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Abstract—We introduce the term loss-of-lock to describe a
specific form of coherence loss which results in the breakage
of an InSAR time series. Loss-of-lock creates a specific pattern
in the coherence matrix of a multilooked distributed scatterer
(DS) by which it may be detected. Along with identification, we
introduce a new DS processing methodology which is designed
to mitigate the effects of loss-of-lock by introducing contextual
data to assist in the time series processing. This methodology
is of particular relevance to regions which suffer from severe
temporal decorrelation, such as northern peatlands. We apply our
new method to two subsiding cultivated peatland regions in The
Netherlands which previously proved impossible to monitor using
DS InSAR techniques. Our results show a very good agreement
with in-situ validation data as well as spatial correlation between
regions and the natural terrain.

Index Terms—Subsidence, Peatland, InSAR, Coherence

I. INTRODUCTION

LAND subsidence in the Netherlands is becoming an
increasingly critical issue as it is closely linked with sea

level rise, flooding risks and greenhouse gas emissions due to
peat oxidation [1], [2], which is abundant in the region. Despite
the importance of this issue, it is very difficult to accurately
monitor subsidence rates across the country, and currently no
land surface time series data exist with the required levels
of accuracy, length, and spatial extent. Satellite-borne SAR
Interferometry (InSAR) is a very promising technique for
monitoring land surface motion at large spatial scales with
frequent temporal sampling. While InSAR techniques employ-
ing stable point scatterers (PS) have been successfully used to
monitor subsidence in the Netherlands [3], [4], [5], these PS’s
are usually founded at greater depths and the movement of the
surrounding landscape has had to be indirectly inferred.

So far, it has been impossible to directly observe land
surface motion using distributed scatterer (DS) techniques in
the Netherlands because rapid soil movement, seasonal land
use changes and high noise levels result in sudden losses of in-
terferometric coherence, rendering any such attempt extremely
challenging [6], [7]. Similar problems have been encountered
when attempting to monitor peatland regions of other countries
as well [8], [9].
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Figure 1. Canonical coherence matrices showing different types of coherence
losses for a set of five subsequent SAR acquisitions. Shaded cells: inter-
ferometric combinations that are sufficiently coherent to produce a useful
phase estimation. Empty cells: insufficiently coherent combinations. a) An
intermittent loss of coherence at epoch tL that does not produce a loss-
of-lock, because coherent interferometric combinations exist which connect
epochs preceding and following tL. Archetype: intermittent snow cover. b) A
loss of coherence resulting in a loss-of-lock. There are no sufficiently coherent
interferometric combinations connecting the epochs preceding and following
tL. Archetype: plowing, harvesting.

In this paper, we present a novel methodology for dealing
with irreparable losses of interferometric coherence, which we
term loss-of-lock. These events are almost always observed
when attempting to monitor the motion of peatland surfaces
with DS InSAR, however, the term is more general and can
be applied to other circumstances as well. In Section II, we
provide a definition for loss-of-lock as it relates to InSAR,
as well as examples with real data. Section III describes
the methodology we have developed in order to combat this
problem and enable InSAR monitoring of these challenging
regions. Section IV provides the results of several test areas
and their validation against in-situ measurements. Section V
provides discussion, and finally Section VI concludes the
paper.

II. LOSS-OF-LOCK

A. Definition

Interferometric coherence locks subsequent SAR acquisi-
tions together. While losses of coherence are a common
phenomenon, we differentiate between intermittent losses of
coherence, where an event results in the loss of one or more
epochs, but the overall time series is unaffected (Fig. 1a); and
loss-of-lock, a more serious loss of coherence which results
in an irreparable discontinuity of the time series (Fig. 1b). A
loss-of-lock is defined at a given epoch tL such that a sustained
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Figure 2. Two examples of a loss-of-lock which result in different interpreta-
tions, resulting in a perceived change in the displacement phase at epoch 50.
Top: interferometric complex phasors, with arrows indicating the mean value
pre- and post- loss-of-lock (blue and red, respectively). Bottom: resulting
unwrapped phases. Blue dots: true (noisy) displacement phase of the ground
level. Red dots: observed (noisy) displacement phase in the presence of loss-
of-lock. Green dashed line: estimated linear velocity.

loss of coherence is observed, and no coherent interferometric
combination exists which connects observations across the
epoch in question. At low sample coherences (<0.1), the
distribution of the interferometric phase approaches a uniform
distribution [10]. This means that all useful interferometric
information (i.e. the displacement component of the interfer-
ometric phase) at that epoch is lost. Thus, the time-series is
effectively cut at tL, and the information content in the SAR
image stack alone is not sufficient to estimate a connected
set of interferometric phases spanning the entire observation
period without additional information or assumptions.

Loss-of-lock is a diagnostic term in that it is defined based
on conditions in an observed coherence matrix, rather than the
occurrence of a particular scattering phenomenon, although the
coherence losses are ultimately related to physical changes in
the scattering object(s). For instance, a short-lived snowfall
on an otherwise undisturbed and stationary grassland will
result in an intermittent loss of coherence, while a loss-of-
lock may be caused by agricultural activities such as plowing,
or changes in vegetation such as harvesting of crops, resulting
in a drastic reconfiguration of the scattering geometry of the
ground, without implying any subsidence.

It is important to note that the presence of a loss-of-lock
event may not be readily apparent from inspecting a displace-
ment (or phase) time series. If one considers an event in which
the mean surface level of the region under observation remains
constant, but the scattering geometry changes drastically (for
instance by ploughing), due to the wrapped nature of phase
observations, the wrapped phase observation following the
event may quite likely fall close to that of the previous epoch,
and both phase unwrapping algorithms and manual inspection
will overlook the change (as shown in Fig. 2 a) and b)).
Alternatively, it is also possible for large phase differences

Figure 3. Observed coherence matrix showing loss-of-lock in Sentinel-1
ascending track 88 of a multilooked region near Zegveld, the Netherlands.
The red and magenta dashed lines are added to indicate the disconnected
coherent periods. When or if a loss-of-lock occurs depends on the minimum
allowable coherence threshold (discussed in II-B).

to be observed, due to changes in the scattering surface which
are then misattributed as displacements (as shown in Fig. 2 c)
and d)).

Different sensors will be sensitive to different phenomena
occurring on the ground and in the atmosphere, i.e. a loss-
of-lock observed at C-band may not be observed at L-band.
A more practical description of the phenomena affecting our
study area is provided in Section II-B.

B. Observed Loss-of-Lock Events

A practical example of loss-of-lock is shown in Fig. 3,
showing sample coherences for the period between January
2020 to May 2021. Two coherent periods (identified with the
red dashed lines) are separated by a substantial amount of
time, but more importantly, it can be seen that there is no sig-
nificantly coherent interferometric combination linking them.
This means that the two periods are effectively disconnected,
and additional information will be required to estimate a time
series spanning the entire observation period. Depending on
the threshold used, an additional loss-of-lock event can be
observed, resulting in three coherent periods, as indicated by
the magenta lines. This shows that: i) detecting a loss-of-lock
is dependent on the choice of allowed level of noise vs. amount
of data used, and ii) a loss-of-lock can be both a sudden and/or
a sustained condition. This choice of threshold is discussed
further in Section III-E.

III. DISTRIBUTED SCATTERER PROCESSING
METHODOLOGY

A. Overview

A high-level end-to-end process flow diagram is given in
Fig. 4. The system makes use of two well-established InSAR
software packages, DORIS [11] and DePSI [12] (blue and
red sections of Fig 4, respectively). DORIS is used to align,
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Figure 4. Simplified processing flow diagram showing the major steps taken
to create DS time series estimates from Sentinel-1 Level 1 SLC SAR data
with the aid of spatial and temporal contextual data.

resample, and geolocate the level-1 single-look complex (SLC)
SAR image stack. DePSI is used to create a network of
point scatterers (PS) and estimate an atmospheric phase screen
(APS), which can be applied to both the PS and DS phase
observations. The remaining parts of this section are dedicated
to describing the “Contextual Data” and “DS Processing
Workflow” sections of the diagram (yellow and blue sections
of Fig 4, respectively), which are the novel aspects of this
methodology.

B. Spatial Contextual Data and DS Pixel Identification

Three publicly available spatial datasets are combined via
a spatial join operation: cadastral land use (parcel) polygons,
soil maps, and groundwater management zoning (Dutch: peil-
gebied) [13]. The datasets are provided as vector geometries
in geopackage format, allowing for a straightforward combi-
nation of the data. This is accomplished by taking the land
parcel delineations in the cadastral dataset as the base layer
for the spatial join and performing a one-to-one attribution
with the features with the largest overlap. While the cadastral
and groundwater management zones follow similar geographic
boundaries, the soil map has a different spatial structure and
this one-to-one attribution results in some information loss.
For instance, a parcel mostly composed of peat with a smaller
vein of sand running through it will simply be labeled with the
peat soilcode. This is done to constrain the problem variables
and have only one value per region. This method could be
extended for regions with larger or more heterogeneous parcels
by subdividing them either geographically or based on other

Figure 5. Graphical visualization of spatial contextual data in QGIS, based
on land parcel polygons of the region surrounding Zegveld, The Netherlands.
The attributed polygons are shown in green over a background optical satellite
image of the region. A parcel of interest is highlighted with a red border, and
the corresponding contextual group is highlighted in yellow.

relevant contextual information. Finally, the nearest weather
station is found by Voronoi polygonization, and its correspond-
ing ID is added in order to enable attribution of (temporal)
meteorological data. An example of such a combined dataset
is shown in Fig. 5.

DORIS provides a coregistered SLC stack along with the
geolocation of each pixel in a grid. Each pixel in the stack
can therefore be assigned an ID corresponding to the polygon
it belongs to (Fig. 5). Each polygon is assigned a coordinate
according to its centroid.

C. Coherence Matrix and ESM Phase Estimation

Multilooking is performed on a per-polygon basis. As can
be seen in Fig. 5, the Dutch peatlands are divided into large
rectangular parcels surrounded by drainage ditches, which
provides us with a natural set of multilooking boundaries.
While parcel sizes vary in shape and size, in general, the
groundwater level and land cover within a parcel is consistent,
atmospheric delay variability will be negligible (at the sub-mm
level) [14], [15], and a parcel will typically contain 100 pixels.
A minimum number of 50 pixels per polygon is enforced for
noise suppression. Thus we are able to ensure ergodicity and
representativity while maximizing the number of equivalent
looks. Following this parcel selection, we also optionally apply
a statistically homogeneous pixel (SHP) test as outlined in
[16]. This can filter out misattributed pixels due to geolocation
errors in the radar and contextual data, as well as the effects of
unwanted scatterers within the region, such as electrical masts,
light posts or trees.

The complex sample coherence matrix of a multilooked
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region, Ĉ, consisting of elements ĉij is given by

ĉij =

∑
n∈Ω

SinS
∗
jn√(∑

n∈Ω

|Sin |2
)(∑

n∈Ω

|Sjn |2
) , (1)

where Si,jn contains the complex value of the nth pixel in
SAR images acquired at epochs i and j, the asterisk denotes
the complex conjugate, and Ω is the set of all selected pixels
within the multilooked region. We differentiate between the
complex coherence matrix C, and the coherence matrix, Γ,
which is the matrix of the magnitudes of the elements of C.
An example of Γ̂ of a multilooked parcel is shown in Fig. 3.

An equivalent single master (ESM) [17] set of phases is
estimated using the “Eigendecomposition-based Maximum-
likelihood-estimator of Interferometric phase” (EMI) method,
as described in [18]. This procedure reduces the full set of
all interferometric combinations to a single set of consistent
phases, ϕ̂, as estimated by the phase of the minimum eigen-
vector of the Hadamard product of the inverse of the sample
coherence matrix with the complex sample coherence matrix,
as given by

(Γ̂−1 ◦ Ĉ)ξ̂ = λξ̂, (2)

where ◦ denotes the Hadamard product, λ is the eigenvalue,
and ξ̂ is the eigenvector. The estimated interferometric phases
are given by

ϕ̂ = arg{ξ̂}. (3)

Strong decorrelation can hinder the effectiveness of the
ESM phase estimation. In cases in which coherence is com-
pletely lost during a loss-of-lock event, it may be advantageous
to only perform the estimate within the identified coherent
blocks. This can reduce the amount of noise at the input
to the estimator, however, one risks losing useful long-term
coherent information. The decision to perform block-wise
estimation could also be driven by contextual data, i.e. a-priori
information about the land use/cover which indicates that a
loss-of-lock has occurred, such as knowledge of plowing or
harvesting events.

The estimated ESM phases ϕ̂ per polygon are then imported
into DePSI as virtual points into the secondary network of
scatterers in order to apply APS filtering. The locations of
the virtual representative points are given by the centroids of
the given parcel polygon. The APS estimation is based on an
initial primary network of PS’s. The filtered phases ϕ̂APS are
read back out of DePSI following the APS filtering stage.

D. Contextual Enrichment and Grouping

We have now obtained a set of wrapped, multilooked and
filtered DS phases which are each characterized by the set
of attributes shown in Fig. 5, along with a point coordinate
given by the polygon centroid. The parcels and their esti-
mated phases are grouped together according to their shared
attributes, establishing contextual groups. We contend that
parcels which share the same land use, soil classification, and
belong to the same groundwater management regime should be
expected to behave in a similar fashion. That is, although we

expect to see variations in phase according to differing noise
and clutter conditions, local variations in soil stratigraphy, and
variations in the optical depth due to land cover, we expect
that the parcels in a contextual group can be expected to move
according to the same displacement model in the mean sense.
This grouping becomes critical in the context of bridging loss-
of-lock in the parcel time series, which is described in sections
III-E, III-F, and III-G. The contextual group corresponding to
the red highlighted parcel of Fig. 5 is indicated in yellow. The
identified contextual groups are then filtered by their number
of members: we have found a minimum of 30 members
is needed to ensure sufficient coverage throughout the year,
however, this value will change depending on the coherence
behaviour of the area under investigation.

E. Segment Identification
Due to the loss-of-lock phenomenon, attempting to interpret

the entire ESM time series of phases at once is not possible and
will result in several types of error, such as interpreting a noise-
dominated signal as real deformation, or phase unwrapping
errors when transitioning from incoherent to coherent inter-
ferograms [6], [8], [9], [19], [20]. Thus, a different approach
is required.

We begin by identifying which parts of a time series are of
sufficient quality that they contain physically interpretable in-
formation which can be unwrapped with an acceptable degree
of error. Despite using a full-rank method to estimate the ESM
phases (Section III-C), we find that the best quality indicator
we have available is the so-called daisy-chain coherence, γDC,
which is the magnitude of the first off-diagonal of the coher-
ence matrix (corresponding to the indices j = i−1 in Eq. (1)).
These are the coherence magnitudes of the interferograms
with the shortest temporal baseline in the dataset, which for
Sentinel-1 data is six days. In general, we expect these to
be the most coherent interferograms in the dataset, as less
time has passed for decorrelation effects to occur [21], while
orbital baselines for Sentinel-1 are always small, resulting in
negligible baseline decorrelation [14]. We threshold the daisy-
chain coherence to identify sufficiently coherent subsections
of the full time-series, which we term (temporal) segments.
A segment is a contiguous subset of a time-series in which
the coherence is sufficiently high to estimate a consistent set
of interferometric phases. Thus a segment is defined by two
thresholds: the minimum coherence, and the minimum number
of consecutive coherent epochs, which can be determined
experimentally. In our case, a minimum of five consecutive
epochs with γDC > 0.12 is used as a threshold.

Each contextual group therefore contains many coherent
segments: one for each contiguously coherent period of a
parcel, times the number of parcels, times the number of
tracks. By considering such a large number of segments, we
are able to span loss-of-lock events in one parcel time series
with coherent observations from a neighbouring one from the
same contextual group.

F. Temporal Ambiguity Resolution
The identified segments are initially treated as independent

time-series. Temporal phase unwrapping (or ambiguity res-
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olution) is performed independently on each segment using
a method aided by a machine learning model, as described
by [22]. The ground surface level of peatlands is extremely
unstable and prone to rapid fluctuations depending on temper-
ature and precipitation levels, so we use a recurrent neural
network (RNN) to aid in making predictions about which
ambiguity level is correct. This RNN model uses temperature,
precipitation, and day of year as inputs, which is publicly
available daily weather data. Detailed information about the
implementation and testing of the methodology is provided
in [22].

G. Displacement Model

We have now obtained a collection of temporally unwrapped
segments, which are internally consistent but disconnected
from one another by an unknown vertical shift, ∆z, which
represents the unknown displacement history of the DS during
the loss-of-lock period. Thus, in order to recombine the
coherent segments, this unknown shift must be estimated. This
can be accomplished with the aid of a displacement model,
which can be used to align all the segments of a contextual
group.

A parametric model which relates precipitation and evap-
otranspiration to soil surface displacement at a particular
location has been developed in [23]. This model has been
shown to accurately model shallow soft soil movement in
several locations in the Netherlands with different Holocene
lithologies. While we prefer this model because it is accurate
and requires very little input data, in principle any model can
be used with this method. The model, M , is a function of
precipitation, evapotranspiration, and the Holocene stratigra-
phy at the modelled location. It is combination of reversible
processes, such as shrinkage and swell, and irreversible pro-
cesses, such as soil oxidation:

M
(
x, P (t), E(t)

)
= R

(
x, P (t), E(t)

)
+ I

(
x, P (t), E(t)

)
,

(4)

where the model is parameterized by the lithology dependent
unknowns in x, t is time, P is daily mean precipitation [mm],
and E is daily mean reference evapotranspiration [mm] [24].
R represents the reversible component and I is the irreversible
component of the relative soil surface position. Daily values
for P and E are provided at every weather station in the
Netherlands [25]. The reversible component is estimated by
the scaled cumulative difference between precipitation and
evapotranspiration:

R
(
x, P (t), E(t)

)
=

∑
τ

[
xP · P (t)− xE · E(t)

]
, (5)

where xP and xE are empirical scaling factors, and τ is the
integration time. The irreversible component is approximated
as a linear rate, which is only considered active when R is
negative, indicating drying soil conditions:

I
(
x, P (t), E(t)

)
=

t∑
−∞

xI · f
(
x, P (t), E(t)

)
, (6)

where xI is a constant, and

f
(
x, P (t), E(t)

)
=

{
0, for R

(
x, P (t), E(t)

)
> 0

1, for R
(
x, P (t), E(t)

)
≤ 0.

(7)

Thus, the model is parameterized by the four unknowns

x = [xP , xE, xI , τ ]. (8)

These parameters depend on the depth and stratigraphy of the
Holocene sequence at a given location, i.e. the lithology of that
location. Details on the validation of the model is provided in
[23]. For the test locations shown in Sec. IV, the RMSE of
the model with validation data is 6.9 mm in Zegveld, and 4.1
mm in Rouveen.

Now we will show how to accurately estimate these model
parameters, given the sparse unwrapped measurements we
have available. This result can then be used to align the un-
wrapped segments of a given contextual group and estimate a
continuous displacement time series. The relationship between
the unwrapped phases of the mth segment of a given DS
polygon, ϕm, and the group displacement model, M , is given
by

ϕm(t) =
−4π cos θ

λ
·
[
M(x, P (t), E(t)) + ∆zm

]
+ ϵ, (9)

where t is time, θ is the incidence angle, λ is the wavelength,
∆zm is the unknown vertical shift (constant for a given
segment), and ϵ is a combination of noise, phase unwrapping
errors and model residuals. Eq. (9) cannot be solved in its
current form, as the model parameters x must be known a-
priori in order to evaluate the correct ∆z. While they can
theoretically be estimated simultaneously, the high degree of
correlation between these unknowns can result in a very poor
estimation. Instead, we note that ∆z is common for all phases
within a given segment. Thus by taking the difference in
time between phases, the ∆z term drops out and the model
parameters x can be estimated directly by solving

∆ϕm(t) =
−4π cos θ

λ
·∆M(x, P (t), E(t)) + ϵ∆. (10)

Now that the model parameters have been estimated, the
∆z for each coherent segment can subsequently be estimated
by taking the average difference between the model and the
phase time series over the coherent period T :

∆ẑm =

〈
−λ

4π cos θ
· ϕm(t)−M(x̂, P (t), E(t))

〉
; ∀ t ∈ T,

(11)
where x̂ are the estimated model parameters, and ⟨·⟩ denotes
averaging. This process is repeated for each contextual group
described in Section III-D, so there is one model for every
identified contextual group.

This method can also be used to align the phase observations
of multiple satellite tracks together, provided there is no sig-
nificant horizontal motion, or else that the vertical component
of the displacement phase can be accurately estimated, and
that care is taken to ensure that the same object is used as a
reference point across all tracks.
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H. Spatial Ambiguity Estimation

The typical approach to DS InSAR processing involves
applying a minimum cost flow spatial unwrapping algorithm
to the data, such as the well-known SNAPHU algorithm
[26]. However, this approach is not well-suited to peatland
observations due to rapid soil movements and the high degree
of multilooking required [8], [20], [22]. Heterogeneity in both
the type and depth of the soft soil layer of the Holocene will
result in different responses to the seasonal weather conditions
which the ground is exposed to, leading to spatial differences
in the seasonal amplitude of the reversible displacement. When
combined with high degrees of multilooking, this can create
sharp discontinuities in the downsampled interferogram, which
will essentially lead to aliasing if strong spatial continuity
constraints, such as those in SNAPHU, are applied [27].

For these reasons, direct spatial comparison of phase
changes between adjacent parcels is an error-fraught process,
and could result in introducing additional phase unwrapping
errors instead of improving the result. We therefore take
advantage of the mean displacement of the contextual group,
which is the best estimate of how the contextual group of
parcels should behave on average. Since a time series for the
expected mean behavior of the contextual group has already
been estimated, it is now a straightforward process to apply
integer least squares (ILS) estimation [28], [29] to refine
the estimated ambiguities of each DS polygon belonging to
the contextual group. The ambiguities are estimated by first
obtaining a float solution, given by

â = (ATQ−1
y A)−1ATQ−1

y (ϕ̂DS − ϕ̂group), (12)

where â are the real-valued float ambiguity corrections, A is
2π times the n× n identity matrix, ϕ̂DS is the vector of
unwrapped interferometric phases of the given DS polygon,
and ϕ̂group is the vector of mean unwrapped phase of the entire
contextual group. Qy is the variance-covariance matrix of the
phase observations, and can be approximated by the Cramer-
Rao Bound (CRB) [19]. Thus, the covariance between two
interferometric phases, ϕij and ϕkl is estimated by

Cov{ϕij , ϕkl} ≈ γi,kγj,l − γi,lγj,k

2L · γi,jγk,l

, (13)

where L is the effective number of looks [14], and γ is the
magnitude of the sample coherence (as determined by Eq. (1))
of the given interferometric combination, as indicated by the
epoch subscripts i, j, k and l. Next, integer bootstrapping [30]
can be applied, which provides the most likely integer ambi-
guities as

ǎ =


ǎ1

ǎ2

...
ǎn

 =


[â1]

[â2 − l21(â1 − ǎ1)]
...

[â2 −
∑n−1

i=1
lni(âi − ǎi)]

 , (14)

where [·] is the rounding operator, ǎ ∈ Zn is the vector of
estimated integer ambiguities, and l are the entries of a lower
triangular matrix L obtained by decomposing the matrix Q−1

y

into L and a diagonal matrix D, such that LDLT = Q−1
y .

I. Overall Model Test

Finally, a quality check is performed on the estimated
contextual group results to ensure reliability. Overall statistics
of the estimated contextual group parameters are generated
for the entire AOI, and groups are flagged whose parameters
deviate significantly (i.e., greater than 2σ). The unwrapped
parcel phases are compared to the estimated group model in
flagged groups in which it it is suspected that the contextual
group model has been poorly estimated by means of an overall
model test (OMT).

The OMT is performed by comparing the model residuals ê
to the estimated precision of the observations Qy to generate
the test statistic T for each DS polygon:

T = êTQ−1
y ê, (15)

where N is total number of epochs and the nth element of ê
is given by

ên = ∆ϕ(t = tn)−
−4π cos θ

λ
·∆M(x̂, t = tn). (16)

The operator ∆ refers to the fact that we use the differential
daisy-chain phase as defined in Eq. (10) in order to remove
the estimated vertical displacement shifts (the displacement
occurring during the loss-of-lock periods) from the equation.

The test statistic T follows a central chi-squared distribution
with four degrees of freedom, corresponding to the four
unknown model parameters (Eq. (8)), and is compared to
a critical value which follows from a chosen significance
level α. If T exceeds the critical value, then the model does
not follow the observations to within the estimated precision
of the observations at that significance level. In our case,
the precision estimation comes from the CRB, which is the
theoretical lower bound on the best achievable uncertainty.
Thus while it is correlated with the true uncertainty, esti-
mating the CRB based on the sample coherence (Eq. (13))
will systematically overestimate the uncertainty of the phase
observations. Therefore the significance level is chosen more
strictly to compensate for this.

The OMT is performed recursively on flagged groups by
choosing an initial α and removing points which are rejected
by the test. The model parameters of the contextual group
are then re-estimated with the rejected points removed. If the
new model parameters fall below the acceptable threshold
then the group is sustained. If the parameters still deviate,
α is slowly increased and the procedure performed again. If
after several iterations (ex. 5) the estimated model parameters
still fall outside the accepted bounds, it is concluded that the
model is not suitable for the terrain in question, and the group
result is discarded. In a multiple hypothesis testing context,
this procedure could be reiterated with an alternative model.

IV. RESULTS

A. Description of Satellite Data Used

Sentinel-1 imagery of two 10x10 km regions around
Zegveld and Rouveen, The Netherlands, are used as test
sites for the time period spanning Jan. 2017 - Dec. 2022. In
Zegveld, four tracks are used: ascending 088 and 161, and
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Figure 6. Comparison between two multilooking strategies of the same area,
colour-coded by region. Solid lines: boundaries of a given multilooking region.
Circles: pixels included in the multilooking. a): Standard square multilooking
procedure using 300×300 m areas. b): Parcel-based multilooking.

descending 037 and 110. In Rouveen, three tracks are used:
ascending 015 and 088, and descending 037. The unwrapped
segments of all available tracks are combined (as discussed in
Sec. III-G) by projecting them onto the vertical after ensuring
that all phases are referenced to the same object. The common
reference point is found by identifying the PS with the lowest
normalized amplitude dispersion which is visible in all tracks.

B. Multilooking Based on Contextual Data vs SHP Test Only

A comparison between a standard multilooking approach
which employs 300×300 m regions and our parcel-based
multilooking approach is shown in Figs. 6a and b, respectively.
As can be seen in the standard approach, despite the use of
an SHP test, pixels from a number of objects which we do
not expect to behave the same way are still averaged together.
This is particularly apparent in the NE and NW corners of
the image, where agricultural fields, residential yards, and
greenery along roadways are all grouped together.

By including parcel cadastral information, we can help
ensure that we are indeed averaging pixels which belong to the
same objects or regions. An SHP test can also still be applied
to remove unwanted pixels from within the parcel boundaries.

Figure 7. Chart showing the availability of coherent data over time for a period
of one year for a selection of parcels belonging to the same contextual group.
The y-axis indicates the ID number of a given parcel, and the presence of a
solid line indicates the presence of sufficiently coherent data. The background
is shaded to indicate the relative degree of availability (i.e. the number
of coherent parcels divided by total number of parcels) such that a white
background indicates complete availability with darker shading as availability
decreases.

C. Coherent Segment Identification and Commonalities

Fig. 7 illustrates the advantage of grouping similar parcels
together into contextual groups. While almost all regions
provide sufficiently coherent (i.e., γDC > 0.12) data over the
winter period, from approximately October to April, the
coherence of most regions drops significantly in the spring
and is only intermittently present throughout the summer
period until the following October. However, by combining the
observations of enough similar parcels, we are able to have a
year-round set of data with which to estimate the parameters
of the displacement model as per Eq. (10). The coherence
threshold of γDC > 0.12 was experimentally found to be the
highest value which still ensured sufficient data coverage year-
round.

It is interesting to note that there is both a systematic
and a random aspect to the coherence behaviour of these
regions. A systematic loss of coherence from April to October
is clearly visible in the majority of parcels, however, the
exact timing of this loss, as well as the intermittent recovery
of coherence during the summer, seems to be a random
event. This distribution is visualized by the shading of the
background of Fig. 7. While it is clear that losses of coherence
in these regions are caused by agricultural activities such as
mowing and grazing, as well as changes in the scattering
properties of the medium [21] caused by the drying of the
soil and vegetation over the summer periods, it is unclear
why some parcels seem to show higher coherence levels than
others from the same contextual group at the same moments
in time. This may be caused by some fields being used more
intensively for agriculture than others, for instance differences
in the level of grazing between various fields.
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Figure 8. Surface level time series results plotted against in-situ extensometer
measurements for the period Jan. 1, 2017 – Dec. 31, 2022 at the a) Zegveld
and b) Rouveen regions. Grey lines: all segments of all parcels belonging to
the contextual group. Blue line: contextual group median time series. Red line:
Mean of time series segments of a selected parcel in the contextual group.
Black line: in-situ measurement by extensometer of the same parcel. All the
individual coherent segments belonging to the contextual group are shown in
grey for readability.

D. Time Series Estimation

An example group time series result is given in Fig. 8.
This result demonstrates how the displacement estimates of
several temporarily coherent regions can be combined together
to produce an unbroken time series of the overall region. The
result matches very well with the available in-situ validation
data. Note that the validation data is not available for the
entire span of the time series due to their installation dates.
The difference between the contextual group median result
and the validation data is quantified by the root mean square
difference (RMSD) in Table I. However, it should also be noted
that we do not expect an exact match between the InSAR
and ground-based results, because the InSAR result shows
the average behaviour over a large spatial extent, whereas the
ground-based measurement is of a single point. Moreover, the
ground-based results do not capture the influence of the top
five centimeters of soil, due to the position of the extensometer
anchors. Nevertheless, as the major factors driving the motion

Table I
DIFFERENCE BETWEEN INSAR AND EXTENSOMETER ESTIMATES

Location Group RMSD (mm) Parcel RMSD (mm)

Zegveld 6.9 7.9
Rouveen 5.3 6.6

Figure 9. Chart showing the effective number of looks over time for the
period Jan. 1, 2017 – Dec. 31, 2022 for the same contextual group shown in
Fig. 8a.

are the same for both cases, we see that the agreement between
them is very close, particularly in the observed short-term
dynamics.

E. Effective Number of Looks Over Time

An important factor governing the accuracy of the result
is the effective number of looks [14], shown in Fig. 9. This
number fluctuates throughout the year due to the availability
of coherent segments in the contextual group, as discussed in
Sec. IV-C. It is important to ensure that there remain enough
coherent observations during the periods in which most regions
are incoherent. If too few coherent observations are present,
then the overall contextual group result can become biased by
the behaviour (and noise) of only a few pixels. The effective
number of looks L used at a given time is given by

L = (No.segments)× (No.pixels/segment)×OSR, (17)

where OSR is the oversampling rate given by

OSR =
PRF

BWaz

· fs,R
BWR

(18)

where PRF is the pulse repetition frequency, fs,R is the range
sampling rate, and BWaz and BWR are the azimuth and range
bandwidths, respectively.

F. Estimated Linear Rates

Approximate linear subsidence rates are shown in Fig. 10.
These rates are estimated by linear regression of the contextual
group mean time series results shown in Section IV-D, how-
ever, it should be noted that the total length of the observation
period (5 years) is too short to establish a robust estimate of
the rate. Thus, these results provide an order of magnitude
estimate and can be used to assess the spatial distribution of
subsidence in the area.
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Figure 10. Colour-coded map of estimated linear subsidence rates for the
period Jan. 1, 2017 – Dec. 31, 2022 at the a) Zegveld and b) Rouveen regions.
Parcels with no fill indicate that no estimation has been made at that location.

V. DISCUSSION

A. On the Absence of Contextual Data

It is quite likely that in some cases, additional contextual
data may not be available for the region under investigation,
for instance in peatland regions in remote locations. In such a
case, additional remote sensing data may be integrated into the
processing workflow in order to identify and group common
pixels together, such as the SAR backscatter data, as is done
in the established squeeSAR [16] method, or through the use
of semantic segmentation techniques on co-located optical
imagery. A-posteriori techniques such as T-SNE [31], [32]

Figure 11. Colour-coded map of estimated goodness-of-fit according the T -
score value at the a) Zegveld and b) Rouveen regions. Parcels with no fill
indicate that no estimation has been made at that location.

can potentially be used to group similarly behaving scatterers
together into contextual groups.

B. Model Reliability and Goodness of Fit

Steps are taken to ensure goodness of fit and reliability
of the estimated model in the overall model test (Sec. III-I).
The T -score of a given parcel (eq. (15)) is shown in Fig. 11,
however whether or not that parcel is used in the final rate es-
timation depends on the procedure outlined in Sec. III-I. When
comparing Fig. 10 to Fig. 11, it can be seen that some parcels
with a high T -score, and therefore a poor agreement with the
contextual group model, are discarded from the final result.
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These are the ones detected by the iterative testing procedure.
Other parcels with high T -scores are flagged for further re-
evaluation but are not discarded immediately because their
corresponding groups fall within expected bounds. There are
several main causes of error which make a parcel deviate from
the estimated contextual group model:

• Misattribution within the contextual dataset: for example,
errors in the soil map, or incorrect land use classifications

• Phase unwrapping errors
• Noise and decorrelation
• Model parameter estimation errors

Often these causes are correlated; a misattributed parcel
may be grouped with a set of other parcels in which it
should not belong, and introduce error into the contextual
group model estimation. One region where this is evident is
in a group of central-northern parcels (approx. coordinates:
52.62◦N, 6.13◦E) in the Rouveen area. Although classified as
grassland, it is in fact a large rewilded “Natura-2000” region.
Some of the parcels in this region are more densely covered
with vegetation as opposed to being simple grasslands. This
means that the phase behaviour in these parcels is possibly
different from the surrounding areas, and in some cases the
estimated displacement model may not be valid there. The
OMT procedure is able to identify this and re-estimate a valid
model with the remaining parcels not discarded by the test.
A similar situation is visible in the SW corner of the Zegveld
region (approx. coordinates: 52.095◦N, 4.75◦E).

C. Mean Displacement Model versus Mean Phase Change

The use of a mean displacement model is a choice which
in theory could be omitted. One could for example simply
take the mean of the daisy-chain differential phase ∆ϕ(t) of
the entire contextual group and integrate it to obtain a relative
position time series. However in that case, one becomes very
dependent upon a select few set of measurements during the
low-coherence times, as shown in Figs. 7 and 9. Any biases,
noise or phase unwrapping errors in these observations would
then be directly propagated into the mean contextual group
time series. Therefore, using the set of all ∆ϕ(t) observations
to estimate a set of global model parameters is a safer option,
provided the model is valid for the contextual group.

VI. CONCLUSION

Loss-of-lock is a permanent loss of coherence between
two or more parts of a time series which is impossible to
repair using the data in the SAR image stack alone. While
decorrelation is a topic that his been discussed at length in the
past, the specific implications of a loss-of-lock event are not
well understood nor has a name been given to the phenomenon
despite its very common occurrence in certain regions around
the world, such as northern peatlands.

We introduced a new DS processing methodology which
makes use of contextual data in order to reconnect coherent
observations separated by loss-of-lock. With this methodology
we perform multilooking based on polygons which mark
physically existing divisions in the terrain, and assign a set
of attributes and multilooked phases to each polygon. As is

observable from their coherence matrices, most of these phase
histories suffer from loss-of-lock. We combine the observa-
tions of different polygons which we expect to behave in a
similar manner in order to parameterize a common functional
model. This model is used to align the disparate observations
to estimate a single unbroken time series for the contextual
group.

Using this methodology, we have successfully been able to
estimate accurate InSAR displacement time series in several
subsiding peatland regions in The Netherlands which was
previously not possible with InSAR. To our knowledge, this
is the first time that an accurate and validated time series has
been estimated based on direct observation of the peatland
pixels using DS techniques.
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