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Abstract— Ground-penetrating radar (GPR) is a powerful and
rapidly maturing technology for subsurface threat identification.
However, sophisticated processing of GPR data is necessary to
reduce false alarms due to naturally occurring subsurface clutter
and soil distortions. Most currently fielded GPR-based landmine
detection algorithms utilize feature extraction and statistical
learning to develop robust classifiers capable of discriminating
buried threats from inert subsurface structures. Analysis of these
techniques indicates strong underlying similarities between effi-
cient landmine detection algorithms and modern techniques for
feature extraction in the computer vision literature. This paper
explores the relationship between and application of one modern
computer vision feature extraction technique, namely histogram
of oriented gradients (HOG), to landmine detection in GPR
data. The results presented indicate that HOG features provide
a robust tool for target identification for both classification and
prescreening and suggest that other techniques from computer
vision might also be successfully applied to target detection in
GPR data.

Index Terms— Computer vision, edge histogram descriptors,
ground-penetrating radar (GPR), histogram of oriented gradients
(HOG), random forest.

I. INTRODUCTION

THE detection of buried explosives is of significant con-
cern in both military and humanitarian applications. In

the military sphere, recent events have illustrated the destruc-
tive efficacy of buried improvised and classical explosives
(e.g., landmines), and both the humanitarian and military
scope of these threats continues to grow [1]. Unlike classic
landmines, which are produced en masse and usually contain
at least small amounts of metal, modern homemade explosives
are typically constructed in an ad hoc manner, and may contain
no metal content whatsoever.

Electromagnetic induction (EMI) based sensing of buried
threats is an efficient technique for subsurface threat detection,
and improved modeling and related signal processing have
illustrated the potential for EMI to detect very small amounts
of metal [2]–[5]. However, the increase in the use of purely
nonmetallic threats and the prevalence of metallic anthropic
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clutter in conflict and post-conflict regions renders detection
based solely on EMI sensing difficult.

Ground-penetrating radar (GPR) [6] is a highly complemen-
tary phenomenology to EMI modeling. Unlike EMI, which
detects eddy currents induced in buried conductors, GPR
measures reflections from changes in the electromagnetic
properties of the subsurface environment. As a result, GPR
sensing is suitable for finding nonmetallic threats as long
as the electromagnetic properties of the buried object are
sufficiently different from the surrounding soil. However, the
sensitivity of GPR to changing subsurface properties results
in additional responses from buried roots, rocks, pockets of
moisture, and other subsurface changes. As a result, without
proper additional processing, GPR detection of buried threats
can be subject to high false alarm rates. A significant body of
research has previously been undertaken to successfully detect
buried threats in GPR data while reducing false alarm rates.
This previous research can roughly be divided into three broad
categories: model inversion, explicit hyperbola detection, and
statistical feature-based techniques.

Physics- and model-inversion-based techniques for GPR
processing are very popular in the research community due
to strong underlying theoretical foundations (e.g., Maxwell’s
equations, Green’s functions) and the wide variety of tech-
niques available to solve the resulting propagation equations.
Recent developments in the field of physics-based inversion
include novel techniques for subsurface object shape and
size estimation, even under rough surfaces using iterative
optimization methods [7]. Significant work has also been
investigated to automatically determine the properties of the
subsurface, including layer identification and electromagnetic
propagation properties [8]–[10]. Inversion techniques and their
specific application in demining techniques have also been
explored in [11] and [12]. Despite these advances, physics-
based inversions of GPR signals are not widely utilized in
fielded or real-time data collection systems for several reasons.
First, many physics-based inversion models rely on accurate
estimates (or computationally expensive iterative estimation)
of the subsurface electromagnetic properties of the soil. These
properties are difficult to estimate, and even when accurate
large-scale estimates are available, the properties of most
soils of interest can change drastically over small regions,
making large-scale estimates irrelevant. Furthermore, despite
recent advances, the computational expense associated with
physics-based GPR data inversion is significant, and precludes
most real-time operation.
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Hyperbola-based landmine detection methods are another
popular technique for object identification in GPR data.
Hyperbola-based techniques can be motivated by considering
a simplification of the general GPR propagation problem
wherein objects of interest are modeled as point-scatterers,
and the transmission medium is assumed to be homogeneous.
Under these simplifying assumptions, the time of arrival for
responses from buried objects constitute a hyperbola as the
sensor moves across the object, and the parameters of the
resulting hyperbola contain information about relevant object
depth and soil properties. Typical approaches to hyperbola
identification in GPR make use of modifications to the Hough
transform [13] or alternative fitting techniques [14], to avoid
computational complexity issues, account for uncertain num-
bers of reflectors, and mitigate variations due to unknown para-
meters. Additional modifications to account for refraction can
also be considered [15]. However hyperbola-based techniques
also face significant shortcomings for fielded operations. First,
as discussed above, assumptions of homogeneous transmission
media are routinely violated in soils of any complexity, which
significantly obscures the theoretical hyperbolic responses.
Also, at the sampling rates of interest, most buried threats
are not well represented by point sources, and responses from
nonmetal objects contain constructive and destructive interfer-
ence which also obscure idealized hyperbolic responses.

Since responses from buried objects are highly variable,
most effective fielded algorithms for landmine identification
in GPR data use statistical feature extraction (often motivated
implicitly or explicitly from the roughly hyperbolic nature of
target responses) combined with machine learning techniques
to develop algorithms to classify new responses as threats or
nonthreats [16]–[22]. In our opinion, these techniques should
not be seen as a rejection of the physics-based or hyperbolic
modeling of target responses, but should be considered a
natural extension of these techniques that take into account
the noise and uncertainty inherent in realistic operational
conditions. In actuality, many of the most successful tech-
niques for fielded target identification in GPR data are based
on exploiting spatial variations in target responses that are
best understood by recourse to the underlying physics. For
example, one of the first large-scale explorations of statistical
learning for target detection in GPR data resulted in the
application of hidden Markov models (HMMs) to detect and
classify landmine responses based on a statistical represen-
tation of their characteristic hyperbolic shape [21]. Another
equally efficient technique exploits the same rising/flat/falling
structure as the HMM, but uses windows of fixed length for
feature extraction [22]. These techniques have been shown to
have very robust performance over very large data collections
containing difficult GPR target populations [23].

The success of techniques such as in [21] and [22] illustrate
the potential for statistical modeling and machine learning
to provide robust results for object detection in GPR data.
In a parallel vein, modern advances in the field of computer
vision also make use of statistical object descriptors coupled
with machine learning to develop accurate algorithms for both
instance and category recognition (see [24] for recent summary
and extensive bibliography). Notable examples include: 1) the

scale invariant feature transform (SIFT) and a related method;
2) speeded up robust features (SURF) [25], [26] which provide
a low-dimensional representation of visual images for instance
matching with images; 3) Viola–Jones’ cascade of simple
features used for robust face detection [27]; and 4) histogram
of oriented gradients (HOG) which has been successfully used
for pedestrian detection [28].

In the context of subsurface threat detection, HOG features
are particularly interesting since analysis of [22] and [28]
illustrate that effective feature extraction techniques from
two disparate image processing fields (MPEG encoding and
pedestrian detection in images) share very similar underlying
mathematical and theoretical structure. These features are also
widely utilized in the field of computer vision and video
processing, so are necessarily computationally inexpensive
and efficient. This observation naturally leads to the question:
can HOG and other tools from the computer vision literature
be successfully brought to bear on the problem of landmine
detection in GPR data?

The size and scope of modern computer vision techniques
is enormous, so this paper focuses only on the specific case
of HOG features. The rationale for an initial focus on HOG
features is motivated by the similarity of HOG to preexisting
feature extraction techniques [e.g., edge histogram descriptor
(EHD)], and also to several aspects of HOG features which
make them particularly well suited to landmine detection in
GPR. For example, unlike SIFT, SURF, and others, HOG
features are typically applied as a dense feature extraction
technique. This enables HOG features to be extracted without
previous interest point identification, which is an unsolved
though interesting problem in the GPR literature [29]. Further-
more, unlike many modern feature descriptors, HOG features
are fairly robust to moderate changes in object location within
a HOG window. This enables the use of preexisting techniques
for depth-binning in GPR classification. This paper shows
how HOG features, coupled with off-the-shelf classification
techniques, can enable significant improvements in target
classification. Although this paper focuses on HOG features,
we believe that, with additional research, other techniques
from computer vision literature may have an important role
to play in GPR-based subsurface threat detection.

Historically, for vehicle-mounted GPR processing to main-
tain speeds commensurate with operationally relevant rates of
advance, computationally simple algorithms were utilized to
rapidly process large volumes of GPR data and down-select
locations of interest, alarms, which were then utilized in more
advanced feature-based processing. This separation between
prescreening and classification has always seemed artificial,
as it could be advantageous to incorporate advanced statistical
models into prescreening if feature extraction and classifica-
tion could both be accomplished in a computationally tractable
manner. This paper is the first to develop a technique for threat
identification in vehicle-mounted GPR data that is fast enough
and robust enough to operate as a prescreener (on every
pixel) versus only at previously flagged locations of interest.
The primary novel advances contained in this paper include
the first application of techniques explicitly developed for
feature extraction and object classification techniques from the
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Fig. 1. Sample GPR data from a western test site, collected over a
buried plastic antitank landmine at 3′′ overburden. The dark wavy band
near timesample 150 corresponds to the response at the air/ground interface.
The target is visible near down-track sample 35, time sample 225.

computer vision literature to target classification in GPR data,
the development of a series of preprocessing steps suitable for
simple target extraction and classifier training across multiple
feature extraction approaches (e.g., HOG, and EHD), and
the development of a novel joint prescreening/classification
algorithm for rapid pre-screening.

The remainder of this paper is organized as follows.
Section II describes the ground penetrating radar used in
this paper, and the GPR data under consideration. Section III
describes the HOG features used in this paper. Section IV
describes the application of HOG features to GPR data and
how these features can be used for object classification as well
as during pre-screening. Section V presents results from the
HOG prescreener as well as HOG-based classification using
cross validation on a large number of prescreener flagged
objects of interest, and extends the preprocessing approaches
described in Section IV for application to EHD features.
Section VI presents conclusions, and describes several possible
avenues for future work.

II. GPR SYSTEM AND DATA UNDER CONSIDERATION

All of the data considered in this work were collected with
a pulsed, time-domain, bi-static antenna, with a very wide
bandwidth, and very low radar self-signature. A-scan’s from
each antenna are time-gated to sense approximately 1 m in
air, using 512 temporal samples.

This work focusses on a vehicle-mounted array with 51
antenna pairs spaced approximately 5 cm apart. As the vehicle
on which the antenna array is mounted moves (down-track)
each of the 51 antenna pairs is sampled (approximately simul-
taneously) once every 5 cm of vehicle motion. This collection
procedure creates a 3-D data set of size 512 × 51 × ndt
samples where ndt represents the number of down-track scans
collected.

Fig. 1 illustrates sample data collected with the GPR at
a western U.S. test site. The dark red band at time sample
150 represents the response from the air/ground interface.

Time samples before the interface correspond to the GPR
signal propagating through air, and time samples after the
interface represent propagation and reflection in the soil. A
response from an antitank landmine buried at 3′′ can be seen
between time samples 200 and 250 and down-track samples
30–40. The characteristic hyperbolic response of the object
is visible as the antenna moves across it. The goal of this
research is to successfully identify responses such as the one
in Fig. 1 and discriminate these from other similar responses
from subsurface clutter such as rocks, roots, and other possible
confounding objects.

For the purposes of applying computer vision approaches to
GPR data, it will be convenient to treat a GPR image like the
one in Fig. 1 as a 2-D matrix of data. Throughout the following
sections, let I represent an image (or 2-D block of GPR data,
in which case I (i, j) may represent the received field, often
in volts, or units proportional to volts) of size [ni , n j ], and
let I (i, j) represent the image intensity value (or amplitude of
the GPR signal) at location i, j . For time-domain GPR data,
typically the first dimension of I corresponds to propagation
time, or (roughly) depth into the transmission media, and
the second dimension may represent distance traveled (down-
track) or channel (cross-track), e.g, [ni , n j ] = [nt , ndt]. In the
following, when HOG features are extracted from a point near
an image boundary, pixels outside the bounds of the image are
generated via symmetric padding, e.g., I (−5, 1) = I (5, 1).

III. COMPUTER-VISION-BASED FEATURE

EXTRACTION TECHNIQUES

A large number of very different techniques have previously
been proposed for extracting low-dimensional representations
of images and image patches (see [24] for detailed examples
and bibliography). Many of these techniques were designed for
the problem of instance recognition, or identifying the exact
same object in two different images. For example, techniques
such as SIFT [25] and SURF [26] were developed to enable
rapid automatic matching between image patches which have
undergone transformations between images, including rota-
tions and scaling. Typically, the instance recognition problem
is approached by extracting descriptors from a sparse set
of interest points (e.g., [24], [25], [30]) and then matching
descriptors across different images. In instance recognition,
interest point extraction can significantly simplify processing
by ignoring regions which are not identifiable, flagging regions
which are interesting, and by reducing the overall computation
time.

In contrast to instance recognition, the more challeng-
ing problem of object class recognition requires classify-
ing distinct objects within an image as either belonging
to or not belonging to a certain class. Category recogni-
tion is more complicated than instance recognition since
robust classification requires modeling the wide statistical
variability of objects within a class (e.g., chairs) compared
to the instance recognition problem which only requires
identifying changes due to transformations of a particular
chair. For example, a commonly studied and challenging
class recognition problem in computer vision is the robust
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identification of pedestrians from vehicle-mounted video data
(see [31], [32] for a recent review). In contrast to instance
recognition, most algorithms for class recognition utilize fea-
ture descriptors extracted densely throughout the image, since
it is difficult to a priori discriminate between informative and
noninformative regions for the class-recognition problem.

The landmine detection problem in GPR can be seen as
an example of object class recognition, where the system is
presented with a series of responses from the subsurface and
must identify which GPR images contain landmine responses.
With this insight, a wide number of possible algorithms from
the computer vision literature could be brought to bear on the
landmine detection problem in GPR. To bound the problem
and our current research, this paper focuses on the application
of HOG features to target classification in GPR data, though
as we specify in the conclusions, the computer vision literature
provides ample opportunities for alternative feature extraction
and object classification approaches.

This section outlines the basic implementation of HOG
features, describes their application to GPR data, and discusses
classification algorithms suitable for processing HOG features.
Section IV presents details for applying these techniques to
GPR data, and Section V presents results obtained from each
of the techniques.

A. Histogram of Oriented Gradients

HOG features [28] provide a concise but powerful image
representation for general object classification. They have
found significant application in the field of pedestrian iden-
tification [28], where they have continued to provide one of
the more robust feature extraction techniques even in recent
analyses [32].

HOG features are based on gradient angle and magnitude
distributions, and in visual data they are robust due to the
gradient’s natural invariance to slight changes in ambient
lighting and color variations. Consider an image I and gradient
estimation filters hx = [ − 1, 0, 1], and hy = [ − 1, 0, 1]T .
Let gx and gy represent the gradient images generated by

gx = I ∗ hx

and
gy = I ∗ hy

where * represents convolution. The magnitude of the gradient
at each pixel can be calculated as

G(i, j) =
√

gx(i, j)2 + gy(i, j)2

and the dominant gradient angle at each pixel can be
estimated by

θ(i, j) = tan−1
(

gy(i, j)

gx(i, j)

)
. (1)

For some applications, the sign of the gradients, and thus
values of θ between 0° and 360°, may be germane to the
detection problem. For example, in detection problems where
objects of interest can be assumed to always be darker than the
background regions, gradients will always tend to flow toward
background regions. In most applications, however, the sign

of the gradients gx and gy provides little or no discriminative
power, so θ(i, j) can be calculated in the range 0 and π radians
(versus 0 to 2π).

HOG features can then be generated entirely on the basis
of the gradient magnitude G and gradient angles θ at each
pixel. The primary insight provided by HOG feature extrac-
tion is that, while individual G(i, j) and θ(i, j) are highly
variable and subject to significant variations across nearby
(i, j) locations, even for very similar images, the aggregate
statistics of the spatial distribution of the gradient angles and
magnitudes over small regions in similar images provide quite
robust descriptors of those regions.

Consider nθ angle bins between 0° and 180° (or as
discussed above, potentially, between 0° and 360°). HOG
descriptors encapsulate the local statistics of the gradient
angles and magnitude by allowing each pixel to vote for a
specific angle bin, with a vote magnitude proportional to the
gradient magnitude at that pixel. Let the edges of the nθ

bins correspond to nθ + 1 edge values, {φk} = {180k/nθ}
k = 0 . . . nθ , then a 3-D vote matrix of size nx × ny × nθ can
be defined as

V (i, j, k) = G(i, j)δ(φk−1 < θ(i, j) ≤ φk), k = 1 . . . nθ

where δ(x) takes value 1 when the input argument is true, and
0 when the input argument is false.

Resulting individual pixel votes can be smoothed using
bilinear interpolation and are then aggregated across sub-
regions of the image referred to as cells, which can be
rectangular or radial. Aggregating across a particular cell c
is accomplished by

H1(c, k) =
∑

(i, j )∈c

V (i, j, k).

In many computer vision application areas, local changes in
ambient lighting can have a significant effect on the magni-
tudes of feature responses, and this holds true for the gradient
magnitudes used in HOG descriptors. Similarly, signal magni-
tudes in GPR data vary drastically as a function of propagation
distance. As a result, normalizing HOG descriptors is fun-
damental to achieving robust performance. HOG descriptors
can be normalized using groups of neighboring cells, also
called blocks. Let N(c) represent the set of cells immediately
surrounding the cell of interest; then the normalized HOG
values can be calculated using

H (c, k) = H1(c, k)/

⎛
⎝ ∑

ci ∈N(c)

√
‖H1(ci )‖2

2+ ∈2

⎞
⎠ (2)

where H1(c) represents the rasterized vector [H1(c, 1),
H1(c, 2), . . . , H1(c, nθ )]T .

In [32], the authors utilize feature descriptors v, consisting
of concatenations of H (c, k) over each N(c), and normalize
these vectors by their local cell regions. The resulting complete
descriptor vector then consists of multiple repeated H (c, k),
each normalized with respect to a different set of cells. In this
paper, for application to GPR processing that step was found
to not significantly affect performance, so the complete feature
vector is simply a rasterized vector of H (c, k), as calculated



TORRIONE et al.: HISTOGRAMS OF ORIENTED GRADIENTS FOR LANDMINE DETECTION 1543

in (2). For more information about the HOG feature descriptors
and a more detailed description of the HOG extraction process,
the interested reader is referred to [28].

B. Relationship to Edge Histogram Descriptors

EHD features [33] are a technique used in the MPEG codec
to identify and contrast regions of varying texture, which
were originally applied to landmine detection in GPR data
in [22], and have continued to perform well over a wide
range of operating conditions [23]. Like HOG features, EHD
features are also based on describing an image through a
histogram of gradients (edges). However there are several
important distinctions to be made between the EHD and HOG
techniques. First, EHD features rely on a global threshold on
gradient magnitudes to determine whether a particular pixel’s
gradient has an opportunity to vote for its corresponding edge
bin. These global thresholds can be difficult to set and tune,
and require data normalization prior to feature extraction.
Second, unlike the case with HOG features, where each pixel
votes with strength proportional to the local (normalized)
gradient, in EHD features the each pixel receives equal vote
regardless of gradient magnitude. HOG features also introduce
the notions of bins and cells (see above) which enable addi-
tional spatial information to be encoded in HOG features that
is not present in EHD features (e.g., temporal as well as down-
track information). Finally, the actual bins used in EHD are
typically fixed to correspond to “diagonal,” “anti-diagonal,”
“vertical,” “horizontal,” and “nonedge” orientations, whereas
in HOG features the number and size of the individual bins is
a parameter available for tuning. Extension of EHD features to
arbitrary angle orientations requires the development of new
edge extraction filters, which is not straightforward. This adds
significant flexibility to HOG features for applications where
the inter sample spacing in different orientations is not known
a priori, and/or subtle shifts in gradient magnitude may be
important for classification.

On a more practical level, the preprocessing steps devel-
oped in this paper for application with HOG features can
significantly simplify algorithm development, training, and
implementation for fielded application compared to current
implementations of EHD features. For example, in [22] it
was necessary to manually label the specific depth regions
where target responses appeared in a very large body of
GPR images to obtain prototype GPR segments for algorithm
training. Manual labeling of GPR images is time consuming,
error prone, and subject to variations between individual
user preferences. In contrast, this paper shows how features
can be reliably extracted from automatically flagged GPR
depth segments (Section IV-B). This significantly simplifies
algorithm training which often requires data from thousands
landmine responses, and streamlines algorithm modifications
as new data becomes available. Finally, [22] used a special-
purpose classification algorithm based on a combination of
self-organizing maps [34], and fuzzy K-NN classification.
Results from this paper based on HOG features shows that
both HOG and EHD features are more easily separated using
standard off-the-shelf classification techniques such as random

forests [35], and can even be well separated with linear
classifiers, such as partial-least-squares discriminant analysis
(PLS-DA) [36]. Linear classification is particularly of interest,
since extremely fast classification algorithms are required for
techniques like HOG features to be applicable in GPR-based
prescreening, and as the remainder of this paper illustrates,
HOG features coupled with PLS-DA classifiers provide the
first such example of a feature-based prescreening algorithm
capable of operating in realtime on the large volumes of data
generated by vehicle mounted GPR arrays.

IV. APPLICATION OF HOG FEATURES TO GPR DATA

GPR-based object classification using HOG features
requires incorporating additional information from our knowl-
edge of GPR signals and propagation to understand how
to best extract target and nontarget examples of subsurface
responses, which subset of imagery at an alarm location to
extract, proper data preprocessing, and combinations of down-
and cross-track imagery.

A. Spatial Locations for Feature Extraction

Developing a classification algorithm based on HOG fea-
tures to detect possible threats in GPR data requires a large
body of data from both target [e.g., landmines, other buried
explosives] and nontarget responses. For the data considered
here, it is relatively simple to identify target spatial locations
since their GPS coordinates are known a priori and the GPR
data is collected with accurate GPS locations.

Determining which nontarget responses to use during
training offers more options. One approach to generate
nontarget responses might be to randomly sample the remain-
ing nontarget portions of the large volume of GPR data
available. One could then undertake a bootstrapping approach
to identify interesting regions of the subsurface for training
(see [37] for an example of this process applied to video
data). However, the vast majority of GPR data collected over
testing lanes is relatively homogeneous, and the majority of
randomly sampled points are therefore uninteresting from a
machine learning perspective.

As discussed previously, prescreening algorithms are com-
putationally inexpensive algorithms designed to achieve high
probability of detection at moderate to high false alarm rates.
False alarms from prescreening algorithms are typically due
to surface or subsurface nontarget anomalies, rapid changes
in sensor height, radar–ground coupling, or changes in the
subsurface structure. As a result, prescreener false alarms
provide a rich source of anomalous data likely to confuse
classification algorithms, and these provide a good source of
training data for machine learning algorithms. The remainder
of this paper extracts nontarget data for training using spatial
locations false alarms from a prescreener developed at and
based on [38].

B. Temporal Locations for Feature Extraction

Given a spatial location around a target or prescreener false
alarm, one can easily extract a cube of data corresponding to
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Fig. 2. Sample down-track GPR image and subimage extraction. The top
left image shows a target response after time-gating to remove air/ground
interface. The top right image shows a smoothed energy profile of the image
on the left. Local maxima are marked with black stars. The bottom rows of
images show subsets of data extracted around the three black star locations
in the top left image in both the down- and cross-track orientations. In the
bottom rows, the leftmost image corresponds to data extracted around the
largest maxima peak in the top right, the middle image to the second highest
peak, and the third image to the lowest magnitude peak. The six images in
the bottom are enlarged to illustrate detail compared to the top left image.

that location. However, significant portions of a GPR response
around a location of interest typically contain little to no
information about the object (Fig. 1). As a result, it is typically
necessary to extract regions of interest from within a typical
B-scan (collection of A-scans) that are believed to contain
information regarding the object underconsideration. For the
HOG features, additional preprocessing must be used to select
different subwindows of the sensor data for further processing.

In the computer vision literature, the localization of an
object or point of interest is often achieved using keypoint
identification methods which seek to identify corner or blob-
like regions [24]. However, based on some initial investi-
gations, corners and blobs do not appear to be particularly
well suited for interest point identification in GPR data [29].
Although GPR-specific keypoint identification is an interesting
field for further study, it is beyond the scope of this paper.
Instead, since subsurface objects typically result in larger mag-
nitude GPR responses than the surrounding homogeneous soils
(since responses from dielectric discontinuities cause reflec-
tions of significant magnitude), this paper uses a smoothed
local signal energy metric to identify the three largest energy
peaks in the central A-scan closest to an anomalous response
as locations around which to extract HOG features. Each
extracted window is of size 54 × 24 image pixels, though
this is later reduced to 18 × 24 pixels (Section IV-C). The
original window size of 54 × 24 pixels was chosen based on
visual analysis of multiple target responses. Responses from
the targets of interest often span 50 or so samples temporally,
and larger targets (e.g., buried shells) often have responses
spanning 24 samples (about 1.2 m) spatially. Although for
general application these parameters should be selected based
on typical responses from the radar under consideration, inves-
tigations undertaken during algorithm development indicated

Fig. 3. Sample GPR images using different amounts of temporal down-
sampling. The time axis is along the y-axis and spatial location is along the
x-axis. Each image corresponds to a different amount of downsampling in
the time axis. The goal is to make the distribution of features in the HOG
histogram bins approximately uniform (see Fig. 4 for additional information
and results).

only slight performance sensitivity to the precise size of the
windows utilized. This process is shown visually in Fig. 2.

The process described above is used during training to deter-
mine temporal locations at which to extract data representative
of target and nontarget responses. During testing, the HOG
features are extracted from a fixed set of windows of size
54 × 24, which overlap 50% in the vertical along the A-scan
corresponding to the prescreener alarm. The final decision at
each spatial location is made by first processing each depth
window along the A-scan of interest, and then taking the
average of the top three confidences to create a final statistic.
This process was developed based on empirical results, and
agrees closely with other approaches used in the literature,
e.g., [22]. As with many GPR-processing applications, both the
training and testing procedures used here are beset by logistical
problems necessitating ad hoc solutions, e.g., the selection of
positive examples with smoothed energy, and aggregating over
classifier confidences using order statistics. In actuality these
problems can be seen as symptoms of the underlying multiple-
instance nature of the target identification problem [39], [40];
see Section VI for further discussion.

C. Image Resampling

Because of the nature of typical image acquisition in visual
imagery it is common to assume a priori that pixel values
are likely to be equally variable in any of the cardinal
directions (e.g., in the classic four-element neighborhood).
This assumption does not carry over to processing GPR data
since GPRs often use radically different spatial and temporal
sampling rates, so variation along the y-axis (time) and the
x-axis (space) cannot be assumed to be commensurate. For
example, in the top left image in Fig. 3, the temporal sampling
rate (y-axis) is much higher than the spatial sampling rate
(x-axis), so derivatives calculated along the y-axis will have
much smaller magnitudes than those calculated along the
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Fig. 4. Sample distribution of features in HOG histogram bins after different
amounts of GPR temporal downsampling. For highly temporally sampled GPR
data, the gradients are dominated by horizontal or spatial differences (Bin 5).
For highly downsampled GPR data, the gradients are dominated by vertical
gradients (Bins 1 and 9). For this particular radar, a downsampling rate of 3
achieved approximately uniform bin histograms.

x-axis, where single pixel differences correspond to much
larger changes in signal magnitude.

Since the sampling in GPR data is unequal, some spatial
derivatives are artificially enhanced or reduced, certain angle
estimates (1) will be overrepresented in the resulting HOG
descriptors, resulting in reduced feature fidelity. It is possible
to use the physics of electromagnetic propagation to analyti-
cally estimate the reduction in temporal sampling required to
achieve equity between spatial and temporal sampling given
known soil parameters. However, soil parameters are rarely
known precisely, and can change rapidly over the course of a
few meters in real data. Furthermore, simplistic analysis and
downsampling ignores important factors for target identifica-
tion such as the transmitted pulse width, which has significant
impact since reflections of the transmitted pulse determine the
data used to calculate gradients.

Instead of a physics-based approach, this paper utilizes
a statistically motivated approach to determine the proper
image downsampling. To achieve this we exploit the fact that,
for optimal performance, the HOG feature descriptors should
be approximately uniformly distributed across the histogram
bins. For temporal sampling rates that are too high, the HOG
feature vectors will tend toward descriptors with a great deal
of weight in the horizontal bins, since derivatives along the
time axis will be artificially smaller in magnitude. Similarly,
for sampling rates that are too low, the HOG feature vectors
will tend toward descriptors with a great deal of weight
in the vertical bins, since the gradient estimates along the
A-scan will be artificially large. Fig. 4 shows an example
of this for HOG descriptors calculated from images like
those shown in Fig. 3. Fig. 4 illustrates how changing the
temporal sampling rate in a GPR image alters the distribution
of gradient magnitude in the resulting HOG descriptors. Based
on these results, the remainder of this paper uses a temporal
downsampling of three time samples, since that amount of

(a)

(b)

Fig. 5. (a) Sample GPR subimage and (b) resulting HOG descriptor
representation extracted around a target response. The HOG representation is
generated by taking the resulting gradient bins and gradient magnitudes within
each cell and generating lines at the appropriate angle with the appropriate
magnitude. This visualization was inspired by those in [28].

downsampling provides a roughly flat distribution of HOG
features for the GPR under consideration.

D. Down-Track and Cross-Track Information

Although GPR data is easiest to visualize as a B-scan in
two dimensions, vehicle mounted sensor arrays generate 3-D
volumes of data as they move down-track. Although the
HOG implementation described in this paper does not directly
account for the 3-D nature of the data volume (but see
Section IV), incorporating information from both the down-
track and cross-track B-scans at an object of interest signif-
icantly improves performance compared to using either B-
scan orientation alone. As a result, the process described in
Sections IV-A to IV-C is repeated in both the down- and cross-
track orientations, and the resulting feature descriptors are con-
catenated to generate a single feature vector for classification.

E. Sample GPR Data and HOG Feature Descriptors

Fig. 5 shows an example region of interest (after down-
sampling) from a subsurface buried target (a) and a visual
representation of the HOG votes for each subsurface block
(b). The top image is of size ni × n j = 18 × 24 pixels
after downsampling (Section IV-C). For each 18 × 24 image
flagged for feature extraction, this application uses a grid of
cells of size 3 × 4 (e.g., each cell consists of a region of
6 × 6 GPR data pixels). During cell-based normalization,
overlapping regions of 3 × 3 cells are used to constitute each
block. These parameter settings were chosen for numerical
convenience, but results are relatively insensitive to exact
parameter settings.

The example target response in Fig. 5 shows a clear
hyperbolic response, which is exactly what the application of
HOG to GPR data seeks to exploit and identify in subimages
containing target responses. The bottom image in Fig. 5
represents the HOG histogram votes corresponding to each



1546 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 3, MARCH 2014

(a)

(b)

Fig. 6. (a) Sample GPR subimage and (b) resulting HOG descriptor repre-
sentation extracted around a false alarm response. The HOG representation is
generated by taking the resulting gradient bins and gradient magnitudes within
each cell and generating lines at the appropriate angle with the appropriate
magnitude. This visualization was inspired by those in [28].

of the 12 cells in the image. For each cell, each region in
the bottom plot shows the resulting HOG feature vector as
an image consisting of total vote magnitude-weighted lines at
the angles corresponding to each bin center, (φk + φk−1)/2.
In this paper, nθ = 9, so there are nine unique possible lines
in each block. The resulting histogram bins clearly indicate
the dominant downward-sloping gradients as a function of
proximity to the target center.

Conversely, Fig. 6 illustrates a high-energy response from
a nontarget. This response has significantly less structure than
the response in Fig. 5, and the resulting HOG descriptors
illustrate a much less coherent distribution of HOG feature
votes compared to the HOG descriptor shown in Fig. 5.

F. Prescreening Versus Classification

As described in the introduction, the proposed HOG fea-
tures can be utilized in both a post-prescreener anomaly-
classification role, or directly as a prescreening algorithm.
When used as a classification algorithm, the feature extraction
during training proceeds as described in Sections IV-A–IV-D,
and during testing the trained classifier is used to classify data
from alarms generated by the same or a similar prescreener to
the one used during training.

When HOG is used as a prescreener, the training procedure
follows the same approach as above. During prescreener test-
ing, however, HOG features are extracted from every pixel in
the GPR volume, and a separate faster classification algorithm
is used to classify each pixel. The resulting confidence volume
is then summed along the time or depth axis to form a 2-D
confidence map, which is then smoothed and normalized prior
to alarm declaration [38].

V. RESULTS

This section presents results for both the HOG prescreening
algorithm as well as postprocessing alarms using both HOG
and EHD feature extraction and classification.

Fig. 7. Classification results for prescreening, HOG, EHD, and HMM
algorithms. HOG performance on this dataset is very robust, dominating both
the HMM and EHD algorithms. Note that, to show detail, the PD axes start at
70%, and the FAR axis only extends to 0.005 FA/m2. See text for additional
information.

A. Dataset

The data used in this paper was collected with the vehicle-
mounted GPR described in Section II. All data were collected
at a western U.S. testing site with ground conditions vary-
ing between dirt, asphalt, and concrete. The data collected
spans approximately 195 000 m2, and contains 2960 target
encounters (landmine or other explosive) over 740 unique
targets (the vehicle was driven over the same testing roads four
times). The target populations include a mix of buried shells
in varying orientations and combinations, buried explosive
simulants, pressure plates, and both metallic and nonmetallic
landmines. Overall, the target population is biased toward
more difficult targets such as low-metal antitank landmines and
low-metal pressure plates. All the targets under consideration
are buried at operationally relevant depths. When the standard
prescreener is run on this data, it finds about 93.5% of all
targets, and generates approximately 1000 false alarms. This
dataset provides a large and comprehensive body of data
to enable statistical learning for both target and false alarm
responses.

B. HOG Feature Classification and Comparison ROC Curves

For target classification using HOG features, a random
forest [35] was iteratively trained and tested on varying subsets
of the available data. Careful cross validation is crucial to
obtaining robust performance estimates, and significant care
must be taken when working with multiple passes over the
same spatial regions, as with the GPR data considered here.
Software developed at the University of Florida [23] provides
the capability to automatically infer distinct training and
testing folds during spatial cross validation by ensuring that
spatial clusters of false alarms and unique target emplacements
are properly divided during cross validation.

Fig. 7 shows the results obtained from evaluating a ran-
dom forest (100 trees, 2 variable splits at nodes, cen-
tral axis projection classifier; see [35]) on HOG features
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Fig. 8. Classification results comparing HOG with modified EHD features.
HOG performance remains slightly better than EHD performance. The use
of EHD features in the framework outlined in Section IV, along with
retraining and cross validation, yields a significant improvement in algorithm
performance over current fielded versions.

using the cross-validation procedure outlined in the preceding
paragraph. The current implementations of EHD [22] and
the HMM algorithm [21] are shown in cyan and green,
respectively.

Clearly, on this very large dataset, HOG features provide
performance benefits when compared to both EHD and HMM
features, although two caveats are important to note. First,
the HOG algorithm used in this paper was trained in cross
validation on the current dataset, while the EHD and HMM
implementations correspond to the current, fixed fielded imple-
mentations and therefore were not retrained. Furthermore, on
other datasets, or under other weather or soil considerations,
the relative performance of these algorithms is always subject
to change (see [23] for a review, and [41], [42] for options to
mitigate performance variability across contexts).

C. Performance Utilizing Modified EHD Features

The results in Fig. 7 show performance for the HOG
algorithm compared to a fielded version of the EHD algo-
rithm. However, several modifications make direct compar-
ison of these algorithms difficult. For example, as noted
previously, the algorithm described in [28] makes use of
several steps which were avoided during the HOG feature
extraction process, including manual determination of target
locations during training and the application of special-purpose
classification algorithms. To more directly compare the HOG
and EHD feature extraction approaches, a new version of the
EHD algorithm was developed using the same EHD feature
descriptor approach, but using locations and preprocessing as
described in Sections IV-A, IV-B, and IV-D. Furthermore,
in contrast to the special purpose algorithms developed in
[22], EHD classification was performed using a random
forest with the same parameters used for HOG classifica-
tion. Results from this performance comparison can be seen
in Fig. 7.

The results in Fig. 7 show that, when the same preprocessing
and classification approaches are used, both EHD and HOG
methods perform comparably, with HOG performing slightly
better at several operating points of interest. Comparison of
Figs. 7 and 8 illustrate how direct comparison of feature
extraction methodologies in GPR data is significantly compli-
cated by a large number of preprocessing approaches under-
taken during algorithm development. These results indicate
that the preprocessing techniques developed in this paper
(Section IV) can provide robust performance and simplify
algorithm training and implementation. These results also sug-
gest that HOG features provide a robust technique for feature
extraction and target classification in GPR data. Furthermore,
as the next sections show, the HOG feature descriptors can
also be used to develop prescreening algorithms, remov-
ing the artificial divide between alarm generation and final
classification.

D. HOG Prescreener Performance and Fusion

In contrast to postprocessing alarm responses, HOG feature
extraction is computationally simple enough so that it is
feasible to perform HOG feature extraction at every GPR
pixel as a vehicle moves down-track, which enables the HOG
features to be used in prescreening. Unfortunately, for our
application, the random forest classification approach is too
slow to be used at every pixel, though parallelization of
the RF, as well as cascade-like classifiers, could be used to
overcome these limitations. Instead, during prescreening, this
paper makes use of a PLS-DA classifier [36]. PLS-DA is an
effective technique for linear object classification, and has an
extremely fast (linear) runtime, so it is more applicable to
prescreener processing compared to other more complicated
classifiers. From a computational perspective, the dominant
sources of complexity in the HOG feature extraction process
are the gradient calculation and binning of angle votes, both
of which are linear in the number of pixels or number of bins
under consideration.

Since prescreening algorithms process entire data col-
lections at once, training and testing is complicated for
prescreening algorithms; it is difficult to do leave-one-target-
out cross validation, for example. Instead, in this paper, the
prescreening version of HOG was trained using data from
the large data collection outlined above, and then run on a
separate data collection (taken several months later) over some
of the same regions. The second validation dataset consists of
47700 m2 and 654 target encounters.

Results from the on-board prescreening algorithm, HOG-
based prescreening, and a fusion of the prescreening algo-
rithms are shown in Fig. 8.

The current system prescreener is an energy-based pre-
screening algorithm that searches for anomalies based on a
whitened energy metric and successive stages of smoothing
and CFAR processing [38]. The algorithm has been succes-
sively optimized to detect target-like anomalies over several
years, and is extremely welltuned for detecting anomalies
of approximate target size and shape whose energy varies
even slightly from nearby background. In contrast, the HOG
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Fig. 9. Comparison of different pre-screening algorithms and pre-screener
fusion. HOG pre-screening was trained on the data set explained previously,
and tested on a separate data set for this experiment. Overall performance
of HOG prescreening does not match the performance of the on-board
prescreener operating alone, but simple fusion of the two prescreeners
significantly improves performance.

prescreening algorithm presented here does not make use of
multiple CFAR steps and has not been fully optimized for
overall performance due to the risks of overtraining; as a
result, the HOG prescreener performs slightly worse than the
on-board prescreener. However, since the HOG prescreener
and on-board prescreener are sensitive to different aspects of
the underlying data (HOG is sensitive to edge shapes, and
relatively invariant to energy, while the on-board prescreener
is primarily an energy detector), it is natural to wonder if
the fusion of the on-board and HOG prescreening functions
can provide additional performance improvements. The dashed
black line in Fig. 8 illustrates a simple prescreener proximity
fusion (if two alarms are within 0.25 m of one another, create
a new alarm at the center of the alarm locations, with confi-
dence equal to the sum of the individual alarm’s confidences,
otherwise retain the original alarm locations and confidences).
The fusion of the two algorithms dominates either of the
algorithms operating in isolation, and achieves 95% Pd at
0.0048 FA/m2, a 50% improvement in FAR compared to the
HOG prescreener alone, and a significant improvement over
the on-board processor, since, at the current operating thresh-
old, 95% Pd is not achieved with the original prescreener.

Overall, both the HOG classification using a random forest
and the HOG prescreener using PLS-DA enable significant
improvements for subsurface threat identification in GPR data.

VI. CONCLUSION

This paper explored the application of a particular technique
from the computer vision literature, namely HOG features,
to the problem of landmine and explosive detection in GPR
data. Our results indicated that the performance of the HOG
algorithms derived in this paper enable significant performance
improvements over existing methods, and that HOG might
provide a useful technique to help break down the artificial

divide between prescreening and target classification used in
GPR systems due to computational bottlenecks.

This paper also developed a number of preprocessing and
classification steps that enabled modifications to the EHD
algorithm to overcome some previous limitations (e.g., manual
target localization, special-purpose classification algorithms)
and enabled simpler algorithm retraining. A comparison of
EHD and HOG performance in Figs. 7 and 8 illustrated
the importance that preprocessing steps have on algorithm
performance and the difficulty in providing accurate feature-
to-feature performance comparisons.

From a computational perspective, the HOG feature extrac-
tion procedure is quite tractable; for example, HOG fea-
tures are widely used in image and video processing, where
algorithms using these features are capable of achieving real-
time performance. Furthermore, several open-source imple-
mentations of the HOG feature extraction code are available
(e.g., [43]).

Based on the work presented in this paper, interesting
avenues for further research and development are possible.
First, throughout the training process, a rather ad hoc energy-
based technique to localize actual responses of interest was
utilized. Optimal extraction of locations of interest to identify
and classify target versus nontarget responses is an unsolved
problem in GPR processing. In the computer vision literature,
corner points are often used to find regions of interest for
additional processing—could a similar motivation be used to
identify interesting locations in GPR data?

Also, during classifier development and execution, other
ad hoc techniques to aggregate decision metrics from sets of
images are required (e.g., average the top three confidences
as in Section IV-B). This process is necessary because the
underlying problem being solved is not a simple pattern
recognition problem but can instead be well represented as
a multiple-instance learning (MIL) problem (e.g., [39], [40],
[44]–[46]). Treating the learning problem in GPR as an MIL
problem is a young but active area of research that is currently
being explored.

At a bigger picture level, HOG is certainly not the only
technique available from the computer vision literature that
might have implications for target classification in GPR data.
It is possible that the work described in this paper will lead to
significant leveraging of other alternative approaches for class
identification from the computer vision literature being applied
to solve problems in GPR data.

For example, numerous powerful and computationally sim-
ple feature extraction techniques such as BRIEF [47], random
features [48], combinations of features [49], and others may
enable faster and more robust target classification. Other
approaches to prescreening are also possible—the Viola–Jones
algorithm [27] is of particular interest due to simple computa-
tional requirements and the inclusion of cascade detectors to
help maintain rapid rates of advance.

As mentioned previously, HOG is related to (but distinct
from) previous approaches to target classification in GPR
data, such as the EHD algorithm. As more and more image
processing techniques are brought to bear on target classifi-
cation, an interesting question is what properties of different
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techniques make them successful for processing GPR data.
Figs. 7 and 8 in this paper make it clear that direct head-
to-head comparison of feature extraction approaches with
different preprocessing steps is quite difficult, so care should
be taken to ensure that the same preprocessing steps are
utilized when attempting to make direct comparisons of feature
performance.

In terms of classical machine vision properties and their
relevance toward landmine detection in GPR, we hypothesize
that invariance to exact target (or interest point) location and
invariance to received energy will be shown to be useful prop-
erties, while in variances to rotations or affine transformations
can be safely ignored or discarded. Also, novel techniques
in image processing and understanding, including part-based
models [37], may enable much more robust modeling of target
response variations due to changing soil properties, target
sizes, and target emplacements.
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