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Improving Argos Doppler Location Using
Multiple-Model Kalman Filtering
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Abstract—The Argos service was launched in 1978 to serve en-
vironmental applications, including oceanography, wildlife track-
ing, fishing vessel monitoring, and maritime safety. The system
allows for worldwide near-real-time positioning and data collec-
tion of platform terminal transmitters (PTTs). The positioning
of the PTTs is achieved by exploiting the Doppler shift in the
carrier frequency of the transmitter as recorded by satelliteborne
Argos receivers. Until March 15, 2011, a classical nonlinear least
squares estimation technique was systematically used to estimate
Argos positions. Since then, a second positioning algorithm using a
multiple-model Kalman filter was implemented in the operational
Argos positioning software. This paper presents this new algo-
rithm and analyzes its performance using a large data set obtained
from over 200 mobiles carrying both an Argos transmitter and a
GPS receiver used as ground truth. The results show that the new
algorithm significantly improves the positioning accuracy, partic-
ularly in difficult conditions (for class-A and class-B locations,
in the Argos terminology). Moreover, the new algorithm enables
the retrieval of a larger number of estimated positions and the
systematic estimation of the location error.

Index Terms—Argos system, Doppler location, interacting mul-
tiple model (IMM) Kalman filter (KF), least squares (LS) estima-
tion, target tracking.

I. INTRODUCTION

THE ARGOS system allows for worldwide near-real-time
positioning and data collection of platform terminal trans-

mitters (PTTs) using dedicated receivers on board a number
of polar-orbiting satellites. Argos PTTs transmit short (256 b)
messages at a frequency of 401.650 MHz ± 30 kHz. Position-
ing leverages the Doppler effect, affecting the carrier frequency
of the messages recorded by any satelliteborne Argos receiver.
Until March 15, 2011, a classical nonlinear least squares (LS)
estimation technique was used to estimate Argos positions. This
technique requires the reception of at least two messages during
a single satellite pass to estimate a position and a minimum
of four messages to estimate the positioning error. Experience
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shows that the standard deviation of the Argos positioning error
typically ranges from tens of kilometers when only two or three
messages are received on a satellite pass to less than 250 m
in most favorable cases when a larger number of high-quality
messages are received. Unfortunately, occurrences of such fa-
vorable cases are rare for some important Argos applications
such as wildlife tracking. Animal tracking indeed often imposes
the use of highly miniaturized PTTs at low output power in
difficult environments (for example, under dense forest covers
or at the surface of rough seas). Under such conditions, Argos
positioning can incur large errors and thus yield trajectories
with a well-visible noise.

Thus, several methods have been proposed to, a posteriori,
reduce errors in Argos positions and thereby obtain more re-
alistic smoothed trajectories. Some authors proposed methods
rejecting unlikely locations based on the detection of abnormal
velocities [1], [2], direction changes [3], or ad hoc trajectory
smoothing techniques [4], [5]. Such methods only provide a
limited handling of observation errors and no inference ca-
pability of the true trajectory. On the other hand, likelihood-
based filtering approaches [6], [7] provide a methodological
framework to reduce positioning errors without rejecting lo-
cations. They typically use the flexible state-space formulation
in which realistic prior observation and movement models are
combined with measurements so as to estimate the location
and its positioning error. While the state-space approach was
systematically applied to the trajectory provided by the LS
processing, it can also be used to estimate PTT locations and
their errors directly from Argos frequency measurements. Such
a strategy has actually been devised and implemented in the
operational Argos processing chain. Its results, based on a
multiple-model Kalman filter (KF), have been made available
to all Argos users since March 15, 2011.

This paper presents this new positioning algorithm and an-
alyzes its performance using a large data set obtained from
over 200 mobiles carrying both an Argos transmitter and a
GPS receiver used as ground truth. This paper is devised to
be accessible to a large spectrum of Argos users wanting to
better understand the location processing. The results show
that the new algorithm significantly improves the positioning
accuracy, particularly in difficult conditions, i.e., when less than
four messages per satellite pass are received. In addition, the
new algorithm is able to estimate a position and its associated
error even when a single message is received on a satellite pass,
increasing the amount of distributed locations.

Notations are standard: P (·), p(·), and E[·] represent a
probability, a probability density function (pdf), and an expec-
tation, respectively. N (x; x̄, P ) stands for the real Gaussian
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distribution with mean x̄ and covariance P . The transpose
operator is denoted by ·T.

II. LS ARGOS LOCATION PROCESSING

A. Argos Location Principle

The Argos system can locate a PTT anywhere on Earth by
exploiting the Doppler effect, i.e., the frequency shift induced
by the relative motion between the satellite and the platform.
Let �B be the platform location, �VB be its velocity, �S be
the satellite location, and �VS be its velocity in the standard
coordinate frame of WGS84 [8]. The relationship between the
transmission frequency ft of the platform and the frequency fr
received at the satellite writes as

fr =H(ft, �B, �S, �VB , �VS) + v

= ft

(
1− ( �VS − �VB) · �u

c

)
+ v (1)

with c being the speed of light, �u = ((�S − �B)/‖�S − �B‖) being
the unitary vector directed from the platform to the satellite,
and ‖ · ‖ being the Euclidean norm. The zero-mean Gaussian
noise v captures measurement uncertainties. The scalar product
( �VS − �VB) · �u accounts for the relative radial velocity between
the PTT and the satellite. Since ‖ �VB‖ � ‖ �VS‖ ≈ 7 km · s−1,
the platform speed is neglected in (1).

In the observation function H, the satellite ephemeris �S and
�VS are given. Moreover, the platform is assumed to lie on the

terrestrial reference ellipsoid of WGS84 so that �B = �B(λ, φ, h)
with λ being the platform longitude, φ being its longitude, and
h being its altitude. For marine platforms, the altitude over
this ellipsoid is set to zero, while for terrestrial platforms and
birds, the altitude is approximated by the digital terrain model
GTOPO30 [9]. The remaining unknowns are the frequency ft
as well as the platform longitude λ and latitude φ. Henceforth,
H(ft, �B, �S, �VB , �VS) will be denoted H(λ, φ, ft).

The frequency measurements can only be collected during
satellite passes. A pass is the time during which a platform
remains in the visibility circle of a satellite (15 min maxi-
mum). For a given PTT, measurements belonging to the same
satellite pass are grouped together. These batches of frequency
measurements are then processed sequentially considering that
the location and the transmission frequency of the platform are
fixed during a pass. The time index k = 0, 1, . . ., denotes the
satellite pass, and the associated location is given at the average
date of the associated measurements. As the satellite position
and velocity are specific to each measurement of a pass, let Hi

k

be thereafter the Doppler function of the ith measurement of
the kth pass.

Knowing the transmitting frequency, the set of possible plat-
form locations upon receipt of one message is a curve given by
the intersection of the Earth surface with a cone of apex �S and
axis �VS . Under the assumption that there are no measurement
uncertainties and with more than one message, the solution set
reduces to two locations on Earth, lying at the intersection of all
solution cones: the nominal (“true”) and the mirror (“virtual”)

Fig. 1. Two possible Argos locations are at the intersection of Doppler
solution cones with the Earth surface.

locations (see the example in Fig. 1 for two measurements). The
two solutions are symmetrical with respect to the subsatellite
track, and unfortunately, they are not a priori distinguishable.

B. LS Fitting

LS problems arise in data fitting. The aim is to estimate n
unknown parameters of an observation model hk from mk ≥ n
imperfect measurements. Let xk ∈ R

n be the vector of param-
eters and zk ∈ R

mk be the vector of observations. The system
to solve writes as

zk = hk(xk) + vk (2)

where vk ∈ R
mk represents a random Gaussian measurement

error with known mean v̄k = 0 and variance Rk. The sum of
the squared residuals is defined as the random variable

Sk(xk) = ‖zk − hk(xk)‖2R−1
k

(3)

with ‖U‖2W = UTWU . The LS estimator provides the estimate
x̂k by minimizing the expectation of Sk with respect to xk.

In the localization context, xk = (λk, φk, ft,k)
T is a vector

made of n = 3 unknowns, and zk is a set of mk frequency
observations. The problem of estimating the location and the
transmitting frequency writes as a nonlinear equation system
with hk(xk) = [H1

k(xk) · · ·Hi
k(xk) · · ·Hmk

k (xk)]
T and Rk =

σ2
kImk

, where σk stands for the standard deviation of the
measurement noise. The shape of Sk is composed of two
minimums which are symmetrical about the ground track of
the satellite and centered on the image and nominal positions.
As the Doppler observation function hk is nonlinear, the LS
estimator has no closed-form solution. To handle nonlinearities,
we proceed iteratively. The observation function is first approx-
imated by a linear expression

zk = hk(xk) + vk ≈ hk

(
x̂0
k

)
+H0

kδx
0
k + vk (4)

with x̂0
k being an initial estimate of the true solu-

tion, δx0
k = xk − x̂0

k, and H0
k = (∂hk/∂xk)|x̂0

k
∈ R

mk×n.
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The squared residual becomes Sk(xk) ≈ S ′
k(δx

0
k) = ‖zk −

hk(x̂
0
k)−H0

kδx
0
k‖2R−1

k

, and its expected value reaches a min-

imum w.r.t. δx0
k at

δx̂0
k =

(
H0

k
T
R−1

k H0
k

)−1

H0
k
T
R−1

k

(
zk − h

(
x̂0
k

))
. (5)

Then, the next solution estimate x̂1
k = x̂0

k + δx̂0
k is used as the

initial guess to compute x̂2
k and so on. This iterative refinement

amounts to the Gauss–Newton method [10]. It is stopped at
iteration j when the variation of S becomes small enough or
when a maximum number of iterations are reached.

The initial position guess (λ̂0
k, φ̂

0
k) in (4) is calculated using

the geometric location principle [11, Sec. 3.2]. The geometric
location computes two initial positions: the first one close to
the nominal location and the second one close to the mirror
location (it is not known at this stage how to distinguish them).
Moreover, the initial estimate f̂0

t,k of the frequency emitted
by the PTT is its last estimated value. The aforementioned
iterative refinement is then successively applied to each of the
two initial estimates using all the messages of the pass, which
leads to two solutions. In order to select the nominal solution
and to assess its likelihood, four plausibility tests, described in
[11, Sec. 3.2], are applied. If the platform is seen for the first
time, no estimate of the transmission frequency is available to
initialize the algorithm. In this case, the algorithm scans the
frequency bandwidth by steps of 500 Hz around the average
frequency of the received messages. For each frequency value,
it performs the geometric location and refinement. Then, among
all the resulting candidate solutions, the one with the smallest
residual value is kept.

In practice, the Argos location algorithm adapts the refine-
ment step depending on the number of measurements.

1) Computations With at Least Four Measurements: The
problem is overdetermined because there are more measure-
ments than unknown parameters. Thus, an LS estimate of
(λk, φk, ft,k)

T can be computed for both the nominal and
mirror solutions as well as the associated covariance matrix of
the error

cov
(
xk − x̂j

k

)
≈

(
σ̂j
k

)2 (
Hj

k

T
Hj

k

)−1

(6)

with the estimated observation noise standard deviation

σ̂j
k =

√√√√S
(
x̂j
k

)
mk − n

. (7)

2) Computations With Three Measurements: In this case,
m = n and the LS method is still directly applicable. However,
as the estimated observation noise in (7) is undefined, the only
deliverable information about the error is the geometric dilution
of precision (GDOP)

GDOP ≈
√
tr

((
Hj

k

T
Hj

k

)−1

|λ,φ
)

(8)

where tr(X) is the trace of the matrix X and X|λ,φ is the
matrix X reduced to its spatial part (λ, φ). The GDOP value

depends on the number of messages received and how they are
distributed within the satellite pass. If the observation geometry
is favorable, i.e., if a plethora of messages uniformly distributed
within the pass are available, the value of GDOP will be small.
On the contrary, if only a few messages are recorded during a
short part of the pass, the observation geometry will be bad and
GDOP will take high values.

3) Computations With Two Measurements: The system is
underdetermined with an infinite number of solutions. Hence,
we consider that the transmission frequency is known and equal
to its last estimate. We have to solve again a nonlinear system
with as many unknowns as equations.

C. About Location Errors

An interesting point is that the errors associated with the
Argos location estimates are given as an error ellipse with a
semimajor axis a, a semiminor axis b, and an angle θ (from
north when heading east). These quantities are derived from
the covariance matrix stemming from (6) for at least four
messages. For convenience only, users are also provided with
an “equivalent error radius” R equal to

√
ab to easily classify

locations according to their accuracy. However, as errors are
seldom isotropic, one must keep in mind that the equivalent
error radius may not constitute a faithful characterization.

The locations are assigned a level of accuracy among seven
location classes (LCs): 3, 2, 1, 0, A, B, and Z. For a satellite
pass with a minimum of four messages, an error estimate can
be computed and is used for the classification. Locations with
an error radius under 250 m belong to LC 3, between 250 and
500 m to LC 2, between 500 and 1500 m to LC 1, and beyond
1500 m to LC 0. For a satellite pass with three or two messages,
the estimated accuracy is unknown, so locations are tagged as
LC A and LC B, respectively. Locations where the LS iterative
refinement fails to converge are tagged as class Z.

D. Limitations of the LS Location Processing

The LS location processing has three main limitations.
1) Low Accuracy Under Difficult Conditions: While posi-

tioning errors of 250 m can be reached in best case scenarios,
comparisons with GPS positions showed that many applications
do not display such accurate locations [12]–[14]. For example,
the oscillator’s medium-term stability is strongly conditioned
on the temperature gradients experienced by the PTT during a
satellite pass. These phenomena lead to larger uncertainties on
the estimated trajectories. They are amplified when the average
number of received messages is low because measurements are
less well distributed within the pass and the estimated frequency
cannot be updated by the location algorithm (one falls in the
case of computations with two measurements). Other sources of
errors contribute to inaccuracies, such as the movement of the
PTT between transmissions or ambient and ionospheric noise
around the 401.650-MHz frequency.

2) Mirror Locations: The location algorithm provides two
solutions and tags the most plausible one as the “nominal” lo-
cation. Sometimes, the algorithm makes the wrong decision and
outputs the mirror location as first solution. Mirror locations can
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correspond to errors of 5000 km, which is the diameter of the
visibility circle of the satellites.

3) No Error Estimation for Locations With Three or Two
Messages: When the number of messages received by the
satellite is lower than four, no error estimation is given. This
includes locations tagged as LC A and LC B and results in the
use of heterogeneous data by the users.

III. NEW LOCATION ALGORITHM: MULTIPLE-MODEL

KALMAN FILTERING

A. KF Applied to Argos Location

The localization problem can be formulated as the estima-
tion of the state of a dynamic system. The true state x =
(λ, φ, ft, . . .)

T of the platform includes the location, the trans-
mission frequency, and possibly unknowns of higher order
(velocity, frequency drift, . . .). At initial time, the distribution
of x0 is characterized by p(x0) = N (x0; x̂0|0, P̂0|0). The state
dynamics p(xk|xk−1) is described by the Markov model

xk = fk(xk−1) + wk (9)

with k being the time index of the satellite pass, fk being
the state transition function, and wk ∼ N (wk; w̄k, Qk) be-
ing the process noise. The observation pdf p(zk|xk), which
links the observed frequency measurements zk with the state
vector xk through the Doppler observation function hk, directly
comes from the output equation

zk = hk(xk) + vk (10)

where vk ∼ N (vk; v̄k, Rk) terms the measurement noise. For
(9) and (10), the sequences {h·, v̄·, R·} and {f·, w̄·, Q·} are
given, and the noises wk and vk are assumed white, mutually
independent, and independent of x0.

The aim is to approximate over time the posterior pdf
p(xk|z1:k) of the state xk conditioned on the measurements
z1:k = (z1, . . . , zk). If the state and output equations (9) and
(10) are linear, then under the aforementioned Gaussian as-
sumptions, the posterior pdf p(xk|z1:k) is also Gaussian. It can
be then reduced to its first two moments x̂k|k = E[xk|z1:k]
(equivalently the location estimate of the platform) and the
posterior covariance Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)

T|z1:k]
(equivalently the location error covariance) of the state xk. In
this case, the moments can be analytically determined by the
KF [15]. The KF first propagates forward in time the last state
estimate x̂k−1|k−1 and the last covariance estimate Pk−1|k−1

using only the prior dynamics model. The predicted mean
x̂k|k−1 and covariance Pk|k−1 are then corrected considering the
information brought by the measurement zk in order to build
x̂k|k and Pk|k. The KF is an unbiased estimator and computes
also the minimum mean-square error estimate as it minimizes
the expectation E[‖xk − x̂k|k‖2] = tr(Pk|k).

The KF has proved particularly fruitful in target tracking
and was originally designed for linear systems, but several
extensions have been proposed to handle nonlinearities. The
widespread extended KF [16] propagates the posterior co-
variances by performing a first-order Taylor expansion of the

transition/measurement models around the most recent esti-
mate/prediction of the state. More recently, the unscented KF
[17], [18], which performs a statistical linearization based on
the sigma-point (or unscented) transformation [19], was proved
to give better results, in both theory and practice. For numerical
issues, we use its square root implementation [20].

Compared with LS fitting, calculations can be made regard-
less of the number of measurements and enable a systematic
characterization of the estimation error through the posterior
covariance Pk|k. Concretely, location estimates calculated with
three and two messages (tagged as classes A and B, respec-
tively) are associated with an error covariance, and locations
computed from the reception of a single message can now be
computed (tagged as class B too). The filter outputs a unique
solution. Moreover, there is no need to assume that the trans-
mission frequency remains identical between two consecutive
satellite passes when less than three messages are recorded. As
previously, the location is tested to check its likelihood before
being distributed to Argos users.

B. Bank of KFs: Multiple-Model Approach

Kalman filtering requires prior knowledge on how a location
at time k relates to a location at time k + 1. As Argos is used to
track a wide variety of mobiles, one cannot be very specific
about this relation (the so-called dynamical model), and the
most sensible is to assume that λ and φ undergo a random walk.
Movement models based on a random walk process and its vari-
ations have been extensively developed in [21] for biological
applications. As for the frequency, a major assumption of the
Argos system is that the PTT’s internal oscillator frequency is
stable over time, provided that the ambient temperature does
not vary too much. Thus, the frequency is assumed identical on
average between two consecutive locations whatever the motion
model but is affected by an additive stationary noise Vf which
captures the effects due to temperature gradients. The complete
dynamical model thus reads as

xk = xk−1 + wk (11)

where

w̄k = 0 Qk =

⎛
⎝ 2DλΔtk 0 0

0 2DφΔtk 0
0 0 Vf

⎞
⎠ (12)

with Δtk = tk − tk−1 being the elapsed time since the previous
satellite pass and xk = (λk, φk, ft,k)

T. The diffusion parame-
ters of the random walk are Dλ = Dφ = D. The 1σ probability
surface of the next platform location x is proportional to
2DΔtk.

Directed movements of the platforms are well modeled with
a correlated random walk (CRW) which is a random walk on
the velocity. The corresponding dynamic model writes as

xk =

⎛
⎜⎜⎜⎝

1 0 Δtk 0 0
0 1 0 Δtk 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠xk−1 + wk (13)
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where

w̄k = 0 Qk =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 2D′

λΔtk 0 0
0 0 0 2D′

φΔtk 0
0 0 0 0 Vf

⎞
⎟⎟⎟⎠

assuming that xk = (λk, φk, vλ,k, vφ,k, ft,k)
T where vk =

(vλ, vφ) stands for the velocity of the platform. On the basis
of this model, the next position and velocity can be predicted
from the last estimation of the platform position and velocity.

Of course, a single random walk or CRW cannot perfectly
capture all platform behaviors. A better model would consider
switches between multiple behaviors: A ship can conduct fish-
ing operations and then steam back to port, while a marine
mammal can reside in wintering grounds for several months
before migrating to new locations. As such, observed velocities
can vary by an order of magnitude along the track, induc-
ing changes in the temporal correlation and breakage of the
Markovian property in the single-model approach.

Multiple-model filtering through a bank of KFs is suitable
to handle multiple hypotheses (or modes) when assimilating
measurements. The discrete-time jump Markov system takes
the form of a dynamic system. The mode in effect during the
sampling period (tk−1, tk] is represented by the discrete random
index mk and takes on a value within a given set M of cardi-
nality M . The sequence of random variables m0,m1,m2, . . .,
follows a homogeneous finite-state Markov chain with

∀ (i, j) ∈ M×M, P (mk = i|mk−1 = j) = πji. (14)

At initial time, the distribution of x0 is characterized by
p(x0) =

∑
m0∈M P (m0)p(x0|m0), where

P (m0 = i) = μi
0 p(x0|m0 = i) = N

(
x0; x̂

i
0|0, P

i
0|0

)
(15)

and the statistics μi
0, x̂i

0|0, and P i
0|0 are given. The transi-

tion pdf between times k − 1 and k is assumed to write as
p(mk, xk|mk−1, xk−1) = P (mk|mk−1)p(xk|mk, xk−1). Con-
ditionally, on the active mode mk over (tk−1, tk], the assumed
base state dynamics p(xk|mk = i, xk−1) follows from the state
equation

xk = f i
k(xk−1) + wi

k, wi
k ∼ N

(
wi

k; w̄
i
k, Q

i
k

)
(16)

where the dynamics noise wi
k is white and independent of

xi
0 and where {f i

· , w̄
i
· , Q

i
· }i∈{1,...,M} is given. Similarly, the

observation pdf p(zk|mk = i, xk), which unites the state vector
and the measurement zk under the assumption that mk = i,
straightly comes from the output equation

zk = hi
k(xk) + vik, vik ∼ N

(
vik; v̄

i
k, R

i
k

)
(17)

where the measurement noise vik is white and independent of
xi
0 and where {wi

l}l∈{1,...,k−1} and {hi
· , v̄

i
· , R

i
· }i∈{1,...,M} are

given.
In the framework of discrete-time jump Markov systems,

the pdf p(xk|z1:k) writes as a Gaussian mixture with Mk+1

components [22]

p(xk|z1:k) =
∑

i0:k∈Mk+1

p(xk|m0:k = i0:k, z1:k)

×P (m0:k = i0:k|z1:k) (18)

where i0:k = {i0, . . . , ik} is a sample of the model sequence
m0:k = {m0, . . . ,mk} from time 0 to k. The exponentially
growing complexity of the problem precludes an exact reso-
lution. The interacting multiple model (IMM) algorithm has
become a standard approach to derive a tractable solution
by merging the growing tree of model sequences. On the
basis of the sequence of measurements z1:k = (z1, . . . , zk),
the IMM propagates along time a Gaussian approxima-
tion N (xk; x̂

i
k|k, P

i
k|k) of the posterior density p(xk|mk =

i, z1:k) ∀ i ∈ M (where x̂i
k|k is the posterior estimate and

P i
k|k is the posterior covariance matched to mode i) and the

posterior mode probability P (mk|z1:k). The IMM filter was
first outlined in [23] and is surveyed with alternative multiple-
model strategies in [22].

C. Building a Set of Dynamic Models

Our aim is to make random walks with state vector x =
(λ, φ, ft)

T, and CRWs with state x = (λ, φ, vλ, vφ, ft)
T co-

operate inside an IMM filter. Nevertheless, the standard IMM
filter is not fully adapted to handle a bank of mode-matched
filters with state vectors of heterogeneous size and meaning. To
circumvent the use of heterogeneous-order state-space models,
a random walk with a time-dependent bias term is considered
instead of a CRW. The complete dynamical model, with xk =
(λk, φk, ft,k)

T, writes as

xk =xk−1 +

(
v̂k|k−1Δtk

0

)
+ wk (19)

w̄k =0 Qk =

⎛
⎝ 2DλΔtk 0 0

0 2DφΔtk 0
0 0 Vf

⎞
⎠ .

The predicted velocity v̂k+1|k to be used in the time update
at time k + 1 prior to assimilating the measurement zk+1

is computed separately with an exponential moving average
such as

v̂k+1|k = αṽk + (1− α)v̂k|k−1 (20)

where α = 0.3 and ṽk terms an approximate empirical velocity
defined as

ṽk =
(λk, φk)

T − (λk−1, φk−1)
T

Δtk
. (21)

With this value of α, the weight of the five most recent velocity
observations used by the exponential moving average is about
86% of the total weight. The estimated velocity v̂k+1|k is
smoothed to lower the erratic behavior of the finite-difference
estimation that is generally observed on raw Argos data. During
directed movement, the IMM is intended to switch to this
additional mode. For all modes, the transmitted frequency
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TABLE I
LIST AND CHARACTERISTICS OF THE PTTS INCLUDED IN THE DATA SET

noise covariance Vf equals 100 Hz2 to handle most common
temperature gradients, the standard deviation of the noise on
each measured frequency is set to 0.4 Hz (deduced from the
short-term stability of the embedded clock of the satellite), and
the diffusion parameter D is tuned by incremental research.

D. Dealing With Location Ambiguity

As IMM filtering is a recursive process, it needs a prior initial
estimate x̂i

0|0 and covariance P i
0|0 for all mode i in M. For

this, an LS analysis is performed on the basis of at least four
measurements so as to compute the initial state and covari-
ance common to all modes. However, the LS filter systemat-
ically produces a nominal and mirror location which cannot
be distinguished at the first satellite overpass. This ambiguity
is solved during the next pass by applying successively one
instance of the IMM filter on both locations and by selecting the
one with the highest overall likelihood Lk =

∑
i p(zk|mk =

i, z1:k−1)P (mk = i|z1:k−1) [24].
The algorithm is endowed with the ability to detect tricky

cases through plausibility checks, such as frequency jumps,
wrong ambiguity resolution, or fast platform transportation.
When a location does not pass the plausibility checks, the al-
gorithm attempts an automatic and instantaneous reset using an
LS analysis so that the filtering process can continue seamlessly
in the next satellite overpass. If this last LS adjustment fails, the
location estimate is invalidated and tagged as class Z.

Although a KF provides only one location estimate, it is
legitimate to wonder why it should always be the nominal one.
With the traditional LS method, it is possible to fully remove the
mirror location by mixing measurements from several satellite
passes. This requires gathering frequency measurements close
in time, i.e., within less than half an hour. Beyond 30 min, the

calculation is hazardous because the platform may have moved
significantly. From a geometrical point of view, the platform has
to be simultaneously in the visibility circle of several satellites,
a situation that occurs frequently at high latitude (20% of
probability) but more rarely near the equator. The existence
of at least two points of view removes the mirror solution. In
comparison, the KF introduces a direct link between locations
through the prior dynamics. The effect of this model is twofold:
It creates a mathematical relationship between two successive
satellite passes, and it captures the admissible displacements of
the platform. Thus, the point of view of the last pass is shared
through the last location estimate and, mainly, through the
posterior covariance matrix. Additionally, the prior dynamics
model modifies them depending on the elapsed time. The shape
of the error ellipse (flatness and orientation), derived from the
covariance matrix, is indeed highly constrained by the relative
position of the satellite and the platform. Thus, the KF recreates
the conditions of multipass processing.

IV. VALIDATION OF THE NEW LOCATION ALGORITHM

A. Data Set

The behaviors of the LS and of the multiple-model KF Argos
positioning algorithms have been compared using a large data
set including over 200 PTTs deployed on animals (birds and
terrestrial and marine animals), ships, and drifting buoys. These
platforms cover a wide range of geographic areas, admissible
movements, and PTT types. Moreover, they are all equipped
with a GPS receiver. The GPS positions, whose errors seldom
exceed few tens of meters, have been used as ground truth
to empirically characterize the error in the Argos positions.
The frequency measurements and the corresponding satellite
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Fig. 2. Error is the distance between an Argos location and the corresponding
interpolated GPS, i.e., the modulus of vector �D. The tangential error is the
orthogonal projection of �D onto the straight line connecting two GPS fixes
surrounding the interpolated GPS location, i.e., the modulus of vector �T .

positions were provided to the LS and KF positioning algo-
rithms to produce two sets of location estimates for each tested
PTT. These two sets include all positions except the class-Z
ones. Both data sets include well over 100 000 location esti-
mates (see Table I). Since the reprocessing of the trajectories
was done offline, from several days to several months after the
acquisition of data, the available estimates of the orbit parame-
ters were slightly more accurate than the estimates available in
real time.

The GPS positions of all PTTs of the data set were extracted
from the corresponding Argos messages. As GPS and Argos
dates do not generally match with each other, the GPS locations
were linearly interpolated to those of Argos. The interpolated
GPS locations were then considered as the genuine locations,
as done in previous studies of Argos location accuracy (e.g.,
[13] and [14]). The empirical error on an Argos location was set
to its estimated distance to the corresponding interpolated GPS
fix, i.e., the modulus of vector �D in Fig. 2. Thus, it includes
the small GPS positioning error and the interpolation error.
To minimize the latter, only Argos locations obtained within
15 min of a GPS position were considered. This maximum
accepted time difference was increased to 1 h for the slowly
moving wildebeests and bighorns for which there are relatively
little data. No other data removal, nor filtering, was performed
on the Argos or GPS data in order to get the empirical errors
and compare them with the error statistics produced by the LS
and KF algorithms.

The number of Argos locations finally selected for compar-
ison with GPS is detailed in Table II. The comparison data set
still contains over 70 000 locations for both LS and KF, thereby
providing a solid basis for evaluating the accuracy of Argos
locations. Only a few data subsets, namely, the marabou stork,
wildebeest, and bighorn sets of location estimates with less than
four messages, contain less than 100 records and thus may yield
less reliable statistics.

B. Number of Retrieved Positions

Interestingly, Table I shows that Kalman filtering produces
about 30% more positions than LS processing. However, this
increase in the number of positions is not homogeneously
distributed over all PTTs in the data set (see Fig. 3). The number
of positions retrieved for elephant seals and flatback turtles
is nearly doubled. The number of positions is also markedly

increased for sea lions (+37%) and geese (+32%). The gain is
more limited (below 20%) for all other PTTs. Most (88%) new
KF positions actually correspond to one-message locations,
with the rest being LS class-Z positions that are now success-
fully estimated by the KF. The capability to estimate a position
from a single message clearly benefits to marine animals for
which the number of messages transmitted during one surfacing
event is generally small (see Table II). Similarly, the capability
to estimate positions from a single message benefits to geese
that were tracked migrating between Mongolia and India, a
region where the electromagnetic noise in the Argos frequency
band is specially high and reduces the number of messages
transmitted during one satellite pass.

C. Location Error Reduction

To better characterize the data set, six indicators were se-
lected describing the quality of the transmitted signal, plus two
indicators characterizing the movements of the tracked mobile:
recorded message number, time gap between two consecutive
locations, level of received signal, signal-to-noise ratio, GDOP,
platform velocity, (absolute) frequency drift, and turning angle.
The turning angle is the angle between the two segments
connecting three consecutive locations. The mean values of
these indicators are given in Table III for each type of mobile in
the data set. For each statistics, the smallest value(s) of the mean
is (are) colored in green, and the biggest value(s) is (are) colored
in blue. These are most helpful to analyze the positioning errors
for the different types of PTTs presented in Fig. 4(a) and (b). To
reduce the influence of outliers in the sample (mirror locations
and GPS fixes with bit errors), only the values below the 95th
percentile of the error distribution have been taken into account
to compute the mean errors presented in these two figures (and
the corresponding standard deviations).

Fig. 4(a) shows the mean location errors obtained when at
least four messages are available for positioning. With both LS
and KF positioning algorithms, these errors are relatively small,
ranging from about 3 km to less than 500 m. The error reduction
obtained with KF is well marked only for elephant seals,
flatback turtles, and ships (up to 32% of reduction), while it
is small for all other types of mobiles. This was expected as this
only concerns well-observed positions (greater than or equal
to four messages). The information carried by the frequency
observations largely dominates the position estimation, and the
simple movement models included in the KF bank can hardly
improve the situation. The KF however has a more positive
impact on the standard deviation of the positioning error (up
to 47% of reduction, compared to LS). In addition, analysis
of Fig. 4(a) together with Table III unsurprisingly confirms
that mobiles with low GDOP values, powerful and stable
transmitters, and relatively low velocities are always better
localized than mobiles displaying high GDOPs (e.g., elephant
seals) or large frequency drifts (e.g., marabou storks). Geese
equipped with drifting transmitters in a region of high ambient
electromagnetic noise are in a most unfavorable situation.

Fig. 4(b) presents the results obtained for all locations es-
timated using only one, two, or three messages. In this case,
where measurements are more irregularly distributed within
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TABLE II
MAXIMUM TIME GAP BETWEEN AN ARGOS LOCATION AND THE NEAREST GPS LOCATION.

NUMBERS OF ARGOS LOCATIONS SELECTED FOR ERROR CALCULATIONS

Fig. 3. Frequencies of locations w.r.t. the number of recorded messages within the satellite pass (LS processing taken as reference).

TABLE III
AVERAGE VALUES OF THE PTT TRAJECTORY STATISTICS (HIGHER VALUES ARE COLORED IN BLUE, AND LOWER VALUES ARE COLORED IN GREEN)

the pass, the benefits of the KF are obvious. For estimations
from two or three messages, the mean error of KF position is
reduced between 30% (drifters) and 78% (elephant seals). In the
same manner, standard deviations are reduced up to 90%. Thus,
the KF approach contributes to a better accuracy and a lower
dispersion of the errors, which means fewer outliers. For one-
message locations, the mean errors and the standard deviations
are under 10 km, which is better than the error of locations
computed with two and three messages with the LS analysis.
From a broader point a view, Kalman filtering is very efficient
when the observation geometry is bad: Unfavorable observation
geometry is indirectly supplemented by the new observation
angle introduced by the last known location of the dynamics
model.

A striking but common example of animal is presented in
Fig. 5 for an elephant seal (Mirounga leonina) tracked from
October 2009 to January 2010 in a round trip of approxi-
mately 3800 km near the Kerguelen Islands. Elephant seals
are seagoing and migrating animals whom the large nose of
the adult males looks like an elephant’s trunk. The platform
is localized six times per day with two messages per pass
on average. An amount of 57% of the satellite passes contain
two or three messages, and 38% contain only one message. In
comparison to Galapagos sea lions, elephant seals spend short
time at the surface and make long dive intervals [13], which
limits transmission opportunities. This kind of platform benefits
greatly of the advantages of the new processing: One-message
satellite passes add numerous points in the trajectory with an
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Fig. 4. Mean and standard deviation of the errors (a) with at least four messages and (b) with less than four messages (the data set is ordered by increasing LS
average errors).

accuracy under 10 km (better than LS processing with two or
three messages), an error estimate is provided for all locations
of the track, and the overall location error is reduced from 12
to 4.5 km (−63%). For the LS algorithm, the computation of
the frequency is all the more rare as the average number of
messages gets low (see Section II-B). The emitting frequency is
indeed assumed known and is equal to the last computed value
when two messages are available. A bias on the emitting fre-
quency increases the latitudinal error of 0.3 km per Hz of bias
(the longitudinal error is negligible). One must keep in mind
that daily frequency variations can reach up to 300 Hz for some
platforms (due to ambient temperature variations for instance).
This prevents the processing to adjust correctly the platform
position with a recent emitting frequency and generates error
peaks around the trajectory. Biggest outliers (sometimes falling
out of the frame) result from a frequent bad choice between
the nominal and mirror locations. With Kalman filtering, the
use of the state-space formulation including a bank of simple
dynamics models on the position and emitting frequency helps
to overcome these flaws.

D. Location Error Analysis

Additional statistics on the (signed) longitudinal and latitu-
dinal error distributions for the LS and KF algorithms are given
in Tables IV and V, respectively. The longitudinal error is wider
than the latitudinal one, and the error distributions are centered.

The correlation coefficients between the two dimensions of the
error are besides small. The major component of the Argos
error is, in fact, perpendicular to the subsatellite ground track
(north–south orientation). The frequencies of errors falling
within the 1σ and 3σ ellipses of a Gaussian distribution with the
same mean and covariance parameters indicate that the Argos
error distribution is nonnormal for both methods. The observed
probability of falling within the 1σ ellipse is actually much
higher than the expected values (39.2%), while on average, 94%
of errors are inside the 3σ ellipse (against 98.9% expected).
This shows that most errors are concentrated under 1σ (the
distribution has a peak around zero) but with a heavy tail
due to frequent outlier values (unfavorable satellite observation
geometry). This was already noticed concerning the LS method
in [13], which stated that the location error distribution is
nonnormal and right skewed. Study [31] suggested modeling
it with Student’s t distribution.

The empirical errors parallel to the platform trajectory are
computed by evaluating the modulus of �T which is the projec-
tion of �D on the axis tangent to the GPS trajectory. The sign
of the so-called tangential error is positive if the direction of �T
matches the trajectory direction and negative if otherwise (see
Fig. 2). These computations aim at measuring a potential bias
along the track due to the use of the random walk model. They
are compared to the LS processing which is supposed to be un-
biased. Similar to the error modulus statistics, the signed values
under the 25th per mille and beyond the 975th per mille are
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Fig. 5. Comparison of elephant seal tracks between GPS, LS, and KF. (a) GPS
and LS (locations with two messages or more). (b) GPS and KF (locations with
one message or more).

removed. The signed mean of these errors is given in Table VI.
A negative value may indicate a systematic lag, and a positive
value may indicate an advance. The part of the tangential error
in the total error is limited for Kalman filtering. Its value grows
slowly on average as the number of messages decreases and
is generally negatively signed. The measurement update of the
filter assimilates few received measurements so that the location
estimation is close to the prediction. In this situation and when
the random walk is the most likely dynamics, the estimated
location tends to be slightly attracted by the last one. In the
case of drifters, the phenomenon is more pronounced as the
last computed position displays generally a very low error (a
few hundreds of meters). Other outliers are observed for blue
wildebeests (−45% with two or three messages in LS) and
marabou storks (+38% with one message in KF), but the size
of the data set is too small to draw trustworthy conclusions.

The 1σ,
√
2σ, and 3σ confidence ellipses estimated by the

algorithms—containing in theory 39.3%, 63.2%, and 98.9%
of the computed locations, respectively—are now considered.
The

√
2σ ellipse corresponds to that provided in Argos stan-

dard products. For a given confidence ellipse, the frequency
at which position estimates actually fall within is presented

in Table VII and compared to the theoretical probability. The
comparison is done on all locations where a confidence ellipse
is available (i.e., locations with four messages or more for LS
and all locations for KF). Table VII clearly shows that the
percentages of KF and LS positions falling into the different
error ellipses are close to each other but systematically lower
than the theoretical values. This indicates that both the LS
and KF algorithms underestimate the actual positioning error,
a fact that was already well known for LS, particularly in the
animal tracking community (e.g., [13]). The origin of this error
underestimation is twofold. First, the errors are nonnormally
distributed, as discussed in the previous section. Second, unlike
that assumed in (1), the frequency measurement noise is not
constant but depends on factors such as the transmitter individ-
ual frequency stability, its sensitivity to temperature changes
and the actual temperature changes experienced by the beacon,
the platform velocity, or the ambient electromagnetic noise
level in the Argos frequency band at the beacon position.
Accordingly, Table VII clearly shows that the slowly moving
drifters have error statistics closer to theoretical values than all
other beacons as they use very stable oscillators transmitting
at high output power in open ocean areas with relatively low
ambient electromagnetic noise. To obtain more consistent larger
KF positioning errors, one might slightly increase the assumed
(constant) process and measurement noises. The problem is
that no single noise estimation will work for all beacons. For
example, a noise level tuned to provide accurate error ellipses
for bird-tracking beacons in electromagnetically polluted areas
would inevitably yield overestimated errors for drifter posi-
tions. Furthermore, individual calibration of the positioning
algorithm for all transmitters and all transmission conditions is
clearly out of reach. The choice has thus been made to keep the
present calibration of the KF algorithm as, for all beacons tested
in this paper, it reduces the actual Argos positioning errors
compared to LS, even if the estimated errors remain too small
as is also the case with LS. However, no other calibration of the
KF algorithm in its present form would be globally satisfactory
as different transmitters in different transmission conditions
generate different frequency measurement errors and are thus
positioned with different error levels.

V. CONCLUSION AND FUTURE WORK

The improvements brought by the multiple-model Kalman
filtering method are significant when messages are irregularly
distributed within the pass and when their number is low.
Kalman filtering helps to remove mirror locations and to
characterize errors associated with locations estimated with
less than four messages. Over the total number of locations
tested, the mean error is reduced by 10% to 63%. The overall
dispersion decreases from 15% to 78% so that the majority of
outliers are corrected. Most of the new positions come from
one-message locations which have an accuracy comparable
to that of LS with less than four messages. For low-power
transmitters or applications deployed in worse environmental
conditions, these new locations may be of high interest.

Future work will concentrate on improving the multiple-
model approach in two ways. First, by following the
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TABLE IV
AVERAGE VALUES, STANDARD DEVIATIONS (SD), AND CORRELATION COEFFICIENTS OF LS ALGORITHM ERRORS (IN METERS). FREQUENCIES

(IN PERCENT) OF ERRORS INSIDE THE 1σ AND 3σ ELLIPSES OF THE CORRESPONDING 2-D GAUSSIAN DISTRIBUTIONS

(39.2% AND 98.9% EXPECTED RESPECTIVELY)

TABLE V
AVERAGE VALUES, STANDARD DEVIATIONS (SD), AND CORRELATION COEFFICIENTS OF KF ALGORITHM ERRORS (IN METERS). FREQUENCIES

(IN PERCENT) OF ERRORS INSIDE THE 1σ AND 3σ ELLIPSES OF THE CORRESPONDING 2-D GAUSSIAN DISTRIBUTIONS

(39.2% AND 98.9% EXPECTED RESPECTIVELY)

TABLE VI
RATIO OF THE SIGNED TANGENTIAL ERROR ON THE ERROR MODULUS

TABLE VII
PROBABILITIES THAT COMPUTED LOCATIONS FALL WITHIN THE ERROR

ELLIPSES (HEADERS CONTAIN THE THEORETICAL VALUES)

generalization [32] of the IMM to heterogeneous-order models
(i.e., to models which share only some parts of their state
vectors), random walks and CRWs will cooperate seamlessly.
Second, by following the IMM smoother [33], location esti-
mates will be computed from measurements gathered over a

fixed interval, be these in the past, present, or future. Such
enhancements will be proposed in forthcoming versions of the
Argos processing chain.

ACKNOWLEDGMENT

The authors would like to thank all Argos users who kindly
provided access to their data to qualify the new Kalman filter
positioning algorithm presented here. The GPS drifters that
provided the data used in the validation analysis were funded
by Office of Naval Research Grant N00014-08-1-0557 and
by National Oceanic and Atmospheric Administration Grant
NA10OAR4320156.

REFERENCES

[1] B. McConnell, C. Chambers, K. Nicholas, and M. Fedak, “Satellite track-
ing of grey seals (Halichoerus grypus),” J. Zoology, vol. 226, no. 2,
pp. 271–282, Feb. 1992.

[2] D. Austin, J. McMillan, and W. Bowen, “A three-stage algorithm for
filtering erroneous Argos satellite locations,” Mar. Mammal Sci., vol. 19,
no. 2, pp. 371–383, Apr. 2003.

[3] D. Douglas, PC-SAS Argos Filter V5.0 Software Documentation. An-
chorage, AK, USA: U.S. Geol. Surv., Alaska Biological Science Center,
2000.

[4] S. Ferraroli, J. Georges, P. Gaspar, and Y. Maho, “Where leatherback
turtles meet fisheries,” Nature, vol. 429, no. 6991, pp. 521–522, Jun. 2004.

[5] Y. Tremblay, S. Shaffer, S. Fowler, C. Kuhn, B. McDonald, M. Weise,
C. Bost, H. Weimerskirch, D. Crocker, M. Goebel, and D. P. Costa,
“Interpolation of animal tracking data in a fluid environment,” J. Exp.
Biol., vol. 209, no. 1, pp. 128–140, Jan. 2006.

[6] F. Royer and M. Lutcavage, “Filtering and interpreting location errors in
satellite telemetry of marine animals,” J. Exp. Mar. Biol. Ecol., vol. 359,
no. 1, pp. 1–10, Apr. 2008.

[7] I. Jonsen, J. Flemming, and R. Myers, “Robust state-space modeling
of animal movement data,” Ecology, vol. 86, no. 11, pp. 2874–2880,
Nov. 2005.



LOPEZ et al.: IMPROVING ARGOS DOPPLER LOCATION USING MULTIPLE-MODEL KALMAN FILTERING 4755

[8] NGA, Springfield, VA, USA, World geodetic system, cited 2010.
[Online]. Available: https://www.nga.mil/

[9] USGS, GTOPO30, cited 2010. [Online]. Available: http://www.usgs.gov/
[10] C. T. Kelley, “Iterative methods for optimization,” in SIAM Frontiers in

Applied Mathematics. Philadelphia, PA, USA: SIAM, 1999.
[11] Argos User Manual, CLS, Ramonville Saint-Agne, France, 2008.
[12] C. Kuhn, D. Johnson, R. Ream, and T. Gelatt, “Advances in the tracking

of marine species: Using GPS locations to evaluate satellite track data
and a continuous-time movement model,” Mar. Ecol. Progr. Ser., vol. 393,
pp. 97–109, 2009.

[13] D. P. Costa, P. W. Robinson, J. P. Y. Arnould, A. Harrison, S. E. Simmons,
J. L. Hassrick, A. J. Hoskins, S. P. Kirkman, H. Oosthuizen, S. Villegas-
Amtmann, and D. E. Crocker, “Accuracy of Argos locations of pinnipeds
at-sea estimated using Fastloc GPS,” PLoS ONE, vol. 5, no. 1, p. e8677,
Jan. 2010.

[14] M. Witt, S. Åkesson, A. Broderick, M. Coyne, J. Ellick, A. Formia,
G. Haysf, P. Luschi, S. Stroud, and B. Godleya, “Assessing accuracy and
utility of satellite-tracking data using Argos-linked Fastloc-GPS,” Animal
Behav., vol. 80, pp. 571–581, 2010.

[15] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Trans. ASME, J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

[16] H. W. Sorenson, Kalman Filtering: Theory and Application. Piscataway,
NJ, USA: IEEE Press, 1985.

[17] S. Julier and J. Uhlmann, “A new extension of the Kalman filter to nonlin-
ear systems,” in Proc. Int. Symp. Aerosp./Defense Sens., Simul. Controls,
1997, vol. 3, pp. 183–193.

[18] E. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlin-
ear estimation,” in Proc. IEEE AS-SPCC, 2002, pp. 153–158.

[19] S. Julier, “The scaled unscented transformation,” in Proc. Amer. Control
Conf., 2002, vol. 6, pp. 4555–4559.

[20] R. Van Der Merwe and E. Wan, “The square-root unscented Kalman filter
for state and parameter-estimation,” in Proc. IEEE ICASSP, Salt Lake
City, UT, USA, 2002, vol. 6, pp. 3461–3464.

[21] E. Codling, M. Plank, and S. Benhamou, “Random walk models in biol-
ogy,” J. Roy. Soc. Interface, vol. 5, no. 25, pp. 813–834, Aug. 2008.

[22] X. Li and V. Jilkov, “Survey of maneuvering target tracking Part V:
Multiple-model methods,” IEEE Trans. Aerosp. Electron. Syst., vol. 41,
no. 4, pp. 1255–1321, Oct. 2005.

[23] H. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm
for systems with Markovian switching coefficients,” IEEE Trans. Autom.
Control, vol. 33, no. 8, pp. 780–783, Aug. 1988.

[24] Y. Bar-Shalom and H. Chen, “IMM estimator with out-of-sequence mea-
surements,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 1, pp. 90–98,
Jan. 2005.

[25] L. A. Hawkes, S. Balachandran, N. Batbayar, P. J. Butler, P. B. Frappell,
W. K. Milsom, N. Tseveenmyadag, S. H. Newman, G. R. Scott,
P. Sathiyaselvam, J. Y. Takekawa, M. Wikelski, and C. M. Bishop, “The
trans-Himalayan flights of bar-headed geese (Anser indicus),” Proc. Nat.
Acad. Sci. USA, vol. 108, no. 23, pp. 9516–9519, Jun. 2011.

[26] S. Benhamou, J. Sudre, J. Bourjea, S. Ciccione, A. De Santis, and
P. Luschi, “The role of geomagnetic cues in green turtle open sea navi-
gation,” PLoS ONE, vol. 6, no. 10, p. e26672, Oct. 2011.

[27] S. Villegas-Amtmann, S. E. Simmons, C. E. Kuhn, L. A. Huckstadt, and
D. P. Costa, “Latitudinal range influences the seasonal variation in the
foraging behavior of marine top predators,” PLoS ONE, vol. 6, no. 8,
p. e23166, 2011.

[28] P. W. Robinson, D. P. Costa, D. E. Crocker, J. P. Gallo-Reynoso,
C. D. Champagne, M. A. Fowler, C. Goetsch, K. T. Goetz, J. L. Hassrick,
L. A. Hückstädt, C. E. Kuhn, J. L. Maresh, S. M. Maxwell,
B. I. McDonald, S. H. Peterson, S. E. Simmons, N. M. Teutschel,
S. Villegas-Amtmann, and K. Yoda, “Foraging behavior and suc-
cess of a mesopelagic predator in the northeast Pacific Ocean:
Insights from a data-rich species, the northern elephant seal,” PLoS ONE,
vol. 7, no. 5, p. e36728, May 2012.

[29] A. Dragon, P. Monestiez, A. Bar-Hen, and C. Guinet, “Linking forag-
ing behaviour to physical oceanographic structures: Southern elephant
seals and mesoscale eddies east of Kerguelen Islands,” Progr. Oceanogr.,
vol. 87, no. 1–4, pp. 61–71, Oct. 2010.

[30] A. Dragon, A. BarHen, P. Monestiez, and C. Guinet, “Horizontal and ver-
tical movements as predictors of foraging success in a marine predator,”
Mar. Ecol. Progr. Ser., vol. 447, pp. 243–257, Feb. 2012.

[31] X. Hoenner, S. D. Whiting, M. A. Hindell, and C. R. McMahon, “En-
hancing the use of Argos satellite data for home range and long distance
migration studies of marine animals,” PLoS ONE, vol. 7, no. 7, p. e40713,
Jul. 2012.

[32] R. Lopez, P. Danès, and F. Royer, “Extending the IMM filter to
heterogeneous-order state space models,” in Proc. 49th IEEE Conf. De-
cision Control, Dec. 2010, pp. 7369–7374.

[33] R. Lopez and P. Danès, “Exploiting Rauch–Tung–Striebel formulae for
IMM-based smoothing of Markovian switching systems,” in Proc. IEEE
ICASSP, Kyoto, Japan, 2012, pp. 3953–3956.

Rémy Lopez received the M.S. degree in math-
ematical and modeling engineering and the Ph.D.
degree in automatics from the National Institute for
Applied Sciences, Toulouse, France, in 2009 and
2013, respectively.

He is currently with the Space Systems Depart-
ment, Collecte Localisation Satellites, Ramonville-
Saint-Agne, France. He was with the Laboratoire
d’Analyse et d’Architecture des Systèmes, French
National Center for Scientific Research (CNRS)/
Université Paul Sabatier, Université de Toulouse,

Toulouse. His research interests include target tracking and statistical signal
processing.

Jean-Pierre Malardé received the M.S. degree in
physics and the Ph.D. degree in physics option re-
mote sensing from the University of Paris VII (Paris
Diderot University), Paris, France, in 1983 and 1991,
respectively.

Between 1985 and 1990, he was a Project Engi-
neer with the Groupement pour le Développement de
la Télédétection Aérospatiale, Toulouse, France. He
was involved in the algorithm and software develop-
ment of the ERS-1 radar scatterometer processing.
Since 1990, he has been with Collecte Localisation

Satellites, Ramonville-Saint-Agne, France, where he is in charge of Argos lo-
calization processing and has been the Head of the Space Systems Department
since 2010. He has been involved in different projects or studies as a Specialist
in localization algorithms and system performance.

François Royer received the Eng. degree in agron-
omy and the Ph.D. degree in marine science
from the École Nationale Supérieure Agronomique
de Rennes, Rennes, France, in 2000 and 2005,
respectively.

Between 2007 and 2012, he was a Research
Engineer with Collecte Localisation Satellites,
Ramonville-Saint-Agne, France, where he developed
techniques for underwater positioning. He is the
Founder of Datasio, Toulouse, France, which pro-
vides data mining software and services.

Philippe Gaspar (M’92) received the Eng. de-
gree and the Ph.D. degree in applied mathematics
from the Catholic University of Louvain, Louvain-
La-Neuve, Belgium, in 1980 and 1985, respec-
tively. He also received an Accreditation to supervise
research from Université Paul Sabatier, Toulouse,
France, in 2009.

Between 1985 and 1990, he held various research
positions with the French National Centre for Me-
teorological Research (CNRM), the French National
Center for Scientific Research (CNRS), and the Cen-

ter for Meteorology and Physical Oceanography, Massachusetts Institute of
Technology, Cambridge, MA, USA. In 1990, he became the Head of the
Satellite Oceanography Division, Collecte Localisation Satellites, Ramonville-
Saint-Agne, France, which he developed and led until 2006, where he is
currently the Scientific Coordinator of this division. His main areas of expertise
include oceanic turbulence modeling, satellite altimetry, stochastic optimal
estimation, marine animal tracking and behavior modeling.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


