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Abstract— The feasibility of single-pass interferometric or
multistatic synthetic aperture radar (SAR) mission concepts
largely relies on the ability to achieve the matching of the carrier
phase of the different radar instruments of the constellations
within a few degrees. We put forward a phase synchronization
scheme in which the global navigation satellite system (GNSS)
receiver and the radar payload share the same oscillator;
the estimation of the synchronization phase follows from the
combined evaluation of the navigation raw data and the precise
orbit and baseline determination solutions. The article presents
a discussion on accuracy, an error analysis, and an evaluation of
its viability using a system-oriented simulation of the navigation
data. The results suggest the proposed approach is capable of
delivering reliable estimates of carrier frequency and phase
errors for low- and medium-frequency systems in the absence
of strong baseline velocity deviations if multipath and other
systematic errors are successfully suppressed or calibrated.

Index Terms— Bistatic radar, calibration algorithms,
multistatic radar, performance analysis, time and phase
synchronization.

I. INTRODUCTION

IN BISTATIC and multistatic space radar systems, the
transmitter and the receiver are spatially separated,

an aspect typically associated with reduced development costs,
enhanced performance, reconfigurability, and scalability [1].
In these systems, however, different oscillators are used for
modulation and demodulation of the radar carrier, and the
low-frequency component of the phase noise process cannot
be expected to cancel out as in monostatic systems [2], [3],
which will in general compromise the use of the systems for
interferometric and tomographic applications [4].

As an example, the generation of digital elevation models
with TerraSAR-X add-on for digital elevation measurement
(TanDEM-X) required the knowledge of relative phases
within a few degrees to avoid systematic modulations
in the interferometric measurements [5]. In that case,
synchronization with that level of accuracy was achieved by
exchanging pulses at the radar carrier frequency between the
satellites through a direct microwave link [6], which involved
the implementation of six horn antennas connected to the
radar payload, covering most of the angular environment of
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the satellites. Besides the need for additional hardware, the
incorporation of such direct links may be problematic due to
differences in the development schedules of different elements
of the constellation, as it is typically the case of companion
synthetic aperture radar (SAR) missions [7].

In a full system architecture (e.g., MirrorSAR, [8], [9]),
it is envisaged to avoid the demodulation of the radar signals
by having the receivers act like transponders, i.e., rerouting
the radar echoes to another element of the constellation
(e.g., the transmitter) having access to the oscillator used in
the modulation. Although a MirrorSAR architecture requires
a direct link between the satellites, not necessarily in the
microwave range, it still keeps the potential for relevant
spacecraft simplification by the possible removal of complete
hardware blocks for demodulation, data storage, downlink,
or digital control in the receivers.

The estimation of the synchronization phase is based on
the evaluation of the received data (e.g., autosync), though
demonstrated in spaceborne environments [10], [11], provides
estimates with varying quality as a function of the backscat-
tering of the scene, which can only be arguably acceptable as
a baseline solution for interferometric SAR missions.

In [12] a synchronization scheme for bistatic and multistatic
radar based on global positioning system (GPS) is proposed,
where the transmitter and the receiver in different platforms
use an ultrastable oscillator (USO) disciplined by the output
pulse-per-second (PPS) signal generated by the embedded GPS
receiver. It combines the advantages of the good short-term
stability of high-quality USO with the long-term stability of
the PPS signal generated by the GPS receiver. The technique,
however, relies largely on the evaluation of the received data
to compensate for time fluctuations of the PPS signal and the
short-term phase variations of the USO.

We put forward in this article an approach to estimate
the oscillator phase errors in bistatic and multistatic SARs
based on the coherent evaluation of navigation data from
the global navigation satellite system (GNSS) receivers on
transmitting and receiving satellites and the baseline solution
obtained via precise orbit determination (POD), provided both
the radar and the navigation receivers share the same primary
oscillator. We exploit the fact that the phase drift of the
oscillator in the navigation receiver can be estimated in the
standard navigation solution. This drift directly affects the
pseudorange measurements between the GNSS satellites and
the GNSS receivers and is estimated along with the position
and velocity in a filter. In principle, only the raw data of the
GNSS receivers at the highest possible rate is required for the
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complete duration of the SAR acquisition period. Since the
raw data of the GNSS receivers of the two spacecraft need be
available for the estimation of the synchronization solution,
the technique is better suited for implementation on ground
to be used during the calibration and processing stages of the
bistatic and multistatic data.

The suggested approach links the synchronization and
navigation solutions, i.e., accurate baseline determination,
which is a sine qua non condition for its successful operation.
This commonality, hardly new in the context of bistatic and
multistatic SAR, is shared with the solution of a simplex
synchronization link, the original MirrorSAR architecture, and
interferometric autosync implementations.

The capability of high-accuracy relative positioning (i.e.,
baseline determination) using GNSS has been extensively
demonstrated in space. In the gravity recovery and climate
experiment (GRACE) mission, an accuracy of 1 mm compared
to a K-band ranging system [13] was reported. TanDEM-X
achieved accuracy in the order of 1-2 mm through a posteriori
calibration based on the evaluation of the raw topographic
maps acquired under different geometries [14]. Both missions
used geodetic GPS receivers, capable of receiving two
frequencies for correcting the effects of the ionosphere. The
prototype research instruments and space mission technol-
ogy advancement (PRISMA) mission, on the other hand,
demonstrated the capability of achieving subdecimeter relative
positioning precision using a low-cost single-frequency GPS
receiver [15]. An associated capability for high-accuracy
relative timing can be inferred from the dependency between
time and position accuracy in GNSS-based POD.

Our suggested solution indicates that it is capable of capable
of providing reliable estimates of the oscillator synchro-
nization phase, biased by the absolute baseline error, up to
frequencies beyond the X-band provided the contributions
of the baseline velocity error, differential ionospheric delays,
multipath, and other systematic components are negligible or
calibrated. The results show that the technique could be used to
achieve relative phase synchronization. Its ability to provide
absolute phase synchronization depends on the precision to
which all the biases can be calibrated, e.g., by means of a
posteriori evaluating of the raw topographic maps acquired
under different geometries. The article presents a detailed
analysis of the phase synchronization accuracy and the impact
of all systematic components on the solution.

Section II presents the impact of the lack of synchronization
on bistatic SAR images. Section III describes a simple model
for the synchronization solution based on the evaluation of
POD and GNSS data. Section IV presents an error analysis,
detailing all the factors that affect the precision of the phase
estimation. Section V validates the analysis employing an end-
to-end simulation and discusses its usability and performance
in a representative scenario. Section VI closes the article with
a conclusion and general discussion.

II. IMPACT OF LACK OF SYNCHRONIZATION
IN BISTATIC SAR

The phase error introduced by the operation with different
oscillators in bistatic SAR data is proportional to the difference

Fig. 1. Effect of differential clock errors on (left) the focused targets and on
(right) the focused image assuming positive δ f0,clock. The difference in color
represents the different phase of the point target.

in primary oscillator phase output between the transmitter and
the receiver [2], [3] as follows:

ψclock (t) = ψ0,clock + 2π ·

∫ t

t0
dτ · δ fclock (τ ) (1)

where t is the time, ψ0,clock is a constant not relevant for the
analysis, and δ f0,clock is a random process representing the
instantaneous difference in the radar carrier of the transmitter
and the receiver. The term δ fclock can be further expressed as a
constant carrier offset δ f0,clock and a zero-mean random process
δ fst,clock as follows:

δ fclock (t) = δ f0,clock + δ fst,clock (t) . (2)

Fig. 1 illustrates the rough effect of the clock error on a
focused point target (left) and on the focused image (right).
The focused point target suffers 2-D positioning errors, slight
defocusing, and interferometric phase errors, represented by
the color change in the left image. The focused image suffers
a distortion in range and azimuth roughly proportional to the
carrier offset between transmitter and receiver, as well as a
bulk range offset due to the uncertainty in the bistatic time
reference, as shown in the right drawing.

III. GNSS-BASED SYNCHRONIZATION APPROACH

Fig. 2 shows the block diagram of a possible system
implementation of the suggested approach. In the figure and
throughout this article, t denotes the GPS time, and all
variables are expressed in the international celestial reference
frame (ICRF). Without loss of generality, the measurement
models do not take into account relativistic effects.1

In the proposed architecture, the same USO is used for
generating the radar carrier and the reference signal in the
GNSS receiver. Please note the GNSS receiver must be able to
switch its reference to an external oscillator, a feature in some
space-qualified receivers (e.g., Beyond Gravity PODRIX used
in Sentinel-1). The carrier phase single-differences between
the two spacecraft then will contain information on the
phase noise difference between the oscillators at the different

1The SAR processing equations and geometry are described in an Earth-
centered Earth-fixed frame (ECEF), resulting in a nonsimultaneity effect
between the two frames which may cause considerable time, phase, and
frequency deviations, which are larger the longer the baseline is [16]. These
effects are deterministic and can be calculated and compensated in the data
processing. For more details on the relativistic effects on GNSS measurements,
please refer to [17]. Details on the relativistic effects on SAR processing are
given in [16].
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Fig. 2. Proposed hardware configuration for radar phase synchronization based on GNSS, also used as the basis for the analysis. In this figure, τ (i)
(u,v) are

the delays from GNSS satellite i to the SAR satellites.

platforms measured at the navigation carriers. The suggested
approach is based on the assumption that this measurement
will provide, after appropriate calibration and scaling, a good
estimation of the phase difference between the two radar
carriers.

A. Signal Model

In the following equations, we denote the upper index ()(i)

as relating to the GNSS satellite i , the lower indexes ()u and
()v as relating to the receivers in the satellites u and v, and
the lower index followed by a comma, as in ()u,k , as related
to the reference frequency, with navigation carrier frequency
denoted by k, the oscillator nominal frequency by os, and
the radar carrier by 0. Furthermore, we denote the difference
between quantities as ()uv = ()v − ()u .

Under the assumption of ideal upconversion stages, the
phases of the radar reference signal ψu,0 and the phase of
the primary oscillator input of the GNSS receiver clock ψu,os
are related as follows:

ψu,0 (t) = ψbu,0 +
f0

fos
· ψu,os (t) (3)

where ψbu,0 is a phase bias, f0 is the nominal carrier frequency
of the radar, and fos is the nominal frequency of the primary
oscillator. Equation (3) suggests any phase drift in the output of
the primary oscillator will be replicated in all reference signals
derived from it, only scaled by the appropriate upscaling or
downscaling factors. This assumption requires the spectral
purity of the upconverting stages in the radar electronics, to be
further elaborated in Section IV. Furthermore, we can assume
that the clock biases of the receivers ideally hold a linear
dependency with the phase of the primary oscillator, which
can be expressed in the following equations:

δtu (t) = δt0u +
1

2π · fos
·
[
ψu,os (t)− ψu,os (t0u)

]
(4)

δtv (t) = δt0v +
1

2π · fos
·
[
ψv,os (t)− ψv,os (t0u)

]
(5)

where δt⋆ are the clock biases, δt0⋆ is the initialization
times difference, and ψ⋆,os(t0⋆) are the oscillator phases at
initialization. In that case, the differential time offset between
clocks is given by

δtuv (t) = δt0uv +
ψuv,os (t)
2π · fos

(6)

where

δt0uv = δt0v − δt0u −
1

2π · fos
·
[
ψv,os (t0v)− ψu,os (t0u)

]
.

(7)

Equation (6) suggests that the differential phase drift of
the primary oscillator can be recovered from the difference
between receiver clock biases, assuming the linear dependen-
cies between phase and clock bias expressed in (4) and (5) are
valid.

The phase of the primary oscillator at each receiver ψu,os(t)
and ψv,os(t) can be decomposed into a linear component due
to a constant frequency f⋆, a random process φ⋆(t), and a
constant offset φ⋆0 as follows:

ψu,os (t) = 2π · fu · t + φu (t)+ φu0 (8)
ψv,os (t) = 2π · fv · t + φv (t)+ φv0. (9)

Note that the phase noise affecting the bistatic radar
measurements is the scaled version of the differences between
the transmitter and receiver oscillators evaluated at times
delayed by τAZ, the two-way travel time of the radar signals,
as acknowledged in [4]. This lag, typically in the order of
milliseconds, is beyond the inverse of the bandwidth relevant
to the calibration of the bistatic SAR data, which allows us to
approximate

φv (t − τAZ)− φu (t) ≈ φv (t)− φu (t) . (10)

B. Estimation of the Synchronization Phase

The proposed estimator is illustrated in Fig. 3. The idea is
to calibrate the systematic components present in the single
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Fig. 3. Proposed GNSS-based estimator of radar carriers phase difference.

differences of the carrier phases using the information on
the baseline, ambiguities, and bulk ionospheric delays derived
from precise orbit and baseline determination.

The differential phase noise of the oscillators on the two
satellites could be extracted from the single differences in case
the other factors can be determined with sufficient accuracy
by other means. In that case, we would obtain estimates of
the differential phase noise at the sampling rate of the carrier
phase measurements. The differential signal path length and
ionospheric delay can be determined with high accuracy from
the POD process. The residual error from the POD process
varies at different time scales as the phase noise error, which
makes it possible to separate the two, as will be explained in
detail in Section IV-B.

The complete estimation (i.e., POD and clock phase) could
also be done in a single step, in which both the baseline and
clock phase differences are estimated simultaneously. We stick
in this article to the two-step solution for the sake of simplicity
of the analysis. The single-step approach is not expected to
improve noticeably the accuracy of the estimation due to the
different temporal scales of the clock phase noise (with much
faster variations) and the changes in spacecraft acceleration
(much slower).2 It is important to mention that since the same
oscillator is used for the radar and GNSS receiver, it has to
satisfy constraints for both systems.

A biased measurement of the distance between the GNSS
receiver and the GNSS satellite can be derived from the
code delay or the carrier phase measurement. The former is
unambiguous but associated with lower precision, typically
about two orders of magnitude. The relationship between the
differential carrier phase measurements L(i)uv,k—here directly
scaled by a factor λk/2π and therefore expressed in units of
meters—and the clock biases expressed in time δtuv is given
by [19]

L(i)uv,k (t) = ρ(i)uv (t)+ c · δtuv (t)−

(
λk

λ1

)2

· I (i)uv (t)

− λk · A(i)uv,k + M (i)
uv,k (t)+ ϵ

(i)
uv,k (t) (11)

where ρ
(i)
uv is the difference between the distances from

receivers v and u to the i th navigation satellite, respectively,
c is the speed of light in vacuum, I (i)uv is the difference
between the biases caused by the ionospheric delays for a
signal at wavelength λ1, A(i)uv,k is the ambiguity difference,
M (i)

uv (t) describes other systematic error components including
multipath, crosstalk, tracking channel bias, and phase wind-
up, and ϵ

(i)
uv (t) is a thermal noise process. Substituting

from (6) and (3), we can identify the relationship between
navigation data and the clock synchronization solution as
follows:
λ0

2π
· ψuv,0 (t) = L(i)uv,k (t)+ λk · A(i)uv,k − ρ(i)uv (t)

+

(
λk

λ1

)2

· I (i)uv (t)+
λ0

2π
· ψbuv,0 − c · δt0uv

−M (i)
uv,k (t)− ϵ

(i)
uv,k (t) . (12)

An estimator of the clock synchronization solution using
a weighted average over all navigation satellites in sight
(i.e., N ) and all the n(i)λ received GNSS frequencies can be
straightforwardly derived as

ψ̃uv,0 =
2π
λ0

·

N∑
i=1

n(i)λ∑
k=1

α
(i)
k ·

[
L(i)uv,k + λk · Ã(i)uv,k − ρ̃(i)uv

+

(
λk

λ1

)2

· Ĩ (i)uv

]
+ ψ̃buv,0 −

2π · c
λ0

· δt̃0uv (13)

2See [18] for an example in which a higher sampling rate does not improve
the precision of the navigation solution.
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where ·̃ indicates the POD estimate for all the terms and α(i)k
are the weights for the signal from each navigation satellite
according to its quality (e.g., signal-to-noise ratio), with the
sum of α(i)k being equal to one. Note that the terms in the
second sum have been assumed to be sampled according to
the condition in (10). Equation (13) provides an unbiased
estimation under the assumption that M (i)

uv,k is negligible,
ϵ
(i)
uv,k is a zero-mean process, and no relevant biases are

introduced in the baseline determination process. As hinted
earlier, the term under the summation contains systematic error
components which may, if not properly removed, bias the
resulting estimates.

Assuming the measurements are statistically independent
Gaussian processes, the value of α(i)k which minimizes the
variance of the estimator is given by

α
(i)
k =

(
σ
(i)
k

)−2

∑N
i=1
∑n(i)λ

j=1

(
σ
(i)
j

)−2
(14)

where the σ (i)k correspond to the standard deviation of the
measurements (e.g., of the residuals of the POD). A sensible
assumption for the derivation of the estimator performance is:
1) a successful calibration of relevant systematic components
and 2) the measurement is dominated by thermal noise in the
receiver. Under these circumstances, for a phase-locked loop
(PLL) discriminator, σ (i)k can be expressed as a function of
the carrier-to-noise ratio (c/n0)

(i)
k as follows:

σ
(i)
k ≈

√
BL−CA

(c/n0)
(i)
k

(15)

where BL−CA is the so-called tracking bandwidth of the GNSS
receiver [20]. Substituting (15) into (16), we get

α
(i)
k =

(c/n0)
(i)
k∑N

i=1
∑n(i)λ

j=1 (c/n0)
(i)
j

(16)

where the (c/n0) values provided by the GNSS receiver
can be used. Note that these values may change during the
data acquisition period, which would result in time-varying
weights α

(i)
k . In case the individual phase error estimates

are biased, this variation would cause undesirable dynamic
error components. Therefore, we recommend fixing the values
of α(i)k for the whole data acquisition period by using, for
example, an average of the (c/n0) measurements.

IV. ERROR ANALYSIS

A further elaboration of the system model suggests the
incorporation of other systematic phase signatures occurring
in the radar and navigation receiver electronics, which might
not be assumed to be uncorrelated for different navigation
frequencies. Under these circumstances, we can relate the
phase differences at radar and navigation carriers between the
two satellites with the relative clock bias as follows:

δtuv (t) = δt0uv +
1

2π · f0
·
[
ψuv,0 (t)+ δψHWuv,0 (t)

]
(17)

where δψHWuv,0 denotes the residual signature caused by radar
and navigation receiver hardware.

The error in the estimation of the differential phase at
the radar carrier can be derived after combining (13), (11),
and (17) as follows:

δψuv,0 (t)

=

N∑
i=1

n(i)λ∑
k=1

2π
λ0

· α
(i)
k

·

{
ρ̃(i)uv (t)− ρ(i)uv (t)− ϵ

(i)
uv,k (t)

− M (i)
uv,k (t)+

(
λk

λ1

)2

·

[
I (i)uv (t)− Ĩ (i)uv (t)

]
+λk ·

(
A(i)uv,k − Ã(i)uv,k

)}
+ ψbuv,0 − ψ̃buv,0

−
2π · c

λ0
·
(
δt0uv − δt̃0uv

)
− δψHWuv,0 (t) . (18)

Equation (18) describes the error in the estimation of
the phase difference between the two primary oscillators
at the radar carrier frequency. Since the error components
are proportional to the inverse of the radar wavelength, the
estimation error is expected to increase for higher radar
frequencies. We discuss in Sections IV-A–IV-G in more detail
the impact of the error terms in (18).

A. Thermal Noise

The thermal noise contribution describes the boundary of
the performance of the algorithm in the absence of the other
systematic components. Under the assumption of statistical
independence and identical noise power for all frequencies
corresponding to the measurement of a given navigation
satellite, we can express the standard deviation of the phase
estimator due to thermal noise as

σϵ =
2π
λ0

·

√√√√ N∑
i=1

α2
i · σ 2

uv,i

n(i)λ

(19)

where σuv,i is the standard deviation of the differential
noise process corresponding to the signal received from the
navigation satellite i . Under the assumption that both parts
receive the signals of satellite i with similar quality, quite
reasonable for standard baselines and equal GNSS receivers,
and substituting from (16), the previous expression may be
approximated as

σϵ ≈
2π
λ0

·

√
2

nλ
·

1∑N
i=1 σ

−2
i

(20)

where the same number of available navigation frequencies
nλ for all satellites has been assumed. As expected, the
accuracy of the estimation improves with an increasing number
of satellites and frequencies tracked. The noise boundary
for the performance of the GNSS-based estimation of the
synchronization phase can be expressed as

σψ = σϵ ·

√
Bψ

fGNSS
≈

2π
λ0

·

√
2 · Bψ

nλ · fGNSS
·

1∑N
i=1 σ

−2
i

(21)
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Fig. 4. Phase noise accuracy according to the model in (21) for a 5.405 GHz
SAR payload (e.g., Sentinel-1 carrier phase), with the number of satellites
in view N varying from 2 to 12 and the number of frequencies nλ up to
two. The standard deviation in ranging caused by thermal noise has been
assumed to vary between 1.2 and 0.4 mm, values consistent with the technical
specification of the Phoenix receiver of DLR. The final phase uncertainty
depends on the standard deviation of the individual satellites, but in this
example would be necessarily within the shaded region.

TABLE I
SIMULATION PARAMETERS FOR PHASE UNCERTAINTY CALCULATION

where Bψ represents the bandwidth of the oscillator phase
noise relevant for the correction of the bistatic SAR data
and fGNSS corresponds to the rate at which the pseudoranges
are made available by the GNSS receivers. The value of Bψ
depends on the characteristics of the primary oscillator and the
carrier frequency of the radar; for interferometric applications,
typical values for Bψ are in the order of a few (e.g., less than
ten) Hz. In the case of TanDEM-X, the direct link is operated
at a rate of 5 Hz, a value consistent with the performance
estimation reported in [5].

Fig. 4 shows an example of the expected contribution of
the thermal noise performance in terms of noise for the
proposed GNSS-based synchronization scheme in the case of a
5.405 GHz SAR payload.3 The receiver performance is based
on the single-frequency GPS receiver Phoenix developed by
the German Space Operations Center (GSOC) of DLR [21],
but with the assumption of dual-frequency operation with
similar accuracy on both navigation carriers. The specific
values of the simulation are listed in Table I.

B. Baseline Errors

As suggested by (18), baseline estimation errors directly
appear as residual phase signatures in the estimated solutions.

3The simulated case corresponds to that of a bistatic companion of ESA’s
Sentinel-1 satellite and has been used by the authors as a reference for the
ESA Earth Explorer 10 mission Harmony.

The baseline error term in (18) can be decomposed as the
superposition of the baseline error in the navigation solution
and the error in the transformation from the phase center of
the navigation to the radar antennas. The latter can be assumed
to be negligible in typical orbital scenarios.

The error in the baseline determination depends on how
the real baseline changes over time compared to the estimated
baseline. The PRISMA mission provides some useful figures
for assessing the shape and magnitude of this error. In an initial
phase, the two spacecraft were physically attached, which
allowed for an independent, highly accurate, estimate of the
baseline using the attitude information [15]. The differences
between the two estimates in radial, along-track, and across-
track components describe, most of the time, a sinus-like shape
over an orbital period with amplitudes of a few millimeters.
This suggests that the baseline can be approximated in close
formation scenarios by a linear term for acquisitions of
several minutes. The PRISMA data show, however, some
discontinuities that should be avoided in the estimates used
for the derivation of the synchronization solution.

Linear baseline errors will be interpreted by the clock
synchronization solution as carrier offset. In the case of
interferometric applications on static surfaces, the resulting
carrier offset can be easily estimated in the data processing
if it is constant over scales of a few minutes [11]. For other
applications, the carrier offset would result in artifacts on the
synthesized image, so the applicability of the synchronization
technique here proposed is tied to the baseline velocity
precision. This could be particularly problematic for moving
surface applications.

The carrier offset due to baseline velocity errors is, however,
expected to be very low. Consider, for example, a 5.405 GHz
SAR payload. Based on (23), which will be derived shortly,
a baseline velocity error of 0.008 mm/s in the radial direction-
loosely based on results from PRISMA mission [15]-and a
radial component of the GNSS-SAR average direction vector
of −0.6 would result in a carrier offset of about 0.086 mHz.
In the case of the interferometric SAR systems, any residual
ramp can be easily estimated from data acquired over land
areas [10], [11].

In the following paragraphs, we derive an approximate
explicit relation between the baseline and phase synchroniza-
tion errors to provide further insight into its impact. The
baseline determination error for each GNSS satellite can be
approximated as follows by linearizing the error term around
zero as a function of the baseline solution [19]:

ρ(i)uv − ρ̃(i)uv ≈ −˜⃗e(i)v ·1r⃗uv − ˜⃗e(i)uv ·1r⃗u + ˜⃗e(i)uv ·1r⃗ (i) (22)

in which the ˜⃗e(i)u are unit vectors in the direction from the
estimated position of SAR satellite u to GNSS satellite i ,
1r⃗ (i) is the error in the position of GNSS satellite i , 1r⃗uv
is the baseline error, and 1r⃗u is the error in the position of
SAR satellite u, as shown in Fig. 5. For baselines up to a
few kilometers, the vectors ˜⃗e(i)u and ˜⃗e(i)v are approximately
parallel and the terms ˜⃗e(i)uv · 1r⃗u , and ˜⃗e(i)uv · 1r⃗ (i) are small
compared to the first term in the equation. In that case, we can
approximate the individual orbit determination errors as the
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Fig. 5. Basic geometry for the derivation of the baseline determination error.

first term of (22), i.e.,

N∑
i=1

n(i)λ∑
j=1

α
(i)
k ·

[
ρ(i)uv (t)− ρ̃(i)uv (t)

]
≈ 1r⃗vu (t) ·

N∑
i=1

αi · ˜⃗e(i)v (t)

(23)

with

αi =

n(i)λ∑
k=1

α
(i)
k .

The summation on the right corresponds to a weighted
average of unit vectors distributed more or less uniformly in
a semi-sphere. Since the weights αi depend on the signal-
to-noise ratio, higher elevations will receive a higher weight.
Assuming an antenna pattern symmetrical with respect to the
direction of the main lobe, the terms in the along-track and
across-track in the individual vectors ˜⃗e(i)v will tend to cancel
out when taking the average. These two factors contribute to
making this summation term a vector predominantly in the
radial direction. Since the final result is the scalar product
of the baseline error with this roughly radial vector, the radial
component of the baseline error will tend to dominate the final
error in the baseline estimation.

Fig. 6 illustrates the influence of each component of
the baseline error in the phase synchronization solution. It
corresponds to the application of (23) to simulated orbital
data considering a 5.405 GHz SAR payload. The GNSS
orbits are obtained from propagated GPS two-line elements
(TLEs) data. It gives an idea of the order of magnitude and
structure resulting from the baseline error and corroborates
the higher influence of the radial component. Note the plot
shows the behavior of the error over a period of hours.
Within the temporal scales of the synthetic aperture or SAR
acquisitions-typically a few minutes-, the observed variations
remain negligible (e.g., below one second of arc per millimeter
for 1 min). For a modest baseline accuracy of about 1-2 cm,
the static baseline contribution as shown in Fig. 6 would be

Fig. 6. Components of the GNSS-SAR average direction vector for a 500 km
altitude circular orbit and expected phase estimation error per millimeter
baseline error for a 5.405 GHz SAR payload.

tens of degrees in total, and the dynamic synchronization error
could become significant.

C. Residual Signatures of the Receiver and Upconverting
Electronics

The model in (3) assumes the ideal behavior and spectral
purity of all upconverting and frequency synthesizer electron-
ics in transmitter and receiver, a sine qua non for the scaling
of the phase noise process measured using the navigation
data onto the radar carrier. The residual signature considered
in (17) is expected to contaminate the solution if any of the
previous conditions are not satisfied. The averaging of the error
due to residual signatures in the upconverting electronics can
be-at best-only expected to happen over the few navigation
carriers of the receiver, if at all. This error source is common
for all received signals, and therefore cannot be reduced by
averaging the measurements from different frequencies and
GNSS satellites. It corresponds to a performance floor of the
synchronization technique here presented.

The receiver may use PLLs to lock local oscillators-used
for downconversion of the received signal-to the primary
oscillator, and a digitally controlled oscillator (DCO) to
generate the internal reference signal [20]. A PLL could also
be used to lock an internal oscillator to an external frequency
source. The jitter added by these frequency generation devices
within the receiver is expected to cause a deviation from the
ideal proportionality between the clock term of the carrier
phase measurement, and the phase noise of the primary
oscillator, adding to the residual signature.

Among the many architectural implications of the con-
ditions above (e.g., low-phase noise of mixers, PLLs, and
other active elements especially in the navigation receivers),
we believe it is pertinent to focus on the selection of the
primary frequency of the system. Above all, the use of other
oscillators only impacting either the navigation receiver or the
radar electronics should be avoided. If the use of frequency
shifts cannot be avoided or other relevant nonlinearities are
expected in the navigation receivers, it may be advisable
to sample the primary oscillator of the system (and other
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Fig. 7. Measured error of smoothed carrier differential phase noise estimates
using two OEM729 receivers with a common external frequency source in a
zero-baseline configuration. The carrier phase data was taken at 10 Hz and
smoothed through a moving average with a window size of ten samples.

intermediate frequencies) to provide a reference for further
calibration of the synchronization solution.

The performance floor contribution from receiver elec-
tronics, added to the carrier phase tracking error due to
thermal noise, can be determined by calculating the single
differences of the carrier phase measurements between two
receivers taking as input the same GNSS signal (e.g., using
the same antenna) and the same primary oscillator. Results
from such experiments are reported in [22]. In the article,
the authors show that a performance floor of 1 mm rms in
the L1 band, which corresponds to 1.9◦, is achievable with
currently available dual-frequency geodetic-grade receivers.

We executed an experimental validation using two of the
receivers OEM729 from Novatel, configured to receive signals
from the GPS constellation only. In the experiment, the two
receivers are configured to use an external frequency source,
and share the same oscillator signal and the same antenna,
therefore emulating a perfect baseline determination. The
results are shown in Fig. 7. The figure shows the average of
eight tracked L1 carrier phases, subtracted from the constant
bias and smoothed using a moving average filter of ten
samples, which corresponds to 1 s of data. The figure shows
results that may be sufficient for an L-Band system, indicating
that sufficient accuracy for lower frequency SAR systems
could also be attained by conventional receivers. We believe
it is possible to design receivers fulfilling the requirement of
having negligible, or at least traceable, clock signatures added
to the oscillator phase noise. In that case, performance in phase
synchronization would be driven by thermal noise and POD
accuracy.

This article is focused on the error sources over which
the receiver and radar payload designers have little control.
The simulation presented in Section V assumes that the
performance floor established by the receiver and radar
electronics is well below the thermal noise component at the
tracking loop of each signal.

D. Ionospheric Delay
As mentioned before, the ionospheric delays can be

estimated in the POD along with the clock bias, position,

and other parameters. For short baselines, of less than one
kilometer, ionospheric path delays for the two satellites are
expected to be highly correlated. For example, in the GRACE
mission, the differential path delays were dominated by carrier
phase measurement noise, which resulted in a scatter of
roughly 1 cm [23]. The differential ionospheric delay thus
is expected to be very low and the error from the differential
ionospheric delay estimation is expected to be even lower.

In case the differential ionospheric delay component is not
negligible, it can be directly eliminated by employing a dual-
frequency receiver. From (12), the observables from a dual-
frequency receiver can be modeled as

λ0

2π
· ψuv,0 − I (i)uv = P(i)Luv,1 − ρ(i)uv − c · δt0uv − ϵ

(i)
uv,1

(24)

λ0

2π
· ψuv,0 −

(
λk

λ1

)2

· I (i)uv = P(i)Luv,2 − ρ(i)uv − c · δt0uv − ϵ
(i)
uv,2.

(25)

We can isolate the phase error from the system of equations
above, which results in

ψuv,0 =
2π
λ0

·

(
λ2

2

λ2
2 − λ2

1

)
·

[
P(i)Luv,1 −

(
λ1

λ2

)2

· P(i)Luv,2

−

(
1 −

λ2
1

λ2
2

)
· ρ(i)uv

]
−

2π · c
λ0

· δt0uv + ϵ
(i)
uv,12 (26)

where

ϵ
(i)
uv,12 =

2π
λ0

·

(
λ2

2

λ2
2 − λ2

1

)
·

(
ϵ
(i)
uv,1 +

λ2
1

λ2
2

· ϵ
(i)
uv,2

)
. (27)

Each pair of differential measurements will result in a single
estimate of the phase noise which is free from the effect of
the ionospheric delay. The phase error can be estimated as a
weighted average of all the differential measurements for each
GNSS satellite in view, which results in

ψ̃uv,0 =
2π
λ0

·

(
λ2

2

λ2
2 − λ2

1

)

·

N∑
i=1

αi

[
P(i)Luv,1 −

(
λ1

λ2

)2

· P(i)Luv,2

−

(
1 −

λ2
1

λ2
2

)
· ρ̃(i)uv

]
−

2π · c
λ0

· δt̃buv.

(28)

Compared to the estimator given by (13), the one given
by (28) is derived from half the number of measurements,
and each measurement has a higher standard deviation. For the
L1 and L2 frequencies from GPS (1575.42 and 1227.6 MHz,
respectively), the final standard deviation of the estimation
error will be multiplied by the factor

σion−free

σdual
=

√
2 ·

√
λ4

2 + λ4
1

λ2
1 − λ2

2
= 4.20. (29)
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Fig. 8. Simulated phase drift data and results from GNSS-based phase error
estimation.

Fig. 8 shows the estimation results applying the ionosphere-
free phase error estimator. In the simulation, a difference
of five total electron content unit (TECU) was introduced
in the vertical total electron content (VTEC) between the
two satellites. Carrier phase data from dual-frequency GPS
receivers was simulated to enable estimation of the ionospheric
delay. The remaining simulation parameters are shown in
Table II.

By using the ionosphere-free algorithm, the standard
deviation was increased by a factor of 2.9 compared to
the results using a single-frequency receiver, which will be
presented in detail in Section V. This ratio is still close to what
predicts (29), since single-frequency receivers are expected
to yield a phase error estimation with a standard deviation
1.41 higher than dual-frequency receivers, in the absence of
high ionospheric delay differences. This multiplicative factor
on the noise-like component of the estimation error is the
penalty for estimating the ionospheric delay at each time
step and corresponds to a worst-case scenario considering
dual-frequency receivers. In case the ionospheric delay error
remains approximately constant for the SAR integration time,
or if it can be accurately interpolated from the POD solution,
the previous estimator given by (13) is recommended, since it
yields more precise results.

E. Unmodeled Components

Another error source in the GNSS measurement is the
so-called phase center variation. Depending on the relative
viewing geometry of the GNSS transmitter and receiver, the
phase centers of the receiver and transmitter antenna vary.
If this is not accounted for, it introduces an additional error to
the phase measurement. This can be calibrated at a laboratory,
as it was done in challenging minisatellite payload (CHAMP)
and GRACE missions [24]. However, as remarked in [25],
even after applying the laboratory calibration, other azimuth
and elevation-dependent unmodeled variations persist. These
errors can be further reduced by applying frequency-dependent
patterns from on-orbit calibration, as demonstrated in [24].
They demonstrated that the carrier phase modeling is improved
to a level of 4 mm, close to the pure receiver noise.

In the orbit determination process, the mean value of all
the unmodelled errors cannot be separated from the GNSS
receiver clock offset and, therefore, will bias it [23]. The
effect of this error will cause a slight time offset, affecting
the synchronization, and therefore will not affect considerably
the positioning solution. For the application presented in this
article, however, these effects are critical, and the biases must
be calibrated to a value low enough so that they can be
corrected in the data processing.

One of the potentially most critical error sources is the so-
called multipath effect, which results from the superposition
of the signal received directly from the GNSS satellite and
the signal reflected by other surfaces. This error depends on
the signal difference, the strength, and polarization of the
reflected radiation, as well as the internal characteristics of the
receiver [19]. The multipath effect is confined to a quarter of
the navigation signal wavelength [26]. This can be a significant
error, and the system must be designed to suppress or avoid it.
For example, the two spacecraft used in the GRACE mission
did not employ deployable solar panels, and their mechanical
layout minimizes multipath effects. The PRISMA mission,
which also performed experiments on POD, had the GPS
antennas on the tips of the solar panels, which may have
contributed to mitigating the problem of multipath effects.
The strategy used in PRISMA is of particular relevance for
low-cost SAR missions since their high power demand may
require the use of deployable solar panels. On the other hand,
this approach may introduce errors from residual solar panel
vibrations and attitude uncertainties, which must be carefully
evaluated and taken into consideration in early design trade-off
studies.

The effect of multipath in the final phase estimation can
be directly quantified from the corresponding component
in (18), and it will consist of the weighted average of the
contribution of each signal used in the estimation. The total
multipath contribution to the synchronization error budget can
be predicted by simulating the individual multipath errors,
for example, through the procedure explained in [27], and
applying the weighted averaging. One possible approach to
mitigating multipath could be to identify the signals strongly
affected by it and eliminate them from the estimation. Signals
affected by multipath can be identified, for example, using the
techniques detailed in [28] and [29].

In addition to the aforementioned errors, the phase
measurements are affected by the so-called wind-up effect,
which corresponds to the phase accumulation due to the
rotation of the antennas about the mutual line-of-sight [19].
This error is not expected to be as significant as, for example,
multipath errors, but it should also be considered.

F. Ambiguities

As shown in (18), errors in the ambiguity estimation
for each signal will affect the final phase estimate. The
constant phase channel biases also will bias carrier phase
ambiguities [19]. This will have little effect on positioning,
but it could be a relevant error source for an SAR application
in which absolute phase reference is necessary. Having



5213614 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

absolute phase calibration independent of external data in the
synchronization solution is relevant for specific applications.
For interferometry, for example, having an absolute phase
reference could make it possible to resolve the unknown
ambiguity interval in the interferometric DEM without the
need for height referencing on ground [14].

Since the ambiguities are constant for any given tracking
arc, the corresponding error component will not change as long
as the receiver remains locked to the same GNSS satellites
during the SAR data acquisition time. This will most likely
be the case for an acquisition time of a few minutes. If a
GNSS satellite comes into view or goes out of view, using
its carrier phase data may introduce a discontinuity into the
relative phase estimate, which might appear masked in the
estimated solution if inspected after averaging over navigation
satellites.

The trivial but effective way to mitigate this problem would
be to use only data from the GNSS satellites to which the
receiver remains locked during the entire data acquisition
period. This can result in discarding useful data for long
acquisitions, but it is not expected to considerably degrade
the performance of the technique because the satellites with
visibility time of less than the short acquisition period will
be few, and they will necessarily be seen at a low elevation,
offering degraded measurements.

G. Long Versus Short Baseline Scenarios

Among the error contributions explained in
Sections IV-A–IV-G, two are expected to degrade with
the distance: the baseline error and the ionospheric delay.
Considering that GRACE demonstrated submillimeter
accuracy in baseline determination using only GNSS for
a distance of around 220 km [30], we do not expect
the accuracy of the PBD to be a performance driver at
least up to that distance, and possibly beyond, assuming
a GNSS receiver of comparable capabilities to the one
used in GRACE. However, we expect the synchronization
performance for long baselines to be considerably degraded
by the decorrelation between the ionospheric effects on
the carrier phases received at the two satellites. In [23],
the authors evaluate the differential ionospheric delay on
dual-frequency carrier phase measurements taken from the
GRACE mission during a longitude swap maneuver, in which
the satellites crossed at distances below 2 km. They concluded
that the ionospheric delay was below carrier phase noise level
for distances up to around 5 km. For longer distances, the
effect of the differential ionospheric delays becomes apparent.
As explained in Section IV-D, in principle, this effect could
be eliminated through a linear combination of interfrequency
carrier phase data at the cost of increased noise. Therefore,
in principle, the technique could also be applied to distances
up to 220 km but with a degraded performance.

In the case of companion missions, taking Harmony as an
example, the transmitter could be at a distance of a couple of
hundred kilometers from the receiver satellites, which could
either be separated by a few hundred meters or by several
hundreds of kilometers, depending on the mission phase [31].

The two Harmonies could be seamlessly synchronized using
the GNSS-based synchronization technique presented here
during the cross-track interferometric phase, in which the
satellites will fly at a baseline of a few hundred meters in
a helix configuration. The technique could also be applied for
baselines of a couple of hundred kilometers if needed but with
degraded performance.

As a final note, independently of the baseline, the
applicability of the GNSS-based synchronization technique
depends on the synchronization performance requirements,
which depend on the radar carrier frequency and the particular
application and must be evaluated individually.

V. SYSTEM EXAMPLE

This section provides an end-to-end simulation of the
GNSS-based estimation for a C-band bistatic SAR using
simple GNSS receivers. The purpose is to illustrate the
potential of the suggested idea by providing an example of
performance in a realistic environment. The parameters for
the radars have been inspired by the ESA Earth Explorer
10 mission Harmony, which will consist of two companion
passive-only satellites for Sentinel-1. The parameters for the
positioning errors are based on results from the PRISMA
mission [15] and the performance of the Phoenix GPS
receiver by GSOC [21]. The error resulting from the orbit
determination and the thermal noise is evaluated in the tested
scenario. Fig. 9 shows the data flow and the major components
of the simulation.

The simulation represents the two C-band bistatic SARs
flying in close formation and with the suggested hardware
configuration implemented. The navigation antennas on
the radar spacecraft have direct visibility with nine GPS
satellites during the simulation period. The orbits of all
satellites are propagated using NASA’s open-source software
general mission analysis tool (GMAT) [32]. The software
allows for the numerical integration of all orbits using an
accurate gravitational model that includes drag and third-body
attractions. The errors in the position and velocity of the
radar satellites resulting from the POD have been simulated
by introducing an absolute bias in the initial state of the
satellites prior to orbit propagation. For convenience, historic
GPS ephemerides are imported and propagated directly using
the systems tool kit (STK) software.

After propagating the orbits, the ranges between the radar
satellites and the GNSS satellites in view at a minimum
elevation of 10◦ are calculated. The navigation raw data are
simulated by adding the following error components to the
expected code and phase signal: ionospheric delay, initial
clock bias, thermal noise, and clock drift. The phase drift
realization corresponds to a real measurement done with the
synchronization link of TanDEM-X operated at a frequency
of 3 kHz. The ionospheric delay is calculated assuming a
background component only of a constant VTEC and applying
the elevation-only-dependent mapping function by Lear [33].
In this case, even if simulated in the navigation raw data, the
difference in the ionospheric delays affecting the signals in
the satellites is negligible and was not considered in the phase
estimator. A more complex scenario, including turbulence
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Fig. 9. Simulation framework used to test the proposed GNSS-based estimation of the radar carrier synchronization phase. GMAT stands for general mission
analysis tool and STK for systems tool kit.

or bubbles, may benefit from the sensitivity of the different
navigation carriers to the TEC variations.

The simulations assume the exploitation of only one
frequency of the GNSS receiver (i.e., consistent with the
Phoenix receiver), with noise characteristics in line with
the Phoenix specification. The error figures are at the
subcentimeter level, similar to those reported in the PRISMA
mission, which also used a single-frequency GNSS receiver.
The phase difference between the clocks is estimated
using (13) with the weights as defined in (16). In the case
of two-frequency receivers, the residuals of the estimation
are expected to improve by a factor square root of two
due to the availability of a second independent measurement,
in addition to the improved accuracy due to a more accurate
orbit determination, as discussed in Sections III and IV of this
article. The ambiguity factors are assumed to be known from
the POD process. Table II shows the simulation parameters
and baseline errors.

Figs. 10 and 11 show the results of the simulation. As
expected, the estimation of the oscillator phase error scaled
to the radar carrier is biased but replicates the shape of the
original error with a standard deviation below 2◦ for the
simulation case. In Fig. 11, the estimation error presents a
drift component-resulting in one 1◦ difference in the average
error over the simulation period-caused by an error in the
baseline velocity. This negligible phase ramp indicates that
the technique could be used in applications where phase ramps
due to oscillator signatures cannot be separated from the useful
data (e.g., moving surface applications).

Under the assumptions of the simulation, the estimate may
even be considered conservative since we considered a single-
frequency receiver compatible with only one constellation.
With hardware capable of receiving several constellations and

TABLE II
SIMULATION PARAMETERS

several frequencies, the standard deviation may be reduced
to below 1◦. Note that not all systematic errors discussed in
Section IV of this article have been included in the simulation
because a more elaborated investigation is being planned in
the scope of a follow-on research work using representative
experimental data.

As discussed in Section IV, the effects due to multipath or
upconverting electronics may be unavoidable and degrade the
precision and accuracy of the solution. In case interferometric
data are available, the integration of the suggested technique
with a data-based synchronization algorithm (e.g., autosync)
[10], [11], [34], [35] may be considered for the calibration
of unmodeled error sources which do not remain constant
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Fig. 10. Simulated phase drift data and results from GNSS-based phase error
estimation.

Fig. 11. Error in the GNSS-based phase estimation.

during the radar integration time, especially in the band of
the clock phase errors. The simulation, however, indicates
that the technique here presented would not have to rely on
data-based synchronization and, therefore, would be suitable
also for noninterferometric and moving surfaces applications.
Last but not least, note the estimation model considered in
this article does not make any assumption on the stochastic
behavior of the radar clock. A better-suited estimator might
reduce the estimation error even further.

VI. CONCLUSION

This article proposes an algorithm for phase synchronization
considering a bistatic mission where, in each satellite, the radar
payload and the GNSS receiver share the same oscillator. The
phase error between the radar payloads can be derived from
the differential carrier phase measurements provided by the
GNSS receiver. Assuming that other error sources are either
suppressed or compensated, the carrier phase measurement is
affected by short-term phase noise variations of the oscillator
and by the continuously changing geometry between the
receivers and the GNSS satellite. The analysis indicates that
the short variations in the carrier phase measurement due

to phase noise from the oscillator can be isolated from the
component due to geometric variations by using POD results
since they vary at different time scales.

The technique presented here offers a simple solution
for phase synchronization in bistatic or multistatic radar
constellations. It has the potential for scalability since each
additional satellite designed to employ the technique can be
easily integrated into the multistatic system without adding to
the complexity of the other elements of the space segment.

The simulations indicate that a standard deviation of 1.6◦

at C-band could be obtained from low-cost single-frequency
GNSS receivers compatible only with the GPS constellation,
assuming preservation of the phase signature of the oscillator
within the radar payload and GNSS receiver, and only thermal
noise as an error source. The solution relies on very precise
relative navigation data. It assumes that the precision is in
the subcentimeter level in relative precision and negligible
in relative velocity. The performance can be improved
considering the relatively recent widespread availability of
navigation receivers compatible also with Galileo and BeiDou.
The use of receivers operating with several frequencies is
advised for the improvement of the phase accuracy and the
calibration of ionospheric signatures, especially in scenarios
with large baselines.

The error analysis indicates some critical issues that must
be addressed for the technique to work. Of particular concern
are multipath effects, which must be reduced to a minimum
by carefully addressing the spacecraft design. The calibration
of the upconverters must be carefully conducted to avoid
inconsistent phase signatures in the estimated solution. Unlike
using a synchronization link operated at the radar carrier, the
errors of the GNSS-based estimation are expected to degrade-
at least linearly-for increasing frequencies and could be at the
edge of usability for X-band radar systems.

Future research work includes a validation of the error
analysis of the proposed concept using a ground-based
measurement setup simulating bi/multistatic SAR system
configurations. In addition, the integration of the presented
technique with others based on the data, such as autosync,
could offer an improved solution and should be further
assessed. Finally, it is important to investigate if the
precision of the results from the GNSS-based estimator
could be improved by smoothing techniques based on the
stochastic behavior of the oscillator phase noise. Any eventual
improvement could compensate for error sources not included
in the model, thus making the concept more robust and viable.
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