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Abstract—One challenge to implementing spectral change de-
tection algorithms using multitemporal Landsat data is that key
dates and periods are often missing from the record due to
weather disturbances and lapses in continuous coverage. This
paper presents a method that utilizes residuals from harmonic
regression over years of Landsat data, in conjunction with sta-
tistical quality control charts, to signal subtle disturbances in
vegetative cover. These charts are able to detect changes from
both deforestation and subtler forest degradation and thinning.
First, harmonic regression residuals are computed after fitting
models to interannual training data. These residual time series
are then subjected to Shewhart X-bar control charts and expo-
nentially weighted moving average charts. The Shewhart X-bar
charts are also utilized in the algorithm to generate a data-driven
cloud filter, effectively removing clouds and cloud shadows on a
location-specific basis. Disturbed pixels are indicated when the
charts signal a deviation from data-driven control limits. The
methods are applied to a collection of loblolly pine (Pinus taeda)
stands in Alabama, USA. The results are compared with stands for
which known thinning has occurred at known times. The method
yielded an overall accuracy of 85%, with the particular result that
it provided afforestation/deforestation maps on a per-image basis,
producing new maps with each successive incorporated image.
These maps matched very well with observed changes in aerial
photography over the test period. Accordingly, the method is
highly recommended for on-the-fly change detection, for changes
in both land use and land management within a given land use.

Index Terms—Degradation, statistical process control, thinning,
trajectory.
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I. INTRODUCTION

A. Background

Detection of disturbances and changes in forest cover is a
major application of remote sensing of the earth. The sim-
plest method of detecting changes from one time to another
is to compare two images from the same area and measure
the changes, often signaling changes outside some threshold.
Depending on the features in the scene and the timing of the
images, this method may be used to identify major changes
such as clearcuts, but it is difficult to identify minor, yet still
important, changes such as forest degradation or thinning [1]–
[4]. While small changes may appear negligible on a pixel basis,
on a cumulative basis, they can be the most important feature
of change across a scene. By and large, such subtle changes
have gone unreported [4], while results of fires and wholesale
logging are reported. This accounts for some of the uncertainty
in forest mass estimates, for example [1]. The difficulty in
detecting subtle changes is mostly due to the spatial resolution
of the sensor typically being coarser than the resolution of such
minor changes. Subtle changes in forest cover can also affect
the spectral characteristics of the area in question, although
these changes may be very small and difficult to detect on an
image-to-image basis.

In addition to standard bitemporal change detection meth-
ods, there are a variety of other methods that make use of
multiple Landsat images, often over many years’ worth of
data, to improve accuracy, resolution, or to provide an ongoing
record. These methods are best characterized as “massively
multitemporal” in their nature, and they rely in large part
on the free availability of Landsat data as of October 2008.
Trajectory-based image analysis would be one subset of this
class of methods. One corporate example of this paradigm is
the persistent change detection used by MDA Federal, Inc. [5].
In this method, changes are only registered if a certain number
of consecutive images before the candidate change are signifi-
cantly different from a consecutive number after the change.

Some more examples of massively multitemporal change
detection methods utilizing large Landsat time series applied
to forestry follow. The vegetation change tracker [6], [7] uses
the concept of normalized values for pixels based on the mean
and standard deviation of known forest pixels from the same
scene, using multiple images to improve the forest/nonforest
classification. This concept has been used to detect and track
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changes in forest cover over several regions in the U.S. [6],
such as Mississippi [8]. In another vein, LandTrendr [9], [10] is
an automated trajectory-based image analysis algorithm. This
algorithm allows users to automatically segment and identify
different trends in land cover change for pixels over time. While
not specifically designed to signal disturbances as they occur,
the vertices in the segments allow for an easy classification
of trends in time series, representing shifts from one stage of
growth to another. The CLASlite software [2], [3] applies its
algorithm to a variety of satellite sources in a user-friendly
format to produce forest change maps in tropical regions. This
free software is distributed by the Carnegie Institution for Sci-
ence to governments around the South American continent for
monitoring of tropical deforestation and degradation, including
selective logging.

The interest in developing massively multitemporal change
detection methods continues to increase. As a prime example,
during the time of drafting this paper, another method was
published by Zhu et al. [11]. This publication merits special
interest here because of the similarity in initial approaches, to
be discussed in later parts of this paper. Works such as [5]–[11]
and this paper are evidence of a change in paradigm for change
detection, transitioning from comparisons of temporally distant
images to looking for deviations from model predictions.

While these other methods exist and are effective, there is
still room for a simple algorithm that can produce change maps
for a scene, updated from previous maps, with each new image
of that scene. This sort of “on the fly” methodology would
allow for a continuous monitoring paradigm to be implemented,
rather than one of yearly summaries. Our goal in this paper
is to introduce such an algorithm, based on a well-established
statistical methodology used in other disciplines. We note here
that Zhu et al. [11] has also produced an algorithm that can
incorporate incoming data, using different methods for deter-
mining when a pixel has undergone significant change. One
clear distinction between the methods is that, in this paper,
images are considered to be a quasi-systematic sample, the
derivatives of which are then used as inputs in statistical process
control tools.

In previous work [11], [12], it was shown that Fourier regres-
sion may be used to generate smooth curves fitted to interannual
Landsat data. In particular, by collating multiple years’ worth of
Landsat data, one can take advantage of the fact that the Landsat
satellites do not have precise yearly return times to “fill in” even
more days of the year. This allows one to simulate weather-free
conditions on any given day of the year, with good accuracy,
even if cloud cover prevents direct use of some images.

It was further shown that the residuals left from subtracting
the curve from the data produce a record of shifts from the
expectation in the time series development. Two things thus
become apparent from this record. If the pixel remains stable
over the course of the years, then an extremely good fitted curve
will result, in terms of accuracy and detail. If, on the other
hand, the pixel undergoes changes or disturbances, either in
the context of catastrophic disturbance or in subtle changes due
to forest growth or climate, then the residuals left over from
subtracting the fitted “averaging” curve will produce a profile
of the changes. Using this profile, it becomes possible to use

incoming scene data to detect disturbances to the pixels, in a
form of real-time environmental monitoring.

In the areas of industry and manufacturing, there has natu-
rally been great interest in the idea of real-time monitoring of
processes. Accordingly, there is a field of statistics, quality con-
trol, which addresses this interest through the creation of statis-
tical tools for the purpose of actively monitoring processes. The
key among these tools are quality control charts, which take
systematically measured data (although not necessarily regular
data) and signal the operator in the event that the monitored
process goes out of control. For reference, a brief explanation
of the quality control charts used in this paper follows.

B. Shewhart Charts

Shewhart charts, originally developed by Walter A. Shewhart
in 1924 [13], are the foundation of the idea of statistical control
charts. They have historically been used as the standard to test
newer control charts against [14], and while they have draw-
backs, their simplicity and versatility makes them reasonable to
use even today. Consider a time sequence t1, t2, . . . with tn <
tn+1 and associated measurements from a process x1, x2, . . .,
where the measurements are assumed to be independently
normally distributed with mean μ and standard deviation σ. If
the mean of the process remains at μ, then one should expect the
standardized value z = (x− μ/σ) to be within 3σ about 99.7%
of the time. If the value is beyond this, it may be evidence
that the process mean has shifted. In general, a Shewhart X-bar
(or X) chart at time tn is given by

zn =
xn − μ

σ
. (1)

This chart signals (note the use as a verb) if the value moves
outside the range ±Lσ, where Lσ is considered the generic
control limit of the chart. An example of a Shewhart X-bar
chart and its lower control limit is shown in Fig. 1. The pixel
in the figure is in a forested area that is stable, suggested by the
lack of any clear trend in the residual values in the plot. Due
to the statistical properties of the sample, the chart is bound to
signal eventually, even if the process remains in control, but the
control limits may be set so that this happens only rarely.

Shewhart charts are good for detecting large process mean
shifts; however, due to the fact that they only use the present
point, they may miss smaller consistent shifts [13], [15], [16].
They are ideally suited for signaling anomalies in the history,
such as a passing cloud. Fig. 1 offers an example of this
property. The red values in Fig. 1 correspond to dates for which
this pixel was shaded by clouds. They do not represent a sus-
tained disturbance because the subsequent values demonstrate
a rapid return to the original trend. X-bar charts could be also
useful for quickly detecting that a forest has been clearcut, but
they are not as useful for detecting a subtle thinning in forest
cover.

C. EWMA Charts

Again, consider a time sequence t1, t2, . . . with tn < tn+1,
starting at n = 0, and associated measurements from a process
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Fig. 1. Shewhart X-bar chart for residual values after removing seasonality.
The angle index is a vegetation index, with higher values corresponding to
denser vegetation. Signaled dates, outside the control limits, are in red. They
correspond to dates for which this pixel (yellow arrow) was shaded by clouds,
also evidenced by the subsequent rapid return to the trend.

Fig. 2. EWMA chart for residual values after removing seasonality. The pixel
in question (yellow boxes at right) underwent a thin in December 2010, ac-
cording to company records. True color National Agriculture Imagery Program
(NAIP) imagery acquired from 2009 and 2011 with 1-m spatial resolution.

x1, x2, . . ., where the measurements are assumed to be indepen-
dently normally distributed with mean μ and standard deviation
σ. Then, for a tuning parameter 0 < λ ≤ 1, the exponentially
weighted moving average (EWMA) chart [15], [16] for the
process at time tn is given by

z∗n = (1− λ)z∗n−1 + λxn. (2)

Thus, the chart value for a given time is a function of the
entire history of the chart. The extent to which this history is
utilized is characterized by the value of λ, which determines
how retrospective the chart is. Values of λ close to 1 will result
in a chart that assigns little weight to previous values (the
extreme case, i.e., λ = 1, yields a Shewhart X-bar chart after
standardization by μ and σ), whereas a value of λ close to zero
relies primarily on historical data. Smaller values for λ may be
useful when the variation in process data is very great relative
to the shift being detected (low signal-to-noise ratio). In such a
case, incoming values should be tempered against the previous
trend to avoid frequent false signals. An example of this chart
is shown in Fig. 2.

The chart signals when it exceeds the asymptotic control
limits (CL) given by

CL = μ± LEWMAs

√(
λ

2− λ

)
[1− (1− λ)2n]. (3)

Here, LEWMAs is the desired number of standard deviations
for marking “out of control,” and s is the estimated historical
standard deviation of the data. Note how the control limit

initializes at a lower value and approaches an asymptotic limit
of μ± LEWMAs

√
(λ/2− λ) as the chart continues to operate.

As a consequence, it is fairly common for EWMA charts to
experience “warm-up noise” in the form of false signals during
the early training period. For practical purposes, this asymptote
is very quickly achieved, typically in the first 15 to 20 samples
taken. Thus, the control limits for EWMA charts, while appear-
ing to grow continuously, may be treated as constant limits for
all practical purposes.

Equation (2) allows all past measurements to be used in the
calculation, with greater weight on the recent measurements. Of
particular importance is the fact that the entire chart’s history
is encapsulated in a single term, the EWMA chart’s previous
value zn−1. Once that has been calculated, one may discard
all the previous data and still compute the next value upon
receipt of the next observation. This ease of future processing
is the reason that EWMA charts are well suited for on-the-fly
monitoring. Additionally, the running average aspect allows the
EWMA chart to be fairly robust to the normality assumption,
making it particularly appealing. Depending on how λ is set, the
corresponding chart is fast in detecting small changes [15], [16].
Thus, we anticipate that appropriately tuned EWMA charts will
allow us to detect subtle changes caused by thinning of a forest
or possibly changes in leaf area as a result of drought.

Based on the aforementioned reasons, EWMA charts repre-
sent an extremely useful tool for environmental monitoring via
Landsat time series. There are different types of charts, which
are useful for detecting different sorts of disturbance. In the
case of catastrophic changes, a simple Shewhart chart would
suffice. However, for processes that show gradual change over
time, other more time-weighted charts, such as EWMA charts,
would be more appropriate. There are other types of control
charts designed to signal for small shifts, such as the cumulative
sum (CUSUM) chart. These may also have application in an
environmental monitoring context, but including them here is
beyond the scope of this paper.

Control charts are regularly used in areas of manufacturing
[17], computing [18], pharmacology [19], and medicine [20],
to name a few examples. The general field of quality con-
trol charts is included under the aegis of statistical process
control [16].

II. DATA

Our study area included portions of Mississippi and
Alabama, USA, for which the location and timing of private
logging activities were known for the 2009–2011 timeframe. To
have both training and testing data, we acquired a collection of
cloud-free Landsat images (10% nominal cloud cover or less,
51 images total) from January 2005 through December 2011
from the U.S. Geological Survey Global Visualization Viewer
(USGS GLOVIS) website [21], using only Landsat 5 imagery.
The images were all corrected to L1T prior to downloading. We
avoided using Landsat 7 imagery, so that we would not need to
contend with the scan line corrector (SLC) problem in the study
timeframe. Nevertheless, the process shown here could be used
on Landsat 7 images, provided that care is taken to screen away
no-data values at the outset, similar to a cloud mask.
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Fig. 3. Study area, Landsat path/row 21/37. The detail is tasseled cap angle index from 10/3/2011, where higher values (here as darker) indicate denser vegetation.

For validation data, we used two data sets. First, we used
aerial photo mosaics from 2009 and 2011 as a high-resolution
check. The images were obtained from the U.S. Department
of Agriculture Natural Resources Conservation service (USDA
NRC) Geospatial Data Gateway [22]. We were able to use the
mosaics to provide an effective “before and after” check for
disturbances within Landsat-resolution regions. We used the
entire spatial extent of path/row 21/37, as shown in Fig. 3.

Second, we used the records of timber management of
loblolly pine (Pinus taeda) from the Westervelt Company (The
Westervelt Company, Inc., Tuscaloosa, AL, USA), focusing
specifically on harvests from 2009 through 2011, in order to
match the aerial mosaics and the Landsat data. This harvesting
data consisted of polygons for which the date of harvest-
ing and the general type of harvesting were noted. We used
only thinning polygons for this study, as any general method
capable of detecting thinning should by default also detect
clearcuts.

All Landsat scenes were corrected to surface reflectance by
using the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) [23], followed by dark object subtraction
using band minima. The dark object subtraction had a signifi-
cant effect in reducing time series noise, since post-LEDAPS
evaluation of the reflectance data revealed that some scenes
were uniformly brighter or darker than the remainder of the
time series. We converted the resulting base Landsat bands into
tasseled cap values [24], and from these, we calculated the
tasseled cap angle index (AI) [25] by the formula

AI = tan−1 TCGreenness

TCBrightness
. (4)

Fig. 4. Temporal distribution of training and testing data used in this study.

Note that, while all Landsat scenes were nominally cloud
free, there were still anomalies present in the images, such as
“popcorn clouds” scattered across the scenes at times. We chose
the angle index because it has been shown to be sensitive to
more subtle vegetation changes [25].

In order to have a solid baseline for disturbance detection,
we used the first four years’ worth of data (2005–2009, 29
images total) for the study area to train the harmonic regression.
Fig. 4 shows the temporal distribution of the Landsat images
for the study area. Such a graph clearly presents the richness or
paucity of the Landsat stack being used. Note that we selected a
generous amount of training data to provide a full-year range of
values in terms of day of the year. Based on the distribution
of image dates, it most likely would have been feasible to
use any combination of 2005, 2006, or 2008 as training data.
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Fig. 5. Flowchart for EWMA detection algorithm.

However, our aerial imagery was from 2009 and 2011, and
hence, we chose the cutoff for training and testing based on that,
in order to get the closest possible matching between EWMA
signals and the validation imagery. It is worth noting the lack
of sparsely clouded images in 2007. These temporal features
of the data also factored into our decision to use the four-year
period as training.

III. METHODS

In order to apply statistical process control to Landsat data,
the data must first be processed and rendered into roughly in-
dependent normally distributed variables. This is accomplished
by use of harmonic regression, a modified version of that used
in [12] and similar to the initial steps of that used in [11]. De-
ciduous trees have an easily recognizable phenological curve,
and loblolly pine trees lose approximately half of their needles
in fall and winter [26], rendering their phenological curves
amenable to modeling by harmonic regression by virtue of the
clear seasonal pattern. By subtracting the fitted temporal curve
from the existing data, in this case, the angle index, we remove
seasonality and the bulk of temporal autocorrelation from the
data, obtaining a set of residual values that may be treated as
being normally distributed and statistically independent. This
process works over the entire image but provides results unique
to each pixel. A full description of the algorithm follows, which
is divided into elements of harmonic regression, adjustment,
and EWMA chart processing, with a summary of the method
given in Fig. 5.

A. Harmonic Regression Algorithm

From a collection of d images over days of the year (from 1 to
365 or 366, depending on the year, possibly spanning multiple

years), denote the dates T and the pixel-specific values for those
dates Vp as the d× 1 column vectors

T d×1 = [t1]i∈{1,2,...,d} and Vp
d×1

= [vpi]i∈{1,2,...,d} (5)

noting that the p subscript emphasizes the vector’s dependence
on the pixel in question. For simplicity, scale T by converting
days of the year to values on [0, 2π] by multiplying by (2π/365)
(or (2π/366) when appropriate), yielding

T d×1 = [τi]i∈{1,2,...,d} = T
2π

365
. (6)

Let us assume that a correct linear model specification [27]
for the time series by day of the year is given by a harmonic
series with m harmonics, with m sufficiently smaller than d,
and independent identically distributed normal errors, such that

Vp
d×1

= Md×(1+2m)βp
(1+2m)×1

+ εp
d×1

(7)

where, in this case, the input matrix is given, as a function of
m and T d×1, by (8), shown on the bottom of the page. The
harmonic coefficients are given by

βp
(1+2m)×1

= [ ap0 ap1 bp1 · · · apm bpm ]′ (9)

with transposition denoted by ′, and the errors are given by

εp
d×1

=[εpi]i∈{1,2,...,d}, εpi∼ i.i.d. N
(
0, σ2

p

)
, σp∈R

+. (10)

Then, estimate the pixel-specific harmonic coefficients

β̂p
(1+2m)×1

= [ âp0 âp1 b̂p1 · · · âpm b̂pm ]
′ (11)

by the usual least squares method [27], i.e.,

β̂p
(1+2m)×1

=
(
M ′

(1+2m)×dMd×(1+2m)

)−1

M ′
(1+2m)×dVp

d×1
.

(12)

Md×(1+2m) =

⎡
⎢⎢⎢⎢⎣
1 sin(1τ1) cos(1τ1) sin(2τ1) cos(2τ1) · · · sin(mτ1) cos(mτ1)

1 sin(1τ1) cos(1τ1) sin(2τ1)
. . .

. . . · · ·
...

...
...

...
...

. . .
. . . · · ·

...
1 sin(1τd) cos(1τd) sin(2τd) cos(2τd) · · · sin(mτd) cos(mτd)

⎤
⎥⎥⎥⎥⎦ (8)
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B. X-Bar Cloud Filtering

In practice, a pixel may display anomalous values corre-
sponding to small-scale cloud cover, shading, or other short-
lived events that should not be modeled. As an additional
precaution, the pixel-specific time series is scrubbed for anoma-
lous values by checking the residuals from the previous model
against a low-threshold Shewhart X-bar chart [15], [16], as
follows.

If we denote the fitted values from the previous model as

V̂p
d×1

= Md×(1+2m)β̂p
(1+2m)×1

(13)

then we calculate the residuals the usual way, i.e.,

Rp
d×1

= [rpi]i∈{1,2,...,d} = Vp
d×1

− V̂p
d×1

. (14)

We then compute an estimated value for the error variance

σ̂2
p =

(
1

d− 1

)
R′

p
1×d

Rp
d×1

. (15)

We take this value to determine which residuals are beyond a
user-defined control limit, denoted here as L, and identify these
dates as anomalous. Note that this is equivalent to processing
the residuals in a Shewhart X-bar chart with control limits ±Lσ
[15], [16]. We thus obtain a vector of the remaining dates, i.e.,

T ∗
d∗×1 = [τpi]i�(|rpi|>Lσ̂p) =

[
τ ∗pj

]
j={1,2,...,d∗} (16)

where d∗ ≤ d, and the new index j reinforces the notion that the
elements of T ∗

d∗×1 do not necessarily correspond to the original
elements of T d×1.

From T ∗
d∗×1, we recompute an estimate of the harmonic

coefficients, denoted β̂p
∗
(1+2m)×1

, using (7)–(12) and reindex-

ing the vectors and matrices in a manner similar to (16). This
process is illustrated on a sample pixel in Fig. 6. Note how the
adjusted curve (green) is not deflected by the unusual points
indicated in red.

This approach to filtering out clouds is of interest in its own
right, because it relies only on the input Landsat data, a concept
also explored in [11]. By extracting as much useful information
as possible from each Landsat image, it may be possible to
meaningfully utilize scenes with considerable cloud cover. In
this study, we used relatively clear data, as our focus was on
the detection of subtle changes to land cover, but the notion of
using X-bar charts on harmonic residuals as a data-driven cloud
filter is worth revisiting.

C. EWMA Chart Algorithm

To illustrate how we process the time series in an EWMA
chart, we make some slight modifications to our notation. In
the context of the training and testing periods, we treat the
training period as the first d dates in a larger timeframe of D =
d+ d1 dates, and we accordingly extend the scaled date vector
for all dates to TD×1, its input matrix MD×(1+2m), and the

pixel-specific value vector to Vp
D×1

. We first compute the fitted
vector for all dates, using the previously computed adjusted
coefficients β̂p

∗
(1+2m)×1

to obtain

V̂p
∗
D×1

= MD×(1+2m)β̂p
∗
(1+2m)×1

. (17)

We then compute the residual values

Rp
∗
D×1

= Vp
D×1

− V̂p
∗
D×1

. (18)

As these residuals result from least squares estimation, we
treat them as if they had a mean of 0. In practice, this is not the
case because of the adjustment for anomalous values. Thus, it is
necessary to once again account for these anomalous values, as
incorporating them into an EWMA chart could extend their in-
fluence well beyond the date of anomaly, resulting in extended
false signals. Thus, all of the residuals are reprocessed in a low-
threshold X-bar chart with (possibly different) control limits
±L∗σ by reapplication of (15) and (16), resulting in a reduction
in the residual time series to one of length D∗, denoted

R∗∗
D∗×1 = [rpi]i�(|rpi|>L∗σ̂∗

p)
=

[
r∗∗pj

]
j={1,2,...,D∗} . (19)

This reduced set of residuals is the object which we process
directly in an EWMA chart. For a tuning parameter λ ∈ (0, 1]
(λ = 0 being undesirable), we generate a transformation matrix
Λ [15], [16], as follows:

ΛD∗×D∗

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
(1− λ) λ 0 · · · 0

(1− λ)2 (1− λ)λ λ
. . .

...
...

...
...

. . .
...

(1− λ)D
∗

(1− λ)D
∗−1λ (1− λ)D

∗−2λ2 · · · λ

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(20)

Then, the EWMA vector is

Z∗
D∗×1 = ΛD∗×D∗R∗∗

D∗×1. (21)

It is this vector which we plot as a time series against its
corresponding dates in the EWMA chart. Here, a great benefit
of EWMA charts in general is realized, because for subsequent
images on dates D∗ + 1, D∗ + 2, . . ., we simply compute the
pixels’ fitted values based on the adjusted harmonic coeffi-
cients, take residuals, screen them against the X-bar control
limits of ±L∗σ in case of short-lived anomalies, and utilize the
standard EWMA definition in (2), as follows:

z∗jp=(1−λ)z∗(j−1)p+λr∗∗jp, j={D∗+1, D∗+2, . . .}. (22)

This allows new images to be incorporated easily into the
existing history, making the detection method on-the-fly.

Recall that the control limits for an EWMA chart with tuning
parameter λ are given by

CL = μ± LEWMAs

√(
λ

2− λ

)
[1− (1− λ)2j ]. (23)
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In our case, with the residuals having an assumed stable mean
of 0, this becomes

CLD∗×1

=

[
0± LEWMAσ̂

∗
p

√(
λ

2−λ

)
[1− (1− λ)2j ]

]
j={1,2,...,D∗}

.

(24)

Note that the control limits depend on an estimated value
of the standard deviation. We compute this estimate using the
training (or historical) data in the absence of prior knowledge
about the pixel [15], [16]. For pixels that underwent a distur-
bance in the training period, both the harmonic coefficients
and the estimated standard deviation reflect this in the poor
model fit. Since such pixels are not likely to remain in a
partly disturbed and partly stable state immediately after the
disturbance, the practical effect is that pixels disturbed during
the training period tend to signal almost immediately in the
testing period.

Recalling that the control limits rapidly move toward the
asymptote of LEWMAσ̂

∗
p

√
(λ/2− λ), and recalling that a va-

riety of land cover classes exist in any given scene, we divide
the EWMA chart by the control limits to get the disturbance
record, or flag history, for that pixel, i.e.,

FD∗×1 = Z∗
D∗×1 ÷ CLD∗×1 (25)

where ÷ represents elementwise division. We insert 0’s artifi-
cially into the parts of the history that were screened out by
(19), although any other code value could be inserted in the
interest of easily tracking anomalies. By iterating this process
over all pixels p in the scene, we obtain a raster with an equal
number of layers as the input raster, corresponding to the initial
temporal distribution and giving relative disturbances from the
conditions predicted by the training period.

D. Specific Application

For this study, given our stack of Landsat images converted
to tasseled cap angle index, we took the dates associated with
each image and used the images corresponding to the first four
years (2005–2008, inclusive) of data as inputs into the EWMA
detection algorithm, first computing harmonic coefficient esti-
mates. In our case, we used m = 2 harmonics, resulting in five
coefficient estimates for each pixel: a constant term with two
sine and cosine terms of increasing frequency. We chose this
value based on observations in [12] that two harmonics were
usually sufficient to capture the vast majority of the periodic
variation in the time series. It is worth noting that one effect
of harmonic regression is the removal of seasonal temporal
autocorrelation in stable pixels, as the regression captures such
periodic behavior. It is also worth noting that, by taking mul-
tiple years as training data, the coefficient estimates for pixels
undergoing consistent vegetative growth “centered” the curve
in the middle years of the training period.

Once the residuals were computed, we then calculated the
historical standard deviation of each time series from the pixel-
specific residuals and flagged any residual values farther than

L = 2 standard units away from 0, in effect passing the residual
time series through a low-threshold X-bar chart. We used
0 as the mean since the residuals under a stable pixel are
assumed to be 0. We treated the flagged values as anomalous
and temporarily discarded them, recalculating the least squares
estimates of the harmonic coefficients for the remaining time
series values. This simple second iteration had the effect of
screening away most cloud and shadow interference without
the use of cloud masks. The result of the process at this point
was a five-layer raster of adjusted harmonic coefficient values,
providing baseline information for phenological processes in
the study area. This proved much easier to store and manipulate
than a raster containing fitted values for all of the dates in the
study timeframe.

From this baseline data, on a per-pixel basis, we recomputed
fitted values for the entire history of the time series, both in the
training and testing periods, 2005–2011, in all. We calculated
residual values again by subtracting the fits from the observed
angle index values, and once more we screened, from the
training period only, anomalous values with a low-threshold
(2σ) X-bar chart. This had the effect of reducing the estimate of
the historical standard deviation, thus improving the sensitivity
of the EWMA chart used next. We then used this standard
deviation estimate for calculating the EWMA control limits,
setting the mean part of the control limit to 0 for simplicity
in light of the empirical observation that the calculated mean
estimates were very close to 0 in the overwhelming majority of
pixels. In order to filter out short-term anomalies in the testing
period and avoid biasing the subsequent EWMA chart values in
the event of such an anomaly, we subjected the testing period
residuals to a very high threshold (L = 2) X-bar chart. We
chose this value based on empirical observation of the charts,
balancing the need to screen short-term anomalies with the need
to signal for persistent disturbances.

To test which weight parameter would be best for our pur-
poses, we ran the algorithm on a subset of the scene, letting
parameters for the charts range from λ = 0.1 to λ = 1 by in-
crements of 0.1. These parameters drive the retrospective nature
of the chart, with more retrospective charts being less likely to
read false positives due to anomalous data. Upon initial testing,
even light disturbances signaled across the range of weights.
Accordingly, we chose a weight that reduced the chance of
false signals due to singularly anomalous data values. That is,
we chose a weight which gave charts that were stable in the
presence of large singular deviations in the residual time series
yet were responsive enough to signal disturbances within one
to three dates, depending on the severity of the disturbance in
question. Based on our observation of the charts, we determined
that an EWMA weight value of λ = 0.3 worked well enough
in our study area, being sensitive to disturbances while not
providing excessive false signals. It is uncertain whether this
value would generally perform well across other land cover
types, but we do note that other weights in the range 0.1 ≤ λ ≤
0.5 gave comparable results in our study area.

In order to derive an estimate of the relative severity of the
disturbances flagged, we took signaling values (those outside
the control limits of the chart) and divided these values by
that particular chart’s control limits, rounding down to the
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Fig. 6. Illustration of X-bar adjustment for more robust harmonic coefficients.
The anomalous value (red x) was excluded when calculating the adjusted fit
(green). The images at the right, with the pixel in question marked by the yellow
arrow, show that the anomaly was caused by a small cloud.

nearest integer in absolute value. Since the control limits were
stable by the time the testing period was reached, the division
provided a way to compare relative disturbances. Thus, for each
pixel, we obtained a time series of integer values, indicating
both when disturbances were signaled, the relative severity of
the disturbance, and the nature of the disturbance (growth or
reduction in vegetative cover). We compiled these time series
per pixel and generated an output raster with one layer for each
date in the test timeframe.

IV. RESULTS

The algorithm’s outputs took the form of a stacked raster,
each layer corresponding to the signaled disturbances for a
particular date in the original Landsat stack. In effect, our
results could be checked along three dimensions: space, time,
and severity. In the following sections, we attempt to give a
sense of the results along these lines, using the aerial images
and Westervelt polygons to validate our observations.

The challenge in analyzing the results comes in showing
that the disturbances are accurately signaled. In order to do
this, we used the Westervelt polygons in conjunction with the
aerial imagery. Three questions were of interest in working with
the harvest polygon data. First, did the control chart algorithm
accurately signal (or not signal) according to the actual changes
on the landscape? This is a question of whether the EWMA
charts properly identified disturbances in space, although an-
swering this question depends on the disturbance severity and
time of occurrence. The second question is one of accurately
identifying the severity of the disturbance, distinguishing be-
tween subtle and gross disturbances. Was there a relationship
between the severity of the disturbance signaled and the severity
indicated by the polygon data? The third question was about
the timing of the disturbances being signaled. Did the EWMA
charts identify the correct times of disturbance?

It is worth noting some considerations in using the polygon
information. First, the polygons were all classified as types of
thinning. Despite this, cursory observation of the aerial images
showed that the polygons’ treatments were not uniform in either
time or space. That is, some polygons were thinned unevenly
(a transport road cut through one section, for example), and
commonly, the polygons were large enough that it would have
taken weeks to give them a full thinning treatment. Second,

Fig. 7. EWMA chart for a pixel that had a harvest after the timeframe. The
images to the right depict the pixel in question (yellow box) according to the
aerial images.

Fig. 8. (a) Example pixels of each type of disturbance, from a variety
of Westervelt polygons. The squares represent Landsat pixels in scale and
location, and the following descriptions apply only to the space within the
squares. Clockwise from upper right: No Change (blue boxes); Light Thin
(yellow); Heavy Thin (orange); Clearcut (red). The clearcut in this case was
at the head of a logging road within a thinned stand. Green regions are where
the algorithm signaled growth; orange and red regions are where the algorithm
signaled thinning and removal. (b) EWMA charts for the example pixels in (a).
Note that the No Change pixel was actually thinned in 2009, in agreement with
that polygon’s information.

some of the treatments observed in the aerial imagery did not
match the descriptions from the polygon data. For example,
one polygon was in actuality completely clearcut based on the
aerial photos. Another challenge came from the aerial photos
themselves. Being mosaics, the images were taken at varying
points throughout their respective years, with the majority being
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TABLE I
ACCURACY ASSESSMENT CRITERIA

taken during the summer months. Thus, it was possible, for
polygons harvested on the edge of the testing timeframe, that
the photographs missed the contrast in the treatment, either be-
fore or after. We illustrate this in Fig. 7, where the documented
thinning occurs both after the final Landsat image is taken and
after the 2011 aerial photograph.

In light of the aforementioned challenges, we chose to
conduct the accuracy assessment for the space and severity
dimensions by selecting one point at random from within each
Westervelt polygon (where we had records of harvesting), asso-
ciating each point with the pixel containing it. In all, we selected
141 pixels in this manner. For each of these pixels, we selected
the last element in the disturbance time series. We chose the last
element in order to have the best possible chance at matching
the disturbance record with the 2011 aerial imagery, because
our validation involved observing the difference between 2009
and 2011 in the aerial mosaics. In such a situation, attempting to
compare the disturbance record during earlier dates in the time
series with the 2011 images would have resulted in mismatches
due to postdisturbance recovery. An example of this situation
is depicted in Fig. 8, in the case of the blue example pixel.
The stand at this pixel was thinned early on in 2009 (but after
the aerial image for 2009). By 2011, the forest had recovered
sufficiently for the aerial photographs to show little change in
vegetative cover. If we had classified this pixel as thinned, it
would have disagreed with the later aerial assessment.

Thus, the accuracy assessment was carried out as follows.
For each test pixel, we recorded the final disturbance signal
associated with that pixel. Then, independently observing the
region at that pixel, we made a visual comparison between the
2009 image and the 2011 image. For consistency in estimation,
we used the aerial classification shown in Table I and illustrated
in Fig. 8. Note that the criteria in the table are for relative
changes, not absolute changes. Note further the effect of calcu-
lating pixel disturbances independently of their surroundings,
as the red example pixel in Fig. 8 reads as a clearcut by relative
cover change within the pixel, despite its neighborhood being
obviously thinned.

A. Accuracy Assessment (Space)

To assess the spatial accuracy, we simply observed the agree-
ment between the EWMA charts for the relevant pixels and the
aerial images on a change/no-change basis. We treated values
for which the EWMA charts showed net growth as if they were
no change, so that “change” in this context was equivalent to

TABLE II
DICHOTOMOUS ACCURACY ASSESSMENT RESULTS

vegetative removal. The results of this dichotomous accuracy
assessment are given in Table II.

The overall accuracy was 85% (120/141), and the Cohen’s
kappa for the dichotomous assessment was 0.621. In general,
we observed good agreement between the EWMA charts and
the aerial interpretations, both in the case of disturbance and
in the case of no disturbance. The number of no-disturbance
observations may seem surprising, given that each pixel in the
assessment was contained in a polygon documented as being
harvested between 2009 and 2011, but we have already shown
typical examples of the no-disturbance occurrences in Figs. 7
and 8 (blue pixel). Similarly, we have shown typical examples
of disturbances in Fig. 2 and Fig. 8 (red, orange, and yellow
pixels).

The commission error (false signal rate) was 36% (15/42),
although this was impacted by the timing of the aerial pho-
tographs and the ability of the algorithm to signal changes at the
edge of the timeframe. One example of this is shown in Fig. 9,
in which the aerial photograph was taken after the thinning
took place. In this case, the aerial interpretation was that of “no
change,” since the interpretations were based on relative forest
cover. However, the thinning is documented and is signaled on
the EWMA chart, leading to an error of commission.

The omission error rate was 6% (6/99). We show a typical
example of this type of error in Fig. 10. In this pixel, the
underlying forest was steadily maturing over time, as evidenced
by the clear increasing trend in the EWMA chart values. By
the time the pixel was thinned, the EWMA values were high
enough that the thinning had the effect of returning the pixel to
its original condition. Noting that the raw residual (blue cross)
for the final value is quite low, relatively, we are confident that
the EWMA chart would have signaled given one or maybe two
additional images to confirm the new residual mean.

These aforementioned examples suggest that the bulk of
these errors, particularly the commission errors, are “startup”
and “cutoff” errors, artifacts of the timeframe’s finite nature.
This is because the EWMA chart necessarily trades a little in
response time, for the ability to detect a smaller change, as a
result of its weighted average. From the examples, it is clear that
the response time of the charts is still usually very fast, typically
signaling in the first image after the disturbance. In a continu-
ously running algorithm with no last date of observation, these
errors probably would not have occurred, or at the least, would
have been mitigated in the next iteration or two. We will discuss
the temporal responsiveness of the EWMA charts further when
answering our question about the time dimension.

B. Accuracy Assessment (Severity)

The basic question about the severity dimension was whether
the EWMA charts produced signals in agreement with the aerial



BROOKS et al.: ON-THE-FLY CHANGE DETECTION USING QUALITY CONTROL CHARTS AND LANDSAT DATA 3325

Fig. 9. EWMA chart for a pixel with a commission error (false alarm). The
images to the right depict the pixel in question (yellow box) according to the
aerial images.

Fig. 10. EWMA chart for a pixel with an omission error (failure to signal).
The images to the right depict the pixel in question (yellow box) according to
the aerial images.

Fig. 11. Comparison of algorithm disturbance level with that observed in
aerial imagery. In violin plots [28], the black box and whiskers correspond to
the usual first and third quartiles, with the white dot representing the median.
The thickness of the violin corresponds to the prevalence of data at the vertical
value, similar to a histogram. Note the clear positive association between the
EWMA outputs and the aerial categories.

image comparison. In this case, we wanted to look for associ-
ations between the two methods. Because we were interested
here in forest degradation only, we again treated the EWMA
chart values signaling for growth in the pixels as “no change.”
The results are displayed in Fig. 11. We used violin plots [28]
to illustrate the distributions within each class.

It is clear in Fig. 11 that there is a simple relationship between
the disturbance signal and the manner of disturbance. The
Spearman correlation ([29], used here due to the ordinal nature
of the data) was 0.753, highly significantly different from 0.
Succinctly put, the greater the signal’s deviation from zero, the
more severe the disturbance tends to be. Based on this, in our
case, we might use a rule of thumb that disturbance signals be-
tween −1 and −3 can be considered light thins, signals between
−3 and −6 may be considered heavy thins, and signals beyond
−6 tend to be clearcuts or wholesale removals. As the
classifications in the assessment were in some sense arbitrary
and based on regions that were thinned from mature stands, they
may not reflect cutoff values across the remaining land use/land
cover types in the scene and history. It is worth repeating that
the values given by the algorithm are relative disturbances
against that pixel’s baseline history. Thus, perhaps the best way
to treat the disturbance signals is as fodder for a “disturbance
heat map,” illustrated for the final date in the timeframe in
Fig. 12. The long diagonal path of disturbance is that of a
tornado that moved through the area on April 27, 2011 [30].

Indeed, by stacking the disturbance maps temporally, one
may generate a “disturbance heat movie,” allowing for an
additional dimension to tracking the changes on the land. Note
as well that, while the Westervelt polygons used here were only
thins or removals of vegetation (shown as yellows, oranges, and
reds), the image in Fig. 12 also indicates regions where the
vegetation has increased beyond the training baseline (shown
in greens). We offer a more specific example of this in Fig. 13,
in which we observe development in a young pine stand. While
we did not have truth data by which to statistically check for
stand growth, the example strongly suggests that one may track
afforestation as easily as deforestation with EWMA charts.

We reinforce the notion of signaling for forest growth with
the example shown in Fig. 14. In the process, we also illustrate
the manner in which harmonic regression captures intraannual
variations to prevent false signals due to annually recurring
disturbances such as plowing or planting of agricultural fields.
In Fig. 14, we see a building with a young tree plantation
to the north and an agricultural field to the south. Within a
possible subpixel misregistration a few meters south and east,
the EWMA algorithm precisely signals both the growth of the
stand and the landscaping around the building, while offering
no signal for the agricultural fields. It is worth recalling that the
EWMA charts were performed on each pixel independently,
with no masks to filter results. The algorithm does not signal
the fields because the variations are intraannual and periodic,
not interannual. While we display the signals only for one date
here, the same pattern was evident throughout almost all dates
of the testing period, with slight signal variation around the
edges of the field and stand. Recall that this is only an example,
because our validation data for severity were only for harvested
pine stands. However, the example offers compelling evidence
of the algorithm’s general utility.

As one final example of the sensitivity of the method, we
present an area in which two major changes take place from
2009 to 2011 (see Fig. 15). In this example, the western
part of the area is a maturing young pine plantation, whereas
the eastern side undergoes removal and conversion to a field.
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Fig. 12. Disturbance magnitudes for 10/3/2011. The town of Tuscaloosa, AL, USA, is in the lower left. The diagonal linear feature is a tornado path [30].

Fig. 13. EWMA chart for a maturing pine stand pixel. The images to the right
depict the pixel in question (yellow box) according to the aerial images.

While no documented thinning occurs in this region (the region
does not include any Westervelt polygons), it is clear that the
algorithm is signaling according to the severity of the distur-
bances. In particular, note the way that colors in the eastern

side correspond to the degree of the removal, with the harshest
removals taking place where a dirt road was created (right-
center of the region, red signals). It is also interesting to observe
how the algorithm ignores areas of no change, such as a clearing
in the maturing pine stand (lower left of the region, empty
pixel). From this example and the preceding ones, it is clear
that EWMA detection is appropriately signaling the severity of
the disturbances.

C. Accuracy Assessment (Time)

We were able to use the aerial imagery from 2009 and 2011
to assess the effectiveness of EWMA charts in accurately sig-
naling both the location and severity of disturbances as subtle
as light thinning, also showing in the process that the charts can
signal for forest growth as well. However, these results were in
some sense limited by focusing only on the final image in the
timeframe. We did this in order to most effectively utilize the
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Fig. 14. Region with both agricultural and silvicultural activities. The color code of the EWMA signals is exaggerated slightly for easier interpretation. Note the
precision of the signals and the lack of signals for the agricultural fields.

2011 aerial photographs, but the assessment thus far does not
speak for the responsiveness of the EWMA charts, outside of
the graphical examples.

Fig. 16 depicts a subset of our study area, in which we
move our focus from the magnitude of the disturbances to the
timing. For this figure, we show the EWMA disturbances by
the year in which they began signaling for at least four images.
This consistency constraint is a simple way to avoid displaying
anomalous false signals, such as those caused by the fringes
of clouds and shadows, that may have slipped through the
cloud filter in the algorithm. This approach of seeking persistent
change has been used by other methods [2], [3], [5]–[7], [11].

It is apparent in Fig. 16 that the EWMA algorithm does quite
well in identifying the disturbances in the Westervelt polygons
in the year they happen. The exceptions in this figure derive
from stands that were harvested after the final image in the

timeframe. In the case of the polygon in the northwest, the
start date for the harvest was in late 2010, but the actual harvest
extended into January of 2011, according to the records.

To get a sense of the finer responsiveness of EWMA charts,
we consider a Westervelt polygon recorded as being thinned in
September and October of 2010, as shown in Fig. 17. What
is impressive about this polygon is that we can observe not
only when the polygon was thinned, we can see the order in
which the harvesters performed the thin. Through the use of an
existing road (circled in the figure), it is clear that the harvesters
opened up the center ahead of schedule before moving first
east and then west of this point. This represents near real-time
responsiveness, and we stress that the harvest was a thinning,
subtle enough to be difficult to detect in its own right. Note that
the stand to the northwest of the image was not in the Westervelt
records, but it was harvested in early 2010.
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Fig. 15. Region undergoing both stand maturation and stand removal, illustrating the manner in which the EWMA charts indicate severity of disturbances.
The pixel colors are exaggerated slightly for easier interpretation.

Because the thinnings typically took place over a range
of dates within each polygon, it was difficult to concisely
summarize the results of a temporal accuracy assessment. We
will simply state that, for the accuracy assessment pixels for
which the stands underwent basic harvesting according to the
Westervelt records, over half of the EWMA charts for those pix-
els signaled within the first two images after the recorded start
date. This, coupled with the aforementioned examples, leads us
to conclude that the EWMA chart method is very responsive
in the time dimension, allowing near-immediate signaling for a
wide range of disturbances. Given that the charts also accurately
signal the magnitude of the disturbance (or growth) and easily
incorporate new images as they arrive, we conclude from the
aforementioned assessments that EWMA charts are particularly
well suited for on-the-fly environmental monitoring.

V. DISCUSSION

It is well worth reviewing a few key points or challenges to
the change detection method presented here. Perhaps the first
of these may be the nature of our sampling and the validation
data we used. In particular, each pixel we sampled was from a
polygon designated to have been thinned in the testing period.
Theoretically, this allowed us to test the algorithm’s sensitivity
to known changes, but it allowed no inference regarding the
algorithm’s specificity. That is, we had no control group of
undisturbed pixels with which to look for false alarms.

Interestingly, of the 141 pixels thus sampled, 42 of them
showed no visual sign of thinning or other vegetative removal.
As we discussed in the results section, there are likely a variety
of reasons for this high proportion of unthinned pixels in a
collection that was supposed to be all thinned. These reasons
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Fig. 16. Disturbance map based on the year of measured disturbance. The polygon outlines are pine stands harvested by the Westervelt Company.

appeared mostly to do with thinnings taking place at the fringes
of the testing period, beyond the span of the images. As a
result, we have a nice heuristic view of the algorithm’s ability
to detect false positives. While we cannot make any rigorous
statements regarding the specificity of the algorithm here, the
results appear promising.

Another issue that arises is that of independent sampling.
Clearly there is temporal dependence from image to image.
This is the reason that we used harmonic regression to remove
all seasonal or periodic influences from the time series, result-
ing in a set of residuals that is temporally uncorrelated over the
training period. In the event of a disturbance (possibly including
stand growth), these residuals lose their uncorrelated nature,
tracking the change as it occurs. This is true if a pixel undergoes
disturbance during the training period as well, with the result
that the harmonic regression centers the residuals as best it can
on the historical mean value. In either case, the time series
appears to violate the original assumptions behind the method.

This, however, is desirable. Within a control chart frame-
work, when everything is in process, errors behave as assumed,
in this case independently and identically normally distributed.

In effect, the control chart is testing the validity of this assump-
tion at each successive measurement. When the assumptions
fail to convincingly explain the observed measurements, the
chart signals that the process is out of control. Thus, the method
outlined here really extracts meaningful information (vegetative
disturbance and severity) from those places where the harmonic
regression did not adequately model the pixel.

Another question that may arise is that of how to discriminate
between changes in forest land cover as opposed to changes in
(or to and from) other land cover classes such as agricultural
and urban land covers. Because the EWMA detection algorithm
operates on each pixel independently of the others, and because
the magnitude of signaled disturbances is relative to the condi-
tions of the pixel during the training period, we did not make
any attempt to discriminate between the land cover classes in
this paper. As shown in Fig. 14, provided there is no change in
the way the fields are managed, the algorithm generally does
not signal fields as changing. This represents a major strength
of the algorithm and suggests that it may offer a way to capture
land use and land use change, as opposed to land cover change.
If one was making estimates of change to forest cover over
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Fig. 17. Disturbances based on date in 2010 for a pine stand undergoing
thinning in September and October. There is a clear pattern of harvesting in
the east side of the stand before the west side.

a specific area, then one would need a forest-nonforest mask
during the training period in order to measure the appropriate
areas.

One other question that may arise from this particular study is
that of how much training data the EWMA detection algorithm
needed. It was shown in [12] that harmonic regression requires
at least one image from “key dates” of the year, typically
corresponding in a forestry context to phenologically important
times such as green-up in the spring and senescence in the fall.
In that sense, our use of four years of training data was very
generous, being largely a function of having the data on-hand.
We are confident that the EWMA detection algorithm could
run well off of a single year of training data, and we intend
to demonstrate this in future studies.

There are several other areas for future work on and im-
provement for this method. For example, one of the underlying
assumptions behind the EWMA and Shewhart charts is that the
sampling is done systematically, with equal temporal intervals
between measurements. Owing to the nature of the Landsat
stacks after removing pixels or images that are unsuitable for
analysis, this assumption is generally not met. In the preceding
research, we simply allowed the EWMA charts to act as if
the measurements were still systematic, with the useful results
presented here. However, it should be possible to modify the
chart’s construction to allow relative weighting to incoming
data, relative to their temporal context. This modification would
allow the control chart to work with less lag time, which

is important, particularly when data are sparse. For example,
after a period of extended silence, a new data point may be
given particularly heavy weight; conversely, if measurements
become particularly dense (for example, if one uses data from
multiple platforms), then it may do to reduce the impact of
each successive point. These are issues of appropriateness of
temporal scale and were not addressed in this paper, but they
are certainly areas worth exploring.

The algorithm as presented here did not use ancillary cloud
masks, but it could easily incorporate them. Doing so would
improve the quality of the results further and simplify the
preprocessing by screening out troublesome data quickly. How-
ever, the algorithm incorporates a pixel-specific cloud filter in
the form of the low-threshold X-bar charts. Provided that the
training data are sufficiently clean to initialize the algorithm
with a curve that models the phenology more than the noise,
the built-in cloud mask appears to be sufficient.

Another question that arises is what to do with pixels which
have signaled. At some point, the pixel needs to be reevaluated
and reset to a no-change status, presumably with a new base-
line. For this, sufficient retraining data need to be collected,
ideally long enough after the disturbance that the pixel has
stabilized somewhat. This is a constraint on any continuous
monitoring approach to change detection, such as [11], in
addition to the EWMA detection method. In other words, the
method may be refined by allowing a “penalty period” after a
change has been signaled, during which time incoming images
may be used to recalibrate the baseline harmonic coefficients.
This would enable the algorithm to be run continuously and to
be adaptive, so that old changes do not linger until, or unless,
the original baseline is restored.

One last area for future work presented here (there are
undoubtedly many other areas not mentioned) would be ex-
panding the application of the algorithm to other areas of the
world. Our study area was restricted to pine stands in the
southeastern United States. The algorithm itself is general in
its operation, but it depends on having sufficiently dense image
stacks on which to train the harmonic regression. In areas where
the stacks are sparser, it is uncertain how long the training
period would need to be extended to get a workable baseline.
With regard to other land surface features, the algorithm is not
confined to vegetation-specific indexes, and hence, one might
expect it to perform well across different features, provided that
a relevant band or index is used. All of these challenges and
questions provide fertile ground for further work.

VI. CONCLUSION

Since the Landsat archive became available at no cost to the
user, there has been a surge of interest in leveraging the tempo-
ral richness of the archive to aid in change detection [2], [3],
[5]–[7], [9]–[11]. These massively multitemporal approaches
represent a fundamental shift in the paradigm of change de-
tection. Rather than treating images as sparse and isolated
snapshots, researchers are able to treat them as statistical ob-
servations of underlying land surface processes. Accordingly, it
is natural to utilize well-developed methods like quality control
charts in this area.
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When working in the context of change detection using large
stacks of images, there are a number of algorithm attributes one
may consider desirable. First, accuracy in the signaled changes
is requisite. Additionally, the ability to detect more subtle
changes, in our case forest thinning in addition to clearcuts,
is very desirable. One might also wish to be able to screen
for changes from recently acquired Landsat images, providing
an up-to-date change map. It would be even more efficient
to be able to do this using older maps as the basis for this
change detection, yielding a dynamic and iterative process
that refreshes itself with minimal additional processing. The
EWMA detection algorithm, a method of using EWMA charts
on the residuals of harmonic regression fits, possesses all of
these features, at least, in the study area presented here. We have
shown it to be accurate in this paper in terms of space, severity,
and time. It not only detects thinning, it can also discriminate
between differing degrees of disturbance, in both afforestation
and deforestation, Additionally, because each pixel is treated
independently and changes are measured relatively, the EWMA
charts presented here appear to detect vegetative changes for
other land use and land cover classes, as shown in Fig. 14.
While our accuracy assessment and validation did not include
these other classes, the records yielded by the algorithm invite
future study in this area. The charts typically signal these distur-
bances in the images immediately following the disturbances.
By detecting subtler changes in forest cover, it allows for
improved estimates in forest parameter changes across regional
or broader levels. Given its sensitivity in the temporal and
severity dimensions, it is possible that the algorithm may benefit
monitoring and response to migrating insect species, although
this remains to be tested. It may also permit more responsive
tracking of vegetation stress due to drought, perhaps aiding
in determining the greatest threats due to wildfire in a region,
although again this has not been tested yet. The method operates
in a data-driven manner, requiring only a global specification of
the number of harmonics to be used in baseline estimation and
the tuning parameters for the charts across the entire scene. By
virtue of the design of EWMA charts, the process can easily
incorporate new images without reprocessing all of the history.
This is possibly the most powerful feature of the method. It
allows a smaller archive of data to be stored for tracking recent
changes in the landscape, as all the historical information is
preserved in the most recent disturbance map. All of these
properties, taken together, indicate the great potential of this
massively multitemporal on-the-fly method.
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