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for the Recovery of Arboreal Parameters
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Abstract—Multispectral light detection and ranging (LiDAR)
has the potential to recover structural and physiological data
from arboreal samples and, by extension, from forest canopies
when deployed on aerial or space platforms. In this paper, we
describe the design and evaluation of a prototype multispectral
LiDAR system and demonstrate the measurement of leaf and bark
area and abundance profiles using a series of experiments on tree
samples “viewed from above” by tilting living conifers such that
the apex is directed on the viewing axis. As the complete recovery
of all structural and physiological parameters is ill posed with a
restricted set of four wavelengths, we used leaf and bark spectra
measured in the laboratory to constrain parameter inversion by
an extended reversible jump Markov chain Monte Carlo algo-
rithm. However, we also show in a separate experiment how the
multispectral LiDAR can recover directly a profile of Normalized
Difference Vegetation Index (NDVI), which is verified against the
laboratory spectral measurements. Our work shows the potential
of multispectral LiDAR to recover both structural and physiolog-
ical data and also highlights the fine spatial resolution that can be
achieved with time-correlated single-photon counting.

Index Terms—Leaf area profile, leaf physiology, light detection
and ranging (LiDAR), multispectral, parameter inversion.

I. INTRODUCTION

A ERIAL or space-based measurements using a multispec-
tral canopy light detection and ranging (LiDAR) (MSCL)

could provide improved estimates of carbon sequestration and
existing forest stocks, allowing us to better understand cli-
mate change and the seasonal dynamics of ecosystem carbon
uptake in response to environmental drivers such as water,
temperature, light, and nutrient availability. Ultimately, we seek
to detect seasonal changes in photosynthesis, photosynthetic
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light use efficiency [1], and stress within forest canopies using
MSCL as part of a larger sensor suite on air [2] or space [3]
borne platforms. MSCL can provide information on the vertical
distribution of optical properties which can then be used to
infer physiological processes directly linked to actual carbon
sequestration as well as carbon stocks and can disambiguate
ground from canopy returns.

Passive hyperspectral sensors rely on reflected solar radia-
tion, and spectral ratios or indices can be measured that can
be precisely related to physiological properties, such as leaf
chlorophyll content, water content, and stress [4]–[6]. Provided
that leaf abundance is known or measured, pigments within the
leaves, including chlorophyll a and b, can be used as effective
indicators of the physiological health of the forest canopy [7].
However, passive sensors give an integrated measurement in
the direction of view, report data in two dimensions only, and
therefore cannot fully resolve, for example, the 3-D structure
of an old growth forest and, therefore, all photosynthesizing
elements, which is critical if a whole canopy calculation of
forest carbon flux is to be achieved. The chlorophyll content
within leaves is dependent on species type, needle age, and
the illumination conditions and is expected to vary with the
depth within the canopy, which cannot be resolved by the in-
tegrated hyperspectral image. Consequently, algorithms for pa-
rameter recovery effectively combine spectral unmixing [8], [9]
with the variation of the spectra themselves, as these give the
parameters of interest, and hence, such algorithms may be
ill posed. Although it is also possible to estimate structural
parameters such as leaf area index (LAI) and canopy above
ground biomass [4] from passive data, these estimates rely
on a priori assumptions from previously collected data on
known tree stock distribution and allometric relationships [10].
Hill [5] discusses how forest architecture (species, senescent
leaves, soil, and understory vegetation) and angle effects (sen-
sor and source/sun) significantly impact such existing empirical
relationships, which include implicitly or explicitly models to
quantity the distribution and orientation of foliage, including
Weibull [11] and beta functions [12]. However, reliance on
a priori knowledge of species and location does not replicate
direct LiDAR measurements.

Laser altimetry or LiDAR is a well-established tool used
both in terrestrial and airborne platforms to provide detailed
measurements of vegetation structure, increasingly required to
support a range of research themes from sustainable forest
management to carbon accounting [13]. In particular, it is pos-
sible to recover structural parameters from terrestrial, air, and
space borne LiDAR systems [14], [15]. Mallet and Bretar [16]
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and Leuwen and Nieuwenhuis [17] give excellent reviews of
remote sensing by LiDAR, and we refer the interested reader
to these papers for a full description of the state of the art.
They describe the recovery of key parameters, including tree
or canopy height, LAI, fractional cover, foliage height profile,
biomass and tree volume, terrain, and terrain slope and, by
extension, species classification. In most systems, the parameter
recovery is based on simple assumptions, for example, tree
height can be measured by the separation of a “first” return from
a “ground” return. However, the spatial distribution of leaf area
within a canopy is a primary element of crown architecture as
it exerts strong influence of the availability of light within the
crown, thereby affecting the growth and performance of tree
stands. Quantifying the vertical and the horizontal distribution
of foliage can provide insight on the conversion of light into
above ground biomass within the canopy and provide verifiable
data for growth and climate modeling.

Full waveform analysis can give a much better idea of the
intermediate vertical canopy structure. Monochromatic LiDAR
data are complementary to hyperspectral imagery and cannot
measure spectral indices directly. The obvious improvement is
to obtain structural and physiological estimates by combining
passive hyperspectral data with LiDAR data [18], [19]. For
example, Swanatron et al. [20] report that combining active
LiDAR data from the Laser Vegetation Imaging Sensor with
passive hyperspectral data from the Airborne Visible Infrared
Imaging Spectrometer can improve estimates of biomass and
can better discriminate vegetation types in different forest en-
vironments. This combination is, however, often challenging to
interpret because it is very difficult to accurately synchronize
the data in time and space, and the integrated spectral data are
not a full intensity profile along a multiple ray path that defines
the pixel area or footprint. Hence, there is a priority to develop
an MSCL capability that can determine not only structure but
also physiological variation along the depth profile generated
by a full waveform system.

Interest in multiple wavelength LiDAR technology is pro-
ceeding apace. The active airborne photon counting LiDAR,
Slope Imaging Multi-polarization Photon Counting LiDAR
[21], is a dual channel system operating at 532 and 1064 nm
that measures within parallel and perpendicular polarization
channels. Following an earlier study with a virtual MSCL
that combined a monochromatic LiDAR with passive hyper-
spectral imaging [22], Hakala et al. [23] have built a system
using a supercontinuum laser source and eight wavelength
detectors to conduct laboratory measurements on Sitka spruce,
deriving simple vegetation indices. Wei et al. [24] have also
developed a full four-wavelength system, applying it to a
segmentation problem using nine material classes. We have
used the photon-counting approach to demonstrate excellent
resolution of closely spaced surfaces in a previous multispec-
tral system [25] and have shown using simulated and real
experimental data how simple indices such as the Normalized
Difference Vegetation Index (NDVI) [26] and Photochemical
Reflectance Index (PRI) [27] can be measured along a laser
profile [28].

In this paper, we report a new MSCL design using a su-
percontinuum laser source. We conduct field trials and manual

validation on a single tree specimen to mimic an aerial mea-
surement and develop our previous analyses of full waveforms
[29] to interpret those data. In comparison with other groups,
we harness the advantages of improved depth resolution and
sensitivity that the time-correlated single-photon counting (TC-
SPC) technique brings to a supercontinuum source. We have
also combined sensitive instrumentation with a direct param-
eter recovery process based on Markov chain Monte Carlo
analysis that has greater potential to resolve the ambiguous
interpretation of the field data. An earlier study [30] was able
to resolve structure and chlorophyll content on multispectral
data simulated from a real monospectral response. Here, we
go further in interpreting full real multispectral data from tree
samples and extending our analysis to include the estimation of
plant area indices and abundance profiles, comparing spectral
indices with controlled laboratory measurements.

The study reported here is at a small scale with small foot-
print LiDAR sampling a single tree and is thus intermediate
between the leaf and canopy scale. However, it demonstrates
a real multispectral LiDAR instrument that is the descendant
of the previous instrument used at kilometer range [25], and we
have calculated that this can be scaled up for aerial [2] and space
[3] deployment. The extensive simulations of MSCL transport
in simulated forest canopies [31], [32] also point to the feasi-
bility of such an instrument. As our measurements are at short
range (approximately 45 m), we do not consider the effects of
atmospheric transmission, but we calibrate the system over the
same range using standard targets. Spatially sampled MSCL
extracts structure and physiology directly in three dimensions,
and the source-sensor geometry is on the line of sight, so we use
simplified optical models. Of course, that does not imply that
multiple reflections and material angular distributions have no
impact on measurement but that the coincident sensor geometry
makes the problem more tractable.

This paper is organized as follows. In Section II, we de-
scribe the instrument design and construction. In Section III,
we describe the calibration and characterization of the in-
strument and the collection of data from live tree samples
on our site. We describe the laboratory measurements of the
reflectance spectra of needles and bark for one such sample
in Section IV. This allows the direct comparison of depth
variation of one common index, NDVI, between passively and
actively acquired wavelength measurements in Section V. In
Section V, we also describe and apply the parameter inversion
process to recover leaf and needle area and abundance profiles.
Finally, in Section VI, we discuss our results and infer the
necessary further research toward full canopy measurement
with MSCL.

II. DESIGN AND CONSTRUCTION OF

THE MULTISPECTRAL LiDAR

The system employed for the measurements reported in
this paper was designed and built for operation at the four
wavelengths used commonly to compute the NDVI (670 nm,
780 nm) and PRI (530 nm, 570 nm) as these are good mea-
sures of the proportion of photosynthetic efficiency and green
biomass, respectively [26], [27]. The principal components of
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Fig. 1. Schematic diagram of the new multispectral time-of-flight TCSPC
scanning system.

our four-wavelength system are shown schematically in Fig. 1,
and the key parameters are summarized in Table I. The system
was constructed mainly from modular components to allow
flexibility in conducting experiments with a range of different
source wavelengths and detectors.

The supercontinuum laser source (a SuperK EXTREME
EXW-6, NKT Photonics, Denmark) emits over the 485–
2400-nm wavelength range, and an integrated pulse picker
module enables the selection of a preset pulse repetition rate
of between approximately 320 kHz and 80 MHz. A tunable
wavelength filter (a SuperK SELECT from NKT Photonics,
Denmark) was used in conjunction with the supercontinuum
source in order to isolate the appropriate wavelengths. This
acousto-optic tunable filter (AOTF) configuration was capable
of selecting up to eight different wavelengths between 500 and
850 nm. The spectral bandwidth of each of the four wavelengths
used for this work was measured and found to be less than 8-nm
full-width at half-maximum (FWHM), and the system emitted
all wavelengths simultaneously.

The output of the AOTF was fiber coupled to the transmit
channel of our custom-built scanning transceiver. This had
previously been used for time-of-flight depth imaging field
trials at a wavelength of 842 nm [33] and 1550 nm [34]. It was
reconfigured with optical components appropriate for operation
over the range of wavelengths used for the work reported in this
paper. This custom unit is approximately 275 × 275 × 170 mm
in size, excluding the objective lens which is interchangeable,
allowing the use of lenses with different focal lengths and
aperture diameters. The optomechanical system is based on a
25-mm-thick aluminum plate on which an appropriate network
of fixed-width slots is accurately machined. Optical compo-
nents such as the lenses, polarizing beam splitter, linear po-
larizer, and half-wave plate are mounted in 35-mm-diameter
magnetic steel barrels. These barrels are positioned at the
appropriate locations along the slots of the aluminum base-
plate and held in position with magnets. This semikinematic
approach is robust and provides flexibility, in terms of the layout
of the optical system, as well as long-term mechanical stability.
A pair of computer-controlled galvanometer mirrors, internal
to the transceiver unit, enables all four coaxial illumination
beams to be simultaneously scanned over the desired scene

in two dimensions (x, y), allowing the collection of single
footprint or 3-D depth image data. For each “pixel” of the scene,
the scattered return photons that were collected by the system
objective lens were steered by the galvanometer mirrors and
coupled into a 9-μm-diameter core optical fiber connected to
the receive channel of the transceiver. This fiber, used to link
the receive channel to the wavelength routing module, had an
armored tubing so as to minimize ambient light ingress into the
fiber core along its length and at the connectors—this was a
key factor that enabled measurements to be made under bright
daylight conditions.

The wavelength routing module was similar in layout to
the design of a previous multispectral LiDAR [25] system
in that the spectral separation or demultiplexing of the four
wavelengths in the armored fiber was achieved using a plane
ruled reflection grating. The design of the optical system and
associated optomechanics of this module allowed flexibility
with the choice of wavelengths that could be accommodated
and ease of reconfiguration. Therefore, a grating was used as
opposed to an arrangement of spectral filters specific to each
wavelength channel. The optomechanics of the wavelength
routing module comprised a mix of custom and off-the-shelf
components. The grating spatially separated the multiwave-
length optical return, allowing each wavelength channel to be
coupled to its individual detector (D1 to D4 as shown in Fig. 1)
via a short length of optical fiber.

The configuration of the transceiver for operation at a single
wavelength, as in previous depth imaging field trials [33], [34],
included appropriate spectral filters in the receive channel in
order to achieve the necessary filtering of the optical return
signal. Ambient and solar background photons are a source of
noise in a single-photon counting system as they cause “false”
detection events at the detector. In previous configurations of
this sensor, a narrow bandpass filter (matched to the laser
wavelength) was typically used in conjunction with a short-pass
and/or long-pass filter to minimize out-of-band radiation being
incident on the detector. The filter combination was located
immediately in front of the lens used to couple the return
signal into the fiber connected to the detector. In this multiple-
wavelength configuration, no spectral filters were used on the
receive channel in the transceiver unit. The degree of spectral
filtering achieved with the 1200 lines per millimeter plane ruled
reflection grating, and the resulting spatial separation between
the wavelength channels due to the layout of the module,
meant that the out-of-band optical returns were sufficiently
discriminated and not coupled to the detectors.

The four detectors were commercial thick-junction-Si
Perkin–Elmer single-photon avalanche diode (SPAD) de-
vices with high quantum efficiency and approximately
400-ps FWHM timing jitter. The system temporal response for
each of the four individual wavelength channels is specified in
Table I. The PicoQuant HydraHarp 400 data acquisition module
collected data on four independent channels simultaneously
with a maximum aggregate count rate of 12 megacounts per
second, a 1-ps macrotime resolution, and a timing uncertainty
less than 12 ps. The dead time is less than 80 ns. The full
waveform timing data from the HydraHarp 400 are streamed
to the computer by a universal serial bus (USB) connection.
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TABLE I
SUMMARY OF KEY SYSTEM PARAMETERS

III. MSCL CALIBRATION AND MEASUREMENT

OF LIVE TREE SAMPLES

We calibrated the responses in each channel in time and
amplitude and then proceeded to acquire meaningful data from
tree samples. Previously, we conducted a series of measure-
ments on tree samples at ranges of 45 and 325 m, using a
single wavelength (842 or 1550 nm). We used these single-
wavelength LiDAR data to simulate a multispectral response
[29] using assumptions about material distribution and spectra.
In this paper, we are able to report the first-daylight finely
detailed (less than 1-cm resolution in x, y, and z) multispectral
measurement and analysis of data from small tree samples at

a standoff distance of 45 m. Furthermore, we have conducted
laboratory measurements of the spectral response of the tree
samples to validate the LiDAR measurement and parameter
inversion.

A. Calibration Experiments

For these measurements, calibration targets and leaf and
tree samples were mounted at a distance of 45 m from the
LiDAR system, as shown in Fig. 2. We used a 400-mm-
focal-length f/2.8 Canon objective lens which resulted in a
beam spot diameter of approximately 3 mm on the targets and
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Fig. 2. Photograph showing a small conifer sample used for the experiments
described here and several calibration targets, including the Spectralon panel.

samples. The pulse repetition rate was 2 MHz, and the total
average optical output power exiting the transceiver across all
four wavelengths (531, 570, 670, and 780 nm) was less than
200 μW. Four histograms, one for each wavelength, were
acquired simultaneously for each pixel over 20 s using a binning
size of 16 ps.

To ensure that the system gave stable operation, we con-
ducted LiDAR measurement of reflection from the calibration
target (i.e., a Spectralon panel from Labsphere) on all four
channels before and after each tree measurement. The panel
has a constant reflectance of greater than 99% between 531 and
780 nm. To ensure consistency of alignment, the panel was
mounted on a tripod and placed directly in front of the tree apex
for these measurements.

Fig. 3 shows an example of the system response, stable under
repeated measurement. In this and in subsequent figures, the
distance is measured from the sensor, and the zero position
is offset from the sensor origin by the standoff distance, ap-
proximately 45 m. First, there are temporal offsets, caused by
unequal electrical and optical fiber lengths in the system. These
are easily compensated by shifting the received tree and leaf
spectra into alignment. Second, the amplitudes are different,
so we normalize channel amplitudes for tree data using these
known Spectralon amplitudes. Third, the pulse shapes are
similar but of slightly different widths. This means that we
can use a distinct instrumental shape to process each channel
separately.

B. Collection of Data From Live Tree Samples

We collected data from several live tree samples. The data
presented here are from the sample and scanning pattern shown
in Fig. 4.

Two full waveform LiDAR signals were recorded on the tree
apex and on a patch of dense needle data, shown by the red
crosses. A 10-by-10 image was scanned along the approximate
grid shown from start to finish, i.e., by reversing the direc-
tion of the scan on each row. The pixel acquisition time was
20 s, i.e., the total scan time was approximately 34 min for
100 pixels. Fig. 5 shows a spectral response from the four
channels for pixel 64 (fifth from the right on the seventh row

Fig. 3. Temporal response of LiDAR system (log scale) to Spectralon reflec-
tion for all four wavelengths. This gives calibration data for temporal shift,
amplitude, and instrumental response of each channel. The FWHM of these
responses is dominated by the timing jitter of the SPAD modules.

Fig. 4. Photograph of conifer sample and scan area and sampling grid along
the LiDAR optical axis.

Fig. 5. Full waveform multispectral LiDAR data for a single pixel. This shows
multiple responses through the canopy and differences in the spectral ratios.

down, as pixel count starts at zero). The horizontal axis is scaled
to distance units (meters), but the origin is arbitrary just above
the tree apex.

Fig. 6 shows the accumulated photon count responses for
all 100 pixels, in which the bulk of the canopy returns is
between approximately 0.6 and 1.5 m and the ground plane
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Fig. 6. Full waveform multispectral LiDAR data for ALL 100 pixels. The
dotted lines show the recovered layer positions by the RJMCMC process (see
Section V-A).

return is at approximately 1.8 m. The last return is of low
amplitude because the tree crown is relatively dense. The dotted
lines shown in Fig. 6 are the result of processing described in
Section V. The tree height can be easily measured from such
returns as approximately 1.2 m.

Examining Fig. 5, there are clear differences between the
peak returns. The peaks at 0.7 and 1.2 m, for example, show
a marked difference in the magnitude of the 670-nm channel
with respect to the other channels. Only the 780-nm channel
gives a significant response at the 0.9-m peak. The comparative
reduction in amplitude of the 670-nm wavelength response at
0.7 m is consistent with a dip in the needle spectrum at that
wavelength (see Section IV). However, the accumulated pixel
response is, in general, a mixture of needle and bark response,
and we must consider light penetration and absorption in the
canopy. Therefore, there are inconsistencies between returns at
a single pixel or returns from different pixels.

In contrast, the accumulated response in Fig. 6 shows more
consistent behavior through the canopy. We might surmise that
any misalignment in a receiver channel (as these are separate)
might cause incorrect wavelength ratios for single pixels be-
cause the laser beam width is small, less than a needle length for
example. Hence, the two channels may not be recording exactly
the same material mixture. Nevertheless, accumulated sampling
over many pixels and peaks compensates for outlying single
point measurement and corresponds more closely to wider area
measurement.

IV. LABORATORY MEASUREMENT OF TREE SPECTRA

Having collected MSCL field data, we removed the tree to
the laboratory to conduct passive measurements of needle and
bark spectral reflectance (with an Analytical Spectral Devices
(ASD) FieldSpec PRO), as shown in Fig. 7. Our aim was
to obtain true spectra that could be used to constrain the
parameter inversion algorithms described in Section V and to

Fig. 7. Passive measurement of the tree sample for validation. On the left are
shown the stabilized light source and tripod-mounted spectrometer, with the
several needle samples. On the right are shown the tree sample and the marked
positions where the nine sets of needle samples were taken from the tree. Four
bark samples were also taken.

allow a direct comparison of NDVI measured by the MSCL and
the ASD.

Needle and bark samples were destructively sampled from
the nine labeled heights through the profile of the tree and
stacked densely in separate Petri dishes in random orientation.
For each spectral measurement, the Petri dish was stacked
on top of a further black Petri dish to be sure that the re-
maining light would be absorbed. As with the MSCL data,
at the beginning between each sample, a spectral measure-
ment was taken of the Spectralon panel. For each sample,
we took four measurements, rotating the sample by 90◦ after
each measurement to account for any orientation-dependent
reflectance. This rotation allowed the clustered fibers within
the bundle to view the entire sample within the dish. Without
the rotations, each cluster of fibers represents a slightly differ-
ent area.

The passive spectral measurements are plotted in Figs. 8 and
9. Within the region of interest, 531–980 nm, there are two key
findings. First, the needle reflectance shows the expected “green
peak” and “red edge,” and the data are well, but not exactly,
fitted by the Prospect model [35] which is used extensively to
model leaf and needle optical properties, as shown in Fig. 10.
This is consistent with the results by Malenovsky et al. [36]
who observed only slight differences between the Prospect
model and real Norway spruce needle data. To fit optimally
the laboratory data, we extended the original set of four to
eight wavelengths as that better allows us to define the “green
peak” (531 nm, 550 nm, 570 nm) and the “red edge” (670 nm,
710 nm, 750 nm, 780 nm), with an additional wavelength at
970 nm which corresponds to a water absorption dip. This
set of wavelengths retains the PRI and NDVI indices and is
recommended for future work, although detection at 970 nm
is challenging for silicon-based detectors. The bark or branch
material also exhibits a significant red edge, as the samples were
flecked with needle material. We present direct comparisons
between the LiDAR and laboratory data and show how known
spectra can be used in the recovery of abundance profiles in
Section V.
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Fig. 8. Measured needle spectral reflectances from the nine samples, acquired
by the apparatus shown in Fig. 7.

Fig. 9. Measured bark spectral reflectances from the four samples, acquired
by the apparatus shown in Fig. 7.

Fig. 10. Comparison of the (solid black line) true and (dashed blue line) best
fitting Prospect spectra to the needle data. The rms fitting error is 2.36.10−2. It
is not possible to fit the spectrum exactly by the Prospect model.

V. PARAMETER INVERSION FROM AN ARBOREAL SAMPLE

The purpose of the proposed parameter inversion method-
ology is to combine the recovery of tree structure and mate-
rial abundance with spectral variation that informs about tree
physiology. However, four wavelengths are not sufficient to
fully characterize the recovery of both abundance and needle

Fig. 11. Representation of forest or tree structure by a layered model. Unlike
earlier models, e.g., [38], these layer positions are not fixed but recovered by a
variable dimension analysis. This allows the parameter vector and synthesized
response to adapt to the natural structure to give an excellent correspon-
dence between the raw data and synthesized representation, as shown in
Fig. 12.

physiology. The problem is ill posed. First, the Prospect model
that we use to model the spectral response has at least six
parameters; second, the relative abundance of woody elements
affects the retrieval of physiological data [37]. Hence, we
demonstrate that we are able to recover profiles that relate
to tree structure and abundance, assuming known spectra. We
further demonstrate that we can recover directly an NDVI
profile using MSCL and compare this directly with laboratory
ground truth.

A. RJMCMC Analysis to Recover Layer Positions and
Signal Amplitudes

We now describe and evaluate the application of full wave-
form multispectral LiDAR analysis to the data of Fig. 6 to
recover both the area distribution and the relative abundance
of needle and bark material through the depth profile, using the
reasonable a priori knowledge that there will not be significant
variation in needle material in a single open sample, verified
by laboratory measurements. The analysis here of multispectral
data acquired from real tree samples in an outside environment
highlights both what can be achieved and what is necessary to
extend that analysis.

The process that we have adopted is to use the known spectral
reflectance data from the samples to recover abundance and
needle/bark area index profiles. We first apply the reversible
jump Markov chain Monte Carlo (RJMCMC) analysis de-
scribed in [29] to the 780-nm wavelength response. The explicit
assumption is that we can represent the depth profile through
the tree by a series of instrumental LiDAR returns from a set
of “layers” at different depths, as shown in Fig. 11. In a tree
or forest, there are countless surface responses from leaf, bark,
and other surfaces, but we can represent the layered response
by a series of virtual surfaces at depths recovered by RJMCMC
analysis and then associate both structural and physiological
parameters with each layer.

The value recorded in each bin of each wavelength in Fig. 6
is a random sample from a Poisson distribution that depends on
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the sample parameters

p(yz,λ|k, ω,∅) =
k∑

m,1

R∑
l,1

ωz,lf(yz,λ|k,∅m,l) +Bλ (1)

where

• yz,λ is the photon count within a bin, indexed by z
(distance) and λ (wavelength).

• k is the variable number of layers.
• R defines the number of materials (e.g., needles and bark)

of the mixture.
• ϕm,l is the parameter vector of the m th layer response

for the l th component of the mixture. φl, [φz, φλ], where
φz defines the temporal signature and φλ defines the
spectral signature. The temporal signature is defined by the
instrumental response, and the spectral signature is defined
by the Prospect model.

• f(.|.) describes the form of the photon impulse response
function which is modeled by a piecewise exponential
function explained fully in [29], whose shape parameters
can differ between wavelength channels and is fitted from
the Spectralon response. The normalized impulse response
at depth z0 is weighted by an amplitude factor β.

• ωz,l defines the fraction or abundance of the l th compo-
nent at distance z. These satisfy the conditions ωz,l > 0
for all z, l, and ΣR

l,1ωz,l = 1.
• Bλ is a background and dark photon count level, constant

in all bins at the same wavelength.
• p(.|.) is a conditional probability distribution function.

The spectral response depends on both the relative abun-
dance and the spectral signature of each mixture component.
Assuming that the observations recorded in each channel are
conditionally independent, given the values of the parameters,
and each record is an independent measurement, the joint
probability distribution of y is defined as

L(y|k, ω, φ) =
Z∏
z,1

R∏
l,1

e−p(yz,λ|k,ω,∅) p(yz,λ|k, ω,∅)yz,λ

yz,λ!

.

(2)

As it is not possible to have negative values of yz,λ and
because the product tends to zero, we minimize -2ln L(c/φ)
as is the common practice. To make inferences about the
dimension k and the consequent parameter vector φ of our
model given the data y, the likelihood L is combined with
prior information P . This is summarized in a posterior or target
distribution

π(k, ω, φ|y) = L(k, ω, φ|y)P (k, ω, φ)∫
L(k, ω, φ|y)P (k, ω, φ)δ(k, ω, φ)

. (3)

With reference to Algorithm 1, Stage 1, at each iteration of
the RJMCMC chain, there are two steps, a parameter-updating
step with fixed dimension and a dimension-changing step that
allows jumps between different numbers of returns. This latter
increase or decrease can be achieved by a birth of a new return,
a splitting of an existing return, a death of an existing return, or
a merging of two existing returns.

Algorithm 1: The two-stage RJMCMC process to define the
best fitting parameters, i.e., the peak positions and amplitudes
and constant background level, that best represent a layered
response using the best fitting Prospect model for needle re-
flectance and the measured bark reflectance.

Stage 1: Using a single wavelength: unknown number of
layers, positions, and amplitudes

Fixed dimension (known number of layers, k):
• Update fixed parameter vector:

◦ Update amplitude vector, β
◦ Update position vector, zo

• Update background value, B
Change of dimension, k:

• Birth/split of return/layer, increments k
• Death/merge of two returns/layers, decrement k

Stage 2: Using all wavelengths (fixed positions, known k)
• Update fixed parameter vector:

◦ Update amplitude vector, β
Update background value, B

Using dimension-varying RJMCMC gives a much better
representation of the data than a fixed equally spaced layer
model [38] as the response is by no means uniform and is a
convolution of the surface and instrumental responses. All four
wavelengths have coincident beams, but the RJMCMC process
involves random sampling of the posterior distribution. There-
fore, if we process each wavelength response independently,
we would expect to obtain different layer positions in each
channel, even though the peak responses coincide generally as
shown in Fig. 6. Therefore, we apply RJMCMC to the largest
spectral return, invariably 780 nm, and then reapply an MCMC
algorithm at Stage 2 to the other channels with fixed dimension
and position vector, recovering only the return amplitudes.

This analysis resolves the positions and amplitudes as shown
in Table II; the positions are the dotted lines illustrated in Fig. 6.

As the bin width is 16 ps, the peak separation of one
bin corresponds to 2.4 mm (go–return). We have shown that
TCSPSC technology can resolve effectively to 1.7 cm [29].

In these experiments, we do not have ground truth on surface
positions (many of which may move in wind), and each layer
response is an integration of many individual surface returns.
However, Table II and Fig. 6 do show that the structural
signature of the sample is approximated to a z-resolution on
the order of centimeters, in contrast to systems based on much
wider laser pulses [16]. The fits of the parameterized wave-
forms to the raw photon count data are excellent, as shown in
Fig. 12, which shows a root mean square (rms) fitting error of
3.01 photons for the 780-nm data.

B. Determining the NDVI Profile in Comparison With the
Laboratory Data

The data shown in Table II are not normalized; it has not
been scaled by the known calibration response of the Spectralon
data at each wavelength shown in Fig. 3. Furthermore, the
calibration data have been taken for a single pixel, but the data
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TABLE II
DIMENSION, POSITION, AND AMPLITUDE VECTORS FOR NORDMANN FIR

Fig. 12. Comparison of the raw data (780 nm, blue) against a waveform
synthesized from the estimated parameters of Table I. The rms fitting error is
3.01 photons.

of Table II are summed over 100 pixels, so this must be taken
into account. Doing this, one can determine the total relative
reflectance of the tree sample against the Spectralon (assumed
100%) either by summing the fitted amplitudes or total photons
returned.

The total reflectance levels are low but can be compared with
data shown in [1] in which the measured absolute reflectance
across the spectrum is shown to be much lower in coniferous
than in deciduous forest canopies. Although we are operating at
a much smaller scale, our measurement is on the central portion

Fig. 13. Variation of NDVI as a function of depth from the top of the tree for
LiDAR and laboratory data.

of the tree, and it has been observed that clumped canopies
exhibit greater porosity and, hence, less reflectance [39].

Using the data from Table I and Fig. 8, we can compare the
NDVIs of the needle samples as a function of depth into the
canopy, as shown in Fig. 13.

The LiDAR data shown in green are numbered by layer, not
equally spaced, and the yellow bars represent the approximately
corresponding nine sample positions shown in Fig. 7. As one
might expect from data such as that shown in Fig. 5, there is
much greater standard deviation (μ = 0.713, σ = 0.226) in the
LiDAR than in the laboratory (μ = 0.766, σ = 0.0132) data,
but a standard t-test shows no significant difference between
the computed mean NDVI values at the 1% level. Therefore, we
can infer that the LiDAR measurement of NDVI corresponds to
in situ measurements, but further experiment would be needed
to see if we can extract small variations in photochemical profile
data as shown in simulation [30].

VI. DETERMINING THE AREA AND ABUNDANCE

PROFILES USING PARAMETER INVERSION

With known spectra, the area indices of needle and bark
can be estimated from a set of overdetermined linear equations
expressed in matrix notation, minimizing the norm ‖ρA− β‖2
at each layer of the tree
⎛
⎜⎜⎜⎝

ρ531ni ρ531bi

ρ570ni ρ570bi

ρ670ni ρ670bi

ρ780ni ρ780bi

⎞
⎟⎟⎟⎠

(
An

Ab

)
=

⎛
⎜⎜⎜⎝

β531
i

β570
i

β670
i

β780
i

⎞
⎟⎟⎟⎠ , i = 1 . . .m (4)

where ρλni is the needle, ρλbi the bark reflectivity of the i th layer
at wavelength λ, An/b is the area of needles or bark propor-
tional to the Spectralon area, having assumed 100% Lambertian
reflectance, βλ

i is the measured signal return amplitude at the
corresponding wavelength and layer, and m is the number of
layers recovered by the RJMCMC algorithm. These latter two
terms are those in Table II, and the reflectance matrix is that
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measured in the laboratory. (Of course, measuring these terms
with respect to a known calibration target is not possible in
airborne laser scanning, in which case it is necessary to compute
the equivalent (to the Spectralon panel) response by use of the
laser radar equation [39].) Hence, we apply Algorithm 2. This
processes each layer iteratively, as part of the light is absorbed
and reflected at each layer, part of the light is transmitted
unaltered through the layer gap fraction, and, then, a small
adjustment is made for needle transmittance. The measured
spectra of Figs. 8 and 9 are used to compute these fractions.

Algorithm 2: Estimation of leaf and bark area index at
successive layers. Gap refers to the layer gap area. Tr, Re, and
Ab refer to material transmission, reflectance, and absorption so
that light transmitted through the needles is added to the light at
the next layer. It is assumed that no light is transmitted through
bark.

λj = {λ1, . . . , λn}, ∀ i = 1, . . .m
for each layer, i = 1, . . . , k {

compute projected An and Ab using (4)
compute actual needle and bark areas using

estimates of projected area, relative reflectance
for each λ (compute light transmitted to next layer)

{
Gap = 1− (An +Ab)
Trλni = 1− (Reλni +Abλni)
Ii+1 = Gap ∗ Iλi + Trλni ∗ Iλi

}
}

However, there are several problems in forming an exact
model of reflection in comparison with a calibration target or,
indeed, using the laser radar equation. First, the base assump-
tion is that needles and bark are randomly distributed in each
layer, which is certainly not the case in practice as there are both
clumping and correlated structure between layers. Smolander
and Stenberg [41], [42] have studied the bidirectional re-
flectance distribution function (BRDF) of conifer samples and
further studied light interception and clumping effects within
conifer shoots to compute shoot silhouette area (SSA), which
varies according to the angle of view. As an overall measure,
they measured a spherically averaged ratio of intercepting SSA
to total shoot area of 0.141, but at the normal direction, for the
LiDAR, this is approximately doubled (see [42, Fig. 5]). To
a first approximation, we use a ratio of 0.25, equivalent to a
multiplier of the recovered projected area by 4 to get equivalent
needle area.

The second problem is that measuring a response with re-
spect to a calibration implies a normal Lambertian reflecting
surface. In practice, the needle and bark distributions are not
normal to the LiDAR axis. For example, North [43] suggests
for Sitka spruce a leaf angle distribution, (0.15 0.20 0.18 0.15
0.13 0.09 0.05 0.03 0.02), in 10◦ increments from 0◦–90◦ to
the LiDAR axis. For Lambertian reflectance, the reflected light
intensity would be proportional to the cosine of the LiDAR to
surface normal angle, but Kaasalainen and Rautiainen [44] have

Fig. 14. Measured area profiles for leaf and bark as a function of canopy
depth. These are measured as m2/m2 at the irregularly spaced layer positions
shown in Fig. 6. This has no allowance for occlusion. The horizontal axis refers
to the layer index.

shown that this is not a particularly good model for individual
pine needles, as Greiner et al. [45] did for maple leaves. For the
pine needles, there is no convenient analytic expression, but it
was observed, for example, that there was a significant increase
in measured needle brightness (1.13–1.79) at 0◦ compared to
3◦–4◦ which is suggestive of significant specularity. We can
approximate the observations of Kaasalainen and Rautiainen
[44] by a Phong model with cos (θ) and cosα(θ) terms, and
combining this with the interpolated needle distribution of
North gives an approximate multiplier of 1.7 in the intensity of
the needle model in comparison with the Spectralon target. In
other words, the combination of a greater proportion of leaves
aligned near the normal angle to the LiDAR beam with a Phong
reflectance function based on single needle measurements over-
estimates the area.

A third problem is that the LiDAR has coaxial source and
sensor geometry. A further correction factor can be applied to
allow for occlusion, i.e., the probability of light interception of
light with material at layer i is affected by the area of light
interception at all the previous layers, 1 . . . (i− 1). We show
results with and without this correction in Figs. 14 and 15,
respectively.

Finally, there is the problem of multiple reflections. The
coincident source-detector geometry with a focused spot size of
approximately 5 mm means that backscatter from other sources
or multiple reflections are very unlikely [25] in comparison with
wide footprint LiDAR systems. Furthermore, in the simulation
of Sitka spruce, Hancock [31] observed that the effect of
multiple scattering was relatively small, increasing slightly the
apparent reflectance but not affecting the overall shape of the
waveform as the interreflection path lengths are very small
within a single shoot.

The application of the algorithm to the real multispectral data
gives the leaf and bark area profiles shown as the ratio of area
of material to total area in each layer in Figs. 14 and 15. To
the best of our knowledge, this is the first attempt to analyze
such multispectral data in this manner, and the factors that
we have discussed show that there is considerable uncertainty
in the exact interpretation. We apply the SSA correction but
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Fig. 15. Measured area profiles for leaf and bark as a function of canopy
depth. These are measured as m2/m2 at the irregularly spaced layer positions
shown in Fig. 6. This assumes a random distribution of areas in each layer so
that subsequent layers have occluded material.

have not allowed for the possible hotspot effect caused by leaf
inclination and specularity nor the lost light through multiple
scattering outside the line of sight, as both are more speculative
and cancel each other approximately. We show data that ignore
and allow for occlusion.

The results presented here, while variable and not directly
validated in this study, do indicate that taking occlusion into
consideration presents a distribution of foliage and bark con-
sistent with previously published material [46], which lends
support to the processing sequences presented here. However, a
rigorous validation of this retrieval is desirable.

VII. CONCLUSION

We have constructed a novel multispectral LiDAR instrument
based on a supercontinuum laser source and time-correlated
photon counting receiver technology designed specifically to
recover structural and physiological parameters from tree sam-
ples. Using that instrument, we have scanned a small Nordmann
fir sample and extracted full waveform data at four wavelengths
corresponding to the NDVI and PRI indices. We have compared
the NDVI depth profile measured by the system with validatory
laboratory measurements using a spectrometer to show good
agreement.

We have further developed our RJMCMC methodology for
the analysis of LiDAR waveforms to interpret the multispec-
tral data. Using a single wavelength, the analysis is able to
resolve single surface depth returns to centimeter resolution,
well in excess of current deployed LiDAR instrumentation and
associated algorithms for their interpretation. Using multiple
wavelengths, we have recovered abundance profiles and area
indices as a function of depth into the sample. Our layered
model to represent the crown or canopy is also innovative, as
it can adapt to different tree structures by varying the layer
positions to fit the dominant foliage patterns, as shown by the
remarkably good fit of the layered model to the real data. As
yet, we do use a number of constraints and assumptions about
the distribution of needle orientation, the needle BRDF, and
the progressive transmittance of light between layers. However,
our results confirm our own previous work on monochromatic

LiDAR signals and multispectral simulations to demonstrate
that MCSL is a serious option to combine structural and
physiological data gathering from arboreal samples. As far
as possible, we have also compared our results with other
studies in the literature, and these also show consistency of
interpretation.

There are several areas for further investigation. We have
observed variations in the spectral response at different pixel
sites. Bearing in mind that we are (almost) point sampling with
a 3-mm-diameter beam, this could well just be due to different
material impacts, but it does raise questions about the validity
of detailed simulations by ourselves and other authors as we
are measuring real samples at resolutions comparable to the
graphical models which use polygonal data (e.g., Onyxtree at
www.onyxtree.com).

We have also explained that the full parameter recovery
problem is ill posed with only four wavelengths, as variation
in spectra can be confused with different material mixture
proportions. We propose that a deployed instrument would
benefit greatly from an extended set of eight wavelengths, as
discussed in Section IV. Furthermore, we aim to measure from
full canopy, as opposed to single tree data, as a first step toward
eventual possible air and space deployment which we have con-
sidered in separate studies. In such a deployed instrument, it is
necessary to ascertain the most efficient sampling methodology.
Currently, high power lasers produced integrated returns from
wide footprints at sparsely sampled [in (x, y)] locations. If a
high repetition rate using photon counting is deployed, one
would acquire much more closely spaced random samples from
a continuously scanned area.
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