdf properties, including the
empty fractions at each drop size at each of the 40 000 grid
points. These can then be also combined to compute integral
variables such as rainfall rate and radar reflectivity factor. These
results are discussed in the next section.

It is worth mentioning, however, that while seemingly adding
unnecessary complexity by going from a correlated 2-D field to
a vector and then reversing the process after the copula cal-
culations, such a procedure avoids the introduction of periodic
artificial correlations that occur if one just takes a 40 000 string
of correlated data and tries to convert them directly into a 2-D
field. It is also worth mentioning that this approach preserves
long-term cross correlations among drop counts at different
sizes as reported in [7] for Joss–Walvogel disdrometers and
[9] for video disdrometers. An example is given in Fig. 2(b).
For completeness, Fig. 3(c) illustrates an example of input and
output count frequencies at D = 0.92 mm.

Finally, it should be recognized that every base field is a
random field of numbers, each will generate its own unique
output pattern. Hence, since there are an infinite number of
such base fields, there are an infinite number of possible 2-D
patterns. However, each one will satisfy the statistical properties
found in the original set of observations.

III. RESULTS

The results and plots here are all derived from the one
simulation generated using the technique and 1391 min of

Fig. 3. Contours of the radar reflectivity factors expressed as dBZ (a) over the
entire grid calculated using the technique described in the text and based upon
the disdrometer observations (the intrinsic field) and (b) as that field would
appear to the TRMM radar (radar filtered field) after sampling at each grid
point, with an 18-dBZ threshold, including signal statistics fluctuations and
partial beam filling.

disdrometer observations just previously described. One moti-
vation (but not the only one) for doing all of this is to expand
the size of the disdrometer data set in a manner consistent with
the disdrometer measurements. We apply the technique just
previously described to a base field of random numbers for all
the drop sizes. Thus, by combining the fields for all the different
drop sizes, at each grid point, we end up with a DSD that can
be used to calculate, for example, the radar reflectivity factor,
Z. For example, assuming Rayleigh scattering by the drops,
Fig. 3(a) is a contour plot of Z =

∑
D6, where the summation

is over all the drops, calculated at each grid point and Z is
expressed in the usual units of dBZ = 10 log10(Z).
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As pointed out by a few reviewers, we note that the grid res-
olution and contour program sometimes produce what appear
to be stretched features, sometimes vertically and sometimes
horizontally. This happens because of the necessity for using
a finite matrix having finite resolution. First, recall that the
purpose here is to take time series observations at a point with
no other data and then to try to turn them into a field of spatial
values for use in validation efforts, for example. Time is not
equal to space, so that one must make an assumption about
how to transform a times series into a spatial field. The first
step is to perform a simple transformation that a characteristic
distance is simply given by a characteristic velocity times
the characteristic time, in this case, 1 min. In this paper, we
arbitrarily assume a characteristic velocity of around 4.17 ms−1

so that the characteristic spatial dimension is 250 m for the
1-min sample time. However, this then simply translates time
into a linear distance, so that we still only have information
along one dimension. In order to get two dimensions, we need
yet one more assumption. That assumption is that the cor-
relation function is identical in each of the two orthogonal
directions. The two orthogonal directions define a matrix. In
Nature, this matrix can essentially be infinite with infinitesimal
resolution. We do not have that luxury and, instead, must rely
on finite matrices with coarser resolution. much as numerical
models solve the Navier–Stokes equations use 1 km or coarser
grid spacing, for example. Consequently, whereas Nature has
access to full 2-D symmetric correlation through essentially
infinite resolution, we must be satisfied with 2-D correlation
along the orthogonal axis with coarser resolution. This means
that, at times, this finite resolution 2-D correlation scheme
can produce elongated features in either of the two directions.
However, just as the solutions for the Navier–Stokes equations
contain the physical reality of those equations even on a coarser
grid, thus too our 2-D correlations, and simulations retain the
physics useful for 2-D applications on a coarser grid. After all,
as we shall see, the 5-km radar beam of TRMM sees some 314
of these 250-m grid points, so that axis symmetry in a 250-m
radius becomes irrelevant. All that matters, really, is that we
have correlated mean values assigned to each grid point in such
a way that is consistent with the observations by the single
instrument. Indeed, this is the only known method for taking
one point observations to produce 2-D fields, which reproduce
the drop correlations, drop cross correlation and pdf structures
seen in the original observations over all the drop sizes. The
method here produces 2-D fields of detailed drop size by drop
size microphysical values from single-point measurements
without assumptions about the form of the DSD or any ad-
ditional information for use in studies by the precipitation
physics community as illustrated later (in Fig. 12), for example.

Returning to Fig. 3(a), clearly, a large portion of the larger
values are found in the upper right portion of the field, although
there are additional spots scattered at other locations, as well
with 24% of the values greater than 30 dBZ. In addition,
Fig. 3(b) illustrates how this intrinsic disdrometer derived field
of Z in Fig. 3(a) would be transformed at each grid point
by a radar such as the NASA Tropical Rainfall Measurement
Mission (TRMM) radar after beam filtering and subject to a
nominal minimum detection threshold of 18 dBZ, signal statis-

Fig. 4. Histogram of the radar mean reflectivity factors, which a radar having
a 1◦ beam width would have measured at locations centered 1 km apart.

tics fluctuations (64 independent samples) and partial beam
filling. (The signal fluctuations were simulated by drawing a
sample from the Erlang distribution of mean values peaked
at the original matrix mean value and corresponding to the
nominal TRMM 64 independent samples as is standard in
radar meteorology.) As one would expect, there are differences
between what was there and what the TRMM radar might have
seen. This is discussed further next.

With these results, one can also ask what a ground-based
radar with a 1◦ beam at 60 km (i.e., nominal 1 km × 1 km)
having a minimum threshold of useable Z of −20 dBZ would
measure at locations each separated from the other by 1 km
(i.e., independent samples having no overlap). This is illustrated
in Fig. 4 where in this case, there is a distribution of possible
values, the most frequent being no signal! There is, therefore a
lot of smoothing of the high-resolution field in Fig. 3(a) and a
reduction of the largest values.

The rainfall rate R can be also computed using the DSD
at each grid point, i.e., R = (πρw/6)

∑Dmax

Dmin
Vt(D)D3 where

Dmin and Dmax are the minimum and maximum drop diameter
at each grid point, respectively, ρw is the density of water and
Vt is the terminal fallspeed of the drop of diameter D. These
are plotted in Fig. 5. As with Z, the larger values of R occur
in the upper right portion of the figure. For comparison, the
histograms of the observed and 2-D simulated R are plotted
in Fig. 6. The two histograms are quite similar although the
simulations have about 4% more frequent lighter rains than
the observations most likely because of randomness in the
simulation process.

With these two variables and this expanded data set, one can
also compute the so-called Z–R, relation as given in Fig. 7.
In addition, the Z–R relation corresponding to the individual
disdrometer observations is plotted. The fits to the 2-D sim-
ulated mean values and the disdrometer observations are quite
consistent with historical values and are quite similar. However,
they do differ. Moreover, the Z–R relation for the 2-D values is
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Fig. 5. Contour plot of the rainfall rate in mmh−1. Note some of the
similarities to Fig. 8.

Fig. 6. Histograms of the observed versus the 2-D simulation rainfall rates.

statistically “tighter” in that the standard deviation of the error
(σε) is only about 1/3 that for the relation computed using only
the individual observations. Hence, the fuller expression of the
data set reduces statistical uncertainty in part, because we are
using values computed from the DSDs of mean concentrations
rather than the usual random draws from a set of means as
occurs in short-term observations often used when formulating
such relations and, in part, from the much larger sample size.
Furthermore, unlike for the individual samples, in the 2-D
values several smaller Z–R relations are apparent as shorter
line segments cross at an angle with respect to the mean fit. The
straight line segments are reminiscent of straight line relations
associated with physically (not simply statistically) meaningful
DSD at those locations [10].

Fig. 7. (Black) Z–R relations for the 2-D simulation, (red) the 1391 obser-
vations, and (green) what the TRMM radar would have observed simulation.
ρ is the magnitude of the correlation, whereas σε is the standard deviation of
the error. Note that there are differences as those discussed in the text.

In addition, the expanded set of disdrometer values can be
used to explore what the TRMM radar might have seen, for
example, if it had observed this simulation field. That is, we
convolve the beam with the 2-D grid values of both R and Z
(with signal fluctuations). To improve visibility while retaining
the structure, only every 500th point (80 representative values)
are plotted in Fig. 7. This illustrates how the TRMM Z–R
relation (derived using all 18 000 values greater than 18 dBZ
as required by the TRMM radar) differs from the other two
because of the threshold, beam effects, signal statistics fluctua-
tions, and partial beam filling.

Moreover, this TRMM Z–R relation differs from either of
those used in the official TRMM algorithms for convective
rain (Z = 146R1.54) and for stratiform rain (Z = 292R1.53),
regardless of how one classifies this simulated rain. Taking
all 121 statistically independent samples (that is, all samples
separated by one beam width) leads to differences as illustrated
in Fig. 8. This figure shows how that this technique may be
useful for evaluating the estimates of the various TRMM algo-
rithms by providing a method for a more accurate assessment
of the variability associated with TRMM radar estimates. The
TRMM simulated “observations” calculated from the expanded
disdrometer observations fall mostly (but not entirely) between
the results for the two TRMM algorithms. However, the point
to be made here is simply to illustrate how the approach
for extracting much more information from the disdrometer
measurements might be useful for algorithm development of
future space-borne instruments and not to directly analyze Z–R
relations. That is not the purpose of this paper.

Another important parameter related to the DSD is the total
concentration of particles (Ctot) as plotted in Fig. 9. Once
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Fig. 8. “Observed” TRMM Z and R (i.e., the statistically independent beam-
weighted averages) are compared with results using the TRMM convective and
stratiform Z–R relations as discussed further in the text.

Fig. 9. Contour plot of the total crop concentration in m−3. Note the strong
similarity to Fig. 5.

again, the highest concentrations of particles are in the upper
right part of the grid, and the overall structure is quite similar to
that of the rainfall rate. We discuss this more momentarily.

Another characteristic of the DSD is the mean drop size,
which is the diameter weighted sum over all the drops divided
by the total drop concentration at each grid point. This is plotted
in Fig. 10. Clearly, the DSD vary. While there are pockets of
larger drops embedded within the upper right region associated
with the greater values of Z and R, interestingly the fringes of
the region contain some of the largest mean drop sizes arising
from narrow size distributions containing a few large drops.
This is reminiscent of what can happen on the boundaries
of some storms because of size sorting. It is also interesting,

Fig. 10. Contour plot of the mean drop size in cm. Its variability indicates the
variability in the simulated DSD.

Fig. 11. Mean pdfs each over different ranges of rainfall rate intensities. On
average, larger drops are found more frequently in heavier rain, consistent with
many past observations.

however, that the overall features in the figure show greater
similarity with Z than with R.

Nevertheless, in a mean sense, the DSD appear to be different
in lighter as opposed to heavier rain as illustrated in Fig. 11. The
two DSDs are normalized with respect to the total concentration
so that this figure is representative of the pdf of D. Obviously,
the heavier rains are associated with greater frequency of larger
drops consistent with relations derived in many past studies,
such as those of [15] and [17], for example.

However, while the contour plots of Z and mean drop size
show similarities, they are different from those of R and Ctot.
Another way of saying this is that apparently the driver in
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Fig. 12. Scatter diagrams between the total drop concentration (Ctot) and
the mean drop size to the rainfall rate, R, for (a) the 2-D means and (b) for
the 1391 individual observations. This illustrates the difference between using
mean values as opposed to limited single observations for probing relationships
among variables as discussed in the text.

the rainfall rates is not so much the drop size (DSD) as the
total number of drops. This is apparent in Fig. 12(a), in which
the high correlation between Ctot and R is clear, whereas
the correlation between mean drop size D and R is much,
much weaker. This is consistent with the findings in Jameson
and [10], in which the number of drops is the most dominant
variable in R.

These results appear to differ from those one would find just
using the individual observations as illustrated in Fig. 12(b)

where it is D rather than Ctot that appears to be most strongly
correlated to R. This serves to illustrate a fundamental advan-
tage of this 2-D approach, namely, that of using mean values
rather than using individual observations. The reason is that
an individual measurement is the result of one more random
draw from the random (but correlated) mean values so that they
contain one more layer of randomness than in Fig. 12(a). This
additional randomness can greatly reduce or even destroy any
evidence of correlations among parameters that might exist.
However, there is another perverse problem with individual
observations, as well. When the observations contain fewer
than 10 000–100 000 drops, artificial correlations appear in
some of the relations among parameters as discussed in [11]
and as further explored in [20]. In particular, Fig. 3 in [11]
shows just the sort of artificial “relationship” between D and
R illustrated in Fig. 12(b). It may well be conjectured that the
historic emphasis on the importance of drop size rather than
drop concentration to R is, in part, a consequence of the limited
sample sizes by most historic instruments used to study rain.
On the other hand, Fig. 12(a) suggests that one could imagine
taking an estimate of the mean drop size (either a priori or, for
example, perhaps by using polarization radar), converting Z to
Ctot and then using Ctot to estimate R.

IV. SUMMARY

Atmospheric phenomena, including precipitation, occur over
an extremely broad range of spatial and temporal scales all of
which contribute to varying degrees to the meteorology and
climate of the Earth. It would not be surprising, then, to find that
the properties of rain over large scales are intimately related at
some level to their structure on smaller scales.

It is also true that most of what is known about rain comes
from instrumentation best suited to measurements on smaller
scales. Using the technique described here, the size of a data
set can be expanded to better characterize the rain and to
extend the applicability of a set of point measurements to
cover extended areas in a manner consistent with the observed
statistical properties of the rain.

A time or spatial series of counts is but one realization of a
multiple stochastic process. The method presented here extracts
more of the information contained in the time series of 1-
min Joss–Waldvogel disdrometer counts in rain than a simple
analysis of the magnitudes of the counts would provide. This
is done by greatly increasing the size of the data set using a
Bayesian analysis of drop count measurements in 17 size bins
and the copula statistical technique of pdf transformations, a
1391-min time series of drop counts was expanded to the equiv-
alent of 40 000 min. This is particularly important for studying
the physics of rain since it provides a much fuller expression
of all of the information contained within the correlations and
P (C) than is given by just the one realization actually observed.
Specifically, consistent with past research [10] it was shown
using the 40 000 values that the rainfall rate is much more
strongly correlated to the total number of drops than to the mean
drop size in diametric contrast to what one would conclude just
using the set of 1391 observations.
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Moreover, this increase in sample size also permits one to
translate these counts into a 200 × 200 grid filled at each
point with DSDs of mean drop concentrations consistent with
the observed statistical properties of the rain, thus permitting
a translation of a point measurement to an area. Under the
assumption of constant wind velocity, each 1-min value was
interpreted as being representative of a measurement over
250 m. (Other assumptions are possible, of course, and had
wind observations been available, a more relevant spatial in-
terpretation of these temporal observations would have been
possible. However, this assumption is adequate for the purpose
of this paper, which is to demonstrate a methodology.)

A square 2-D grid of 200 × 200 250 m “points” was filled
with uniformly distributed random numbers having zero mean
and unit variance. For each drop size, this field was correlated
using the different observed correlation distance for each drop
size and using the root matrix correlation method. As explained
in the text, these fields were then adjusted and the empirical
copula method was used to generate 2-D fields of mean drop
concentrations at each drop size over the 40 000 grid points.
Combining these fields overall drop sizes produced the DSD of
mean concentrations at each grid point having the correct corre-
lations and distributions of mean values of the drops as actually
observed. These DSDs can then be integrated appropriately to
yield the radar reflectivity factors, rainfall rates, total particle
concentrations, and mean drop sizes over the entire grid. The
results appear realistic, and the DSDs are consistent with the
observed statistical properties. In that sense, they automatically
include the “meteorology” vis-á-vis the correlation function
and P (C).
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